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Abstract

The field of cancer immunotherapy has made exciting progress for some cancer types in recent 

years. However, recent failures of late phase clinical trials evaluating checkpoint blockade in 

glioblastoma (GBM) patients represent continued challenges for brain cancer immunotherapy. 

This is likely due to multiple factors, including but not limited to marked genetic and antigenic 

heterogeneity, relatively low mutational loads and paucity of GBM-infiltrating T cells. We review 

recent and ongoing studies targeting the checkpoint molecules as monotherapy or in combination 

with other modalities, and discuss the mechanisms underlying the unresponsiveness of GBM to 

single modality immunotherapy approaches. We also discuss other novel immunotherapy 

approaches that may promote T cell responses and overcome the “cold tumor” status of GBM, 

including oncolytic viruses and adoptive T cell therapy.

Introduction

Immunotherapy, in particular checkpoint blockade therapy, has been approved by the U.S. 

Food and Drug Administration (FDA) for multiple cancer types. However, early results from 

clinical trials in glioblastoma (GBM) have yet to demonstrate significant clinical benefits. 

This is likely due to multiple factors, including but not limited to marked genetic and 

antigenic heterogeneity, relatively low mutational loads and paucity of GBM-infiltrating T 

cells. In this regard, GBM is considered a type of “cold tumor.” In this concise review, we 

discuss the mechanisms underlying the unresponsiveness of GBM to single modality 

immunotherapy approaches thus far. We also discuss other novel immunotherapy approaches 

that may promote T cell responses and overcome the “cold tumor” status of GBM, including 

oncolytic viruses and CAR-T cell therapy.
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Promises and challenges of immune checkpoint blockade

Since 2011, there has been a revolutionary shift in the treatment of cancer owing to immune 

checkpoint blockade, including anti-programmed cell death (PD)1, anti-PD ligand (PD-L)1, 

and anti-cytotoxic T-lymphocyte-associated protein (CTLA)-4 targeted agents, which 

successfully demonstrated durable responses in a range of tumor types. For example, a phase 

3 double-blinded randomized study of combination anti-PD-1 (nivolumab) and anti-CLTA-4 

(ipilimumab) therapy in 945 patients with metastatic melanoma resulted in considerable 

improvement in overall survival at 3 years [CHECKMATE-067, NCT01844505; (1)], but 

with higher rates of severe adverse events (AEs) than those in single agent therapies. 

Subsequently, FDA approval for several agents in this class has been granted.

However, the application of these agents to primary brain tumors, such as GBM, has thus far 

yielded mixed results despite promising preclinical data (2). A phase 3, randomized, open-

label trial of 369 patients comparing nivolumab to the anti-angiogenic monoclonal antibody 

(mAb) bevacizumab in patients with the first recurrence of GBM [cohort 2, 

CHECKMATE-143, NCT02017717; (3)] failed to demonstrate the benefit of nivolumab 

versus bevacizumab in the overall survival (OS). The OS was 9.8 months with nivolumab 

and 10.0 months with bevacizumab, and the 12-month OS was 42% in both arms. However, 

the median progression-free survival (PFS) was found to be 1.5 vs 3.5 months for nivolumab 

and bevacizumab, respectively. The overall response rate (ORR) was 8% (nivolumab) vs 

23% (bevacizumab), with the median duration of response of 11.1 months (nivolumab) and 

5.3 months (bevacizumab).

Exploratory cohorts from CHECKMATE-143 included nivolumab monotherapy compared 

to combination of nivolumab and ipilimumab (cohorts 1 and 1b) (4). At approximately 30 

months follow-up, there were 3 partial responses, 20 patients with disease progression, and 

stable disease in 8 patients. Responses occurred in the non-randomized (allocated) cohort 

1b, using a regimen of nivolumab 3 mg/kg plus ipilimumab 1 mg/kg for 4 doses every 3 

weeks followed by nivolumab alone and in the randomized nivolumab monotherapy arm of 

cohort 1. The toxicities of immune and non-immune related AEs for either the combination 

or the monotherapy cohorts on CHECKMATE-143 are in line with other published reports 

of these agents, with higher rates of grade 3/4 SAEs following treatment of the combination 

arms. There were similar rates of AEs between bevacizumab and nivolumab in cohort 2.

The strategy of combining immune checkpoint inhibition with anti-angiogenic therapy was 

shown to be safe in a small pilot study of pembrolizumab with or without bevacizumab of 6 

patients with recurrent GBM [NCT02337491; (5)], with no dose-limiting toxicities. Final 

efficacy results PFS and OS have not been reported. Several other clinical trials are ongoing 

to explore immune checkpoint blockade in newly diagnosed GBM. Nivolumab in 

combination with radiation therapy alone (without concurrent temozolomide) is being 

explored in a phase 3, randomized, placebo-controlled trial for patients without O6-

methylguanyl methyltransferase (MGMT) promoter methylation, a poor prognostic marker 

for GBM that also demonstrates decreased response to alkylating chemotherapy (such as 

temozolomide; CHECKMATE-498, NCT02617589; (6)). Nivolumab is also being studied in 

a phase 3, randomized, placebo-controlled trial for MGMT-promoter methylated GBM with 
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upfront concurrent radiation and chemotherapy [CHECKMATE-548, NCT02667587; (7)]. 

Neither trial has published results to date.

In addition, a phase 2 open label, non-randomized clinical trial uses anti-PD-L1 mAb 

durvalumab in multiple cohorts comprising newly diagnosed MGMT promoter 

unmethylated GBM patients (cohort A) and both bevacizumab-naïve and -refractory 

recurrent GBM patients (cohorts B, C, NCT02336165). Interim results of durvalumab 

monotherapy in cohort B reveal low treatment-related SAE rate of 10% and efficacy with 

PFS-6 of 20.0%, OS-6 of 59%, and ORR of 16.7% for partial response and ORR of 46.7% 

for stable disease (8). Results from the other cohorts of this trial are pending. A Cochrane 

systematic review of immune checkpoint blockade therapy for glioma published a protocol 

which may illuminate efficacy trends across multiple studies (9). While the abovementioned 

trials involve GBM, few published or presented studies have evaluated checkpoint inhibition 

for low grade glioma, meningioma, or other primary brain tumors.

There are several proposed causes for the lack of success of immune checkpoint inhibitors 

(ICI) for primary brain tumors thus far. As with many therapeutic agents, blood-brain barrier 

(BBB) penetration may be limited for large mAbs, such as ICI. Efficacy of 

CHECKMATE-143 may also have been affected by repression of immune responses from 

patients on corticosteroids or prior treatment with myelosuppressive chemotherapy. A 

consideration for the failure of these agents in GBM patients is the challenging definition of 

tumor progression or response with immunotherapy. For example, CHECKMATE-143 

employed the RANO (Response Assessment in Neuro-Oncology) criteria under which MRI 

imaging changes, such as increased size of T2/FLAIR or T1-post gadolinium contrast-

enhancing lesions would be deemed progressive disease. Clinical experience, however, 

demonstrates that treatment with ICI can result in an initial peri-tumoral inflammatory 

response and even new lesions but is followed by imaging improvement, causing a 

mischaracterization of progressive disease (referred to as pseudo-progression) if using 

RANO (10). These challenges have been addressed in the development of immunotherapy-

specific response criteria, iRANO (11) which allow for such imaging changes to be observed 

within the first six months after starting immunotherapy (assuming clinical stability of the 

patient) for a three-month window to confirm progressive disease. iRANO is already being 

incorporated into recently developed clinical trials (e.g. NCT02658981 et al.).

The effectiveness of immune checkpoint blockade by tumors is hypothesized to require 

expression of PD-L1 on tumor cells and PD-1 on peritumoral cytotoxic T lymphocytes, both 

of which have been demonstrated to varying degrees in gliomas (12). Higher expression of 

both receptors has a negative prognostic impact on OS (13) and higher PD-L1 expression 

correlated with the mesenchymal expression subtype of GBM (12). Values of PD-L1 

expression on GBM cells also depend on the diagnostic anti-PD-L1 antibody used for 

detection (14).

GBM cells have a relatively low mutagenic burden (15), which is indicative of diminished 

responsiveness to ICI therapy (16). Rare exceptions are those tumors with deficiencies in 

POLE or mismatch repair genes (MMR, i.e. MLH1, MSH2, MSH6, PMS2) which have 

higher mutagenic burden (17). As a corollary to the tumor mutational burden, tumor 
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neoantigen expression (i.e. immunogenic epitopes derived from cancer-specific gene 

alterations) is also hypothesized to predict response to immunotherapy and may help direct 

treatment with specific agents (18). However, in an important study of these prospective 

biomarkers, even GBM patients with high tumor mutational burden were not enriched for 

cytotoxic T lymphocytes, PD-1-expressing T lymphocytes, or PD-L1-expressing tumor (19). 

Thus, it remains to be determined if there is a unique subtype of GBM or specific biomarker 

profile for which immune checkpoint inhibition is most effective.

Additionally, the tumor micro-environment (TME) of GBM may also contain 

immunosuppressive actors beyond PD-L1:PD-1 and CTLA-4. Other mechanisms, such as 

ones through the A2aR high-affinity adenosine receptor (on lymphocytes and tumor-

associated macrophages) or PD-L2 (on macrophages lacking PD-L1 expression), may 

bypass ICI in glioma. The GBM TME has also been shown to contain regulatory T 

lymphocytes (Treg), while lacking substantial antigen-presenting cells (APC), all factors 

which abrogate effector T lymphocyte activity against tumors. The glioma TME 

demonstrates robust macrophage infiltration, including from phenotypically suppressive 

CD163+ M2 and undifferentiated M0 macrophages, particularly for mesenchymal gene 

expression GBM subtype (20). Among several biomarkers, STAT3 in particular has a role in 

driving immunosuppression and in tumor proliferation, survival, and angiogenesis in high 

grade glioma (21).

In contrast to primary brain tumors, treatment of brain metastases with ICI has shown 

clinical benefit. Although a detailed discussion of immunotherapy for central nervous 

system (CNS) metastases is beyond the scope of this review, comparing clinical results for 

such tumors can help elucidate the mechanism of their activity in primary brain tumors as 

well. For example, a dedicated clinical study that treated CNS metastases with combination 

nivolumab and ipilimumab followed by nivolumab alone demonstrated 19% complete 

responses and 56% ORR for un-irradiated intracranial disease [CHECKMATE-204, 

NCT02320058; (22)]. Severe treatment related AEs were 48% plus one death. Another 

open-label phase 2 clinical trial that examined combination nivolumab plus ipilimumab in 

un-irradiated brain metastases revealed similar results with 44% intracranial ORR and 68% 

severe AEs [ABC, NCT02374242, (23)] Interestingly, in the ABC trial, there were 

discordant responses for brain lesions to immune checkpoint therapy between patients 

treated with prior BRAF inhibitor treatment, 16% ORR compared to 53% for treatment-

naïve patients.

Notably, patients demonstrating oligo-progressive disease of their melanoma brain 

metastases were allowed to receive stereotactic radiosurgery (SRS) in CHECKMATE-204. It 

has been hypothesized that tumor irradiation may improve the efficacy of ICI by i) triggering 

an type-I interferon-driven inflammatory response (24), ii) generating tumor neo-antigen 

uptake by APCs and MHC class I expression, and iii) eliminating phenotypically 

suppressive myeloid-derived suppressor cells (MDSCs) in the TME (25). Thus, the 

synergistic combination of radiation in both primary and metastatic brain tumors is being 

explored as a promising therapeutic direction to overcome immunologically cold tumors. 

For example, the use of ipilimumab alone adjuvant to SRS improved 1-year overall survival 

in patients with melanoma brain metastases compared to historical controls, 65% and 56%, 
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respectively (26). A planned trial for breast cancer metastatic to the brain will employ SRS 

and pembrolizumab and will prospectively observe both irradiated tumor responses along 

with Abscopal effects of non-irradiated metastases as well (NCT03449238). A dedicated 

phase II open label trial recently opened for combination nivolumab, ipilimumab, and 

salvage RT in melanoma with brain metastases at centers in Australia (ABC-X, 

NCT03340129), including an arm for combination of whole brain radiotherapy and 

immunotherapy in multiply-metastatic or leptomeningeal melanoma of the CNS. For high-

grade glioma, a retrospective study of cranial re-irradiation up to 35 Gy plus anti-PD-1 

treatment (with either pembrolizumab or nivolumab) reported 35% ORR and no increased 

cerebral edema with this combination (27), although no prospective data has been published.

Immune suppression in glioma

In addition to the presence of BBB, there are cellular and molecular mechanisms underlying 

the major challenges for developing effective immunotherapy strategies for gliomas.

Microglia, macrophages and MDSC

Primary brain tumors, in particular GBM, possess an immunosuppressive phenotype, both 

locally in the CNS and systemically. About 30–50% of the GBM microenvironment is 

comprised of myeloid cells (28), namely, microglia, tumor-associated macrophages (TAM) 

and myeloid derived suppressive cells (MDSC). Increased populations of MDSCs are found 

in the serum and in peritumoral milieu of GBM patients (29). Paracrine network signaling 

between glioma cells and TAMs promote mutual coexistence, via secretion of chemokines 

and other factors (including CCL2, CSF-1, MCP-3, CXCL12, CX3CL1, GDNF, ATP and 

GM-CSF) and can attract myeloid cells (30,31). Additionally, gliomas secrete various 

immunomodulatory cytokines that suppress microglial activation and skew macrophages 

towards an immunosuppressive M2 phenotype (32–34). In GBM, increased CD163+, 

CD204 + M2-macrophages correlate with a poor clinical prognosis (35), whereas CD74+ 

M1 cells are associated with improved survival (36).

Single-cell RNA-sequencing allowed us to gain novel insights on blood-derived and 

microglial TAMs (37). Blood-derived TAMs are enriched in perivascular and necrotic 

regions, and express higher levels of genes associated with phagocytic activity, immune-

suppression and oxidative metabolism than microglial TAMs. Furthermore, gene signature 

of blood-derived TAMs, but not microglial TAMs, correlates with significantly inferior 

survival in low-grade glioma. Importantly, TAMs frequently co-express canonical pro-

inflammatory (M1) and alternatively activated (M2) genes in individual cells, suggesting 

that the nominal M1 vs. M2 dichotomy may have to be revised for glioma TAMs.

In regard to TAM-associated chemokines, CCL2 secretion by gliomas is correlated to 

histopathologic grade. The chemokine has been shown to recruit TAMs and abet the 

infiltration of Treg cells (38). In addition, it can promote tumor proliferation and 

angiogenesis through the CCL2/CCR2/IL-6 axis, leading to enhanced production of MMP2 

that further augments tumor invasion (39). Secretion of IL-10 by M2-type myeloid cells also 

inhibits IFN-γ production, downregulates MHC class II on APCs and CD80/CD86, and 
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induces T cell anergy (40). Immunosuppression in GBM is partly dependent on upregulation 

of STAT3, which can reduce T cell proliferation, trigger T cell apoptosis and induce Tregs 

(41). Furthermore, GBM-derived GM-CSF plays a central role in IL-4Rα upregulation on 

MDSCs in glioma, while the production of arginase inhibits T cell proliferation and function 

(42).

Regulatory T cells

The presence of suppressive circulating and tumor-infiltrating Foxp3+CD25+CD4+ Tregs 

corresponds to decreased effector T cell responses, both peripherally as well as in tumors 

(43). Presence of Tregs positively correlates with tumor grade (44). These Tregs express 

high levels of glucocorticoid-induced TNFR-related protein (GITR) that suppresses the 

function of APCs via inhibitory cytokines (IL-10, TGF-β, et al) (45). Indoleamine 2,3 

dioxygenase (IDO), an enzyme converting tryptophan to kynurenine, is a potent inhibitor of 

T cell proliferation and effector responses (46). IDO upregulation in glioma was associated 

with poor prognosis. Using a preclinical glioma model, IDO expressing tumors magnified 

recruitment of Tregs (47). Intratumoral Tregs exhibit increased expression of CTLA4 

compared to blood-derived Tregs (48). Overcoming Treg-mediated suppression has been 

proposed with both cytotoxic approaches, such as with temozolomide or cyclophosphamide, 

as well immunotherapeutic approaches such as anti-CD25 antibody, or blockade of IDO, 

STAT3, CTLA4 and PD-L1 (43,49), but this paradigm will require further research into the 

timing and mechanism of such approaches (50).

VEGF and TGF-β mediated T-cell suppression

Microvascular proliferation and tumor-induced neoangiogenesis are a hallmark of GBM 

(51,52). Neoangiogenesis is related to high levels of secreted vascular endothelial growth 

factor (VEGF) that can promote tumor growth as well as disrupting the BBB leading to 

induction of interstitial pressure and cerebral edema (53). VEGF-mediated suppression of 

intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 on 

endothelium inhibits T-cell infiltration to GBM. VEGF leads to increased infiltration of 

macrophages that secrete inhibitory cytokines (such as TGF-β) contributing to the 

immunosuppressive tumor microenvironment. TGF-β further reduces ICAM expression, 

inhibiting perivascular T cell transmigration, such that blocking TGFbeta-1/2 improved T 

cell infiltration in preclinical studies (52,54).

Galectin-1 and T cell apoptosis

Emerging evidence suggests that Galectin-1, a glycan binding protein, is another factor in 

GBM immunosuppression. By interacting with beta-galactoside-expressing glycoproteins on 

T cell surface, galectin-1 on glioma cells or tumor endothelial cells can negatively regulate T 

cell survival, inhibit T cell proliferation, block effector cytokine production, and antagonize 

T-cell signaling. Furthermore, galectin-1 promotes accumulation and expansion Tregs, 

thwarting the effector T cell response (55).
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Immunosuppression by mutations in isocitrate dehydrogenase (IDH) genes

Mutations of the isocitrate dehydrogenase (IDH) enzymes IDH1 and IDH2 are early and 

frequent (70–80%) genetic alterations in WHO grade II or III gliomas as well as in 

secondary GBM. These mutations results in the conversion of a-ketoglutarate to (R)-

enantiomer of 2-hydroxyglutarate (R-2HG) (56), and coordinate genome-wide epigenetic 

changes (57). Our group recently reported that IDH mutations and R-2HG lead to a decrease 

in STAT1 (signal transducer and activator of transcription 1) and effector T-cell-attracting 

chemokines, such as CXCL10, thereby inhibiting accumulation of effector T-cells in gliomas 

(58). We also showed that an inhibitor of mutant IDH1, IDH-C35, reduces R-2HG, recovers 

STAT1 and CXCL10, and enhances glioma-infiltration of T-cells and the efficacy of 

vaccines against IDH-MUT gliomas in mice (58). IDH mutant gliomas demonstrate a 

significant reduction in total leukocyte population including macrophages, microglia, 

dendritic cells, T and B-cells (59) as well as lower PD-L1 expression (60). Together, these 

studies point to the significant impact of IDH mutations on the immunological environment 

of glioma.

In Table 1, we summarize the known mechanisms in glioma microenvironment that lead to 

immunosuppression.

Approaches to enhance effective T cell responses

Chimeric antigen receptor (CAR) T-cells have recently shown considerable success in 

treating hematological malignancies that are otherwise refractory to traditional 

chemotherapy (61). Application of this novel therapeutic approach to solid tumors is an on-

going effort. For GBM, initial efforts have been encouraging, namely the results of a phase I 

studies of CAR-T cells, such as one targeting EGFRviii (62, reviewed in 63). Analysis of 

surgically resected tumor samples following administration of CAR-T cells showed that 

EGFRviii CAR-T were able to traffic to the active tumors, proliferate in situ, and exert direct 

EGFRviii activity that led to loss of EGFRviii-expression in tumors. T cell repertoire 

screening identified a marked increase in number and clonotypic diversity of tumor 

infiltrating T cells post CAR-T infusion, a secondary effect of EGFRviii-CAR-T trafficking 

possibly a result of epitope spreading. There was an increase in CD8+ effector T cells and 

other activated cells along with an increased expression of IFN-γ, Granzyme-b and CD25 in 

post-CAR-T infused tumors compared to pre-infusion-tumor tissue. However, the post-

CAR-T-infused tumors had an increase in compensatory immune-suppressive molecules like 

IDO-1, PD-L1, TGF-β, IL-10 and Foxp3. Heterogeneity of EGFRviii expression and 

immune-suppressive mechanisms remain major barriers to the efficacy of this therapy, but 

may potentially be defeated by combinatorial approaches targeting the immune-suppressive 

environment. Nonetheless, EGFRviii-CAR-T treatment, induced an immunogenic tumor 

microenvironment without apparent neurotoxicity (62).

Therefore, development of effective and safe adoptive T cell transfer therapy may represent 

a promising modality to turn the “cold tumor” status of GBM TME into “hot”. Our team 

recently identified a novel neoantigen epitope encompassing the K27M mutation within the 

histone 3 variant H3.3, which is present in a majority of diffuse midline gliomas (64). 
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Furthermore, we have cloned cDNA for T-cell receptor (TCR) α- and β-chains derived from 

a high avidity H3.3.K27M-specific CTL clone (64), allowing us to develop novel vaccine- 

and TCR-transduced T-cell-based immunotherapy strategies in patients with H3.3K27M+ 

gliomas.

Oncolytic viruses as immunotherapy

An alternative strategy to overcome the “cold” microenvironment of brain tumors may be 

the therapeutic use of engineered viruses (reviewed in 65). An oncolytic virus can directly 

infect and kill tumor cells, while also engaging innate immunity and launching an enduring 

adaptive anti-tumor immune response (66). A key feature of such viruses is that entire 

inventory of tumor neo-antigens is available for uptake by APCs which become activated by 

viral infection. There are multiple vectors and strategies for oncolytic viruses currently being 

evaluated in clinical trials, several of which are presented in Table 2. Future directions may 

involve combination of oncolytic viral therapy with ICI to enhance the anti-tumor immune 

response.

Neurotoxicity associated with CAR-T therapy

While none of the GBM CAR-T trials demonstrated significant neurotoxicity to date, in 

CD19-directed CAR-T therapy studies for pediatric ALL (acute lymphoblastic leukemia), 

severe neurotoxicity and treatment-related deaths were observed (67). This neurotoxicity 

was unrelated to presence or degree of intra-CNS disease and was shown to be associated 

with cytokine-release syndrome (CRS), specifically peak IL-15 secretion, BBB permeability, 

and endothelial activation (68–70). The rates of severe CRS were abrogated in a pilot study 

by combined pre-treatment with tocilizumab (anti-IL-6 mAb) and dexamethasone without 

affecting OS or ORR (71). Another direction that has been used to avoid CRS-related 

neurotoxicity includes local delivery of CAR-T cells, thus limiting systemic immune effects 

(72–74).

Concluding remarks

ICI represent a novel therapeutic approach to mitigate the immunosuppressive nature of 

glioma. Although results of early clinical trials failed to demonstrate clear efficacy for anti-

PD1-directed therapy, encouraging initial results for these agents in brain metastases, either 

alone, in combination with anti-CTLA-4, or in the setting of radiation therapy, suggest a 

direction for further exploration. We reviewed various mechanisms that leads to 

immunosuppression in GBM. On the other hand, induction of roust inflammatory responses 

by intravenous infusion of EGFRviii CAR-T therapy suggests that it is possible to turn their 

“cold” environment to “hot” without inducing neurotoxicity. Targeting shared tumor 

neoantigens as T cell therapy could help achieve effective anti-tumor immunity. 

Intraventicular delivery of T cells versus intravenous delivery of T cells could reduce the 

possibly reduce neurotoxicity and enhance efficacy of treatment. Focusing on parameters 

like immune suppression can help achieve better efficacy by combinatorial treatment 

approaches targeting immune-suppression.
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Table 1

Mechanisms of immunosuppression in gliomas

Type Mechanism Examples References

Tumor-cell intrinsic Glioma-mutations and effect on tumor 
microenvironment

IDH1-R132H mutation: Downregulates 
effector molecules like IFNγ, Granzyme-b, 
CXCL9, CXCL10 thereby reduces total 
CD8+ T-cell numbers in the tumors

(58,60)

NF1 loss: Increases M2-like macrophages/
microglia in tumors

(20)

N-Myc amplification: Decreases IFNγ, 
CXCL10 resulting in poor infiltration of T-
cells to tumors

(75)

Mesenchymal subtype of tumors: 
Enhances M2 macrophages/microglia, 
reduces responses to radiation, increases 
PD-L1 on tumors

(20)

Absence tumor hypermutation: Decreases 
T-cells in tumors

(15,16)

Glioma-associated downregulation of HLA and 
antigen presentation

Loss of Heterozygosity (LOH) in HLA: 
Associates with shorter survival and 
decrease in intra-tumoral CD8+ T-cells

(76)

Tapasin: Closely associates with HLA-loss, 
levels correlate with survival

(77)

Glioma expression of immune-checkpoint 
receptors

PD-L1: Higher expression correlates with 
worst prognosis. Suppresses CTL 
proliferation and function

(13)

CTLA4: Modulates T-cell activation to an 
immune-suppressive state

(78)

Glioma-specific receptors suppressing T-cell 
proliferation/function

GLUT1: Increases expression on glioma 
cells, enhances glucose intake, reduces T-
cell proliferation by competition in glucose 
uptake

(78,79)

Galectin-1: Inhibits T-cell proliferation and 
effector responses. Increases MDSC and 
immune-suppressive macrophages in tumor 
microenvironment

(55)

STAT3: GBM Cancer initiating cells 
inhibits CTL proliferation and function, 
induces Tregs, triggers T-cell apoptosis 
through STAT3

(41)

Glioma-induced immune-modulatory molecules TGF-b: Polarizes T-cells, macrophages, 
microglia to immune-suppressive states. 
Inhibits effector responses in T-cells, 
downregulates MHC-II on glioma cells and 
myeloid cells, promotes Treg activity.

(80)

VEGF: Causes downregulation of ICAM-1 
and VCAM-1, inhibits T-cell transmigration 
through GBM vessels

(52)

Glioma-induced T cell apoptosis CD70: Mediates T-cell apoptosis upon 
interaction with CD27

(81)

Gangliosides: Mediates T-cell apoptosis (81)

Tumor-cell extrinsic Suppression in CTL responses by immune-
suppressive TAMs, Microglia and MDSC

IL-6: Suppresses effector cell responses. 
Activates STAT3 to further inhibit T-cell 
proliferation and function. Increases 
infiltration of suppressive TAMs and 
Microglia through IL-6-CCL2-CCR2 loop

(41,82)
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Type Mechanism Examples References

IL-10: Inhibits IFNγ, TNFα and T-cell 
function, promotes Tregs, downregulates 
CD80, CD86, MHC-II in myeloid cells 
causing CD8+ T-cell anergy

(40)

FasL: Induces T-cell apoptosis (83)

IL-4Ra: Promotes MDSC in glioma 
microenvironment, produces immune-
suppressive arginase, inhibits T-cell 
proliferation and function

(42)

CCL2: Induces Treg, increases infiltration 
of TAMs, microglia and MDSC that 
produce CTL inhibitory factors

(38)

PGE2: Induces regulatory DC, leads to 
differentiation and accumulation of 
suppressive MDSC, reduces Th1 cytokine 
secretion

(45)

Regulatory T cell mediated suppression of CTLs GITR: Induces Treg expansion, inhibits 
CTL function, leads to secretion of IL-10 
and suppresses APC function

(45)

IDO1: Increase in IDO levels in glioma 
associates with poor prognosis. Inhibits T-
cell proliferation and function, induces Treg 
recruitment to tumors, reduces CTL 
infiltration to tumors

(84)

Hypoxia Causes abnormal glioma vasculature, 
increases VEGF secretion, downregulates 
ICAM and VCAM molecules thereby 
inhibiting CD8+ T- cell infiltration to 
tumors, activates Tregs via STAT3, 
increases immune-suppressive mechanisms 
by promoting M2-type myeloid cells in 
tumors

(85)

Immune-privilege of CNS Differential homing patterns in CNS versus 
periphery

T-cell homing to CNS compared to 
periphery is a two-step process. First step 
involves crossing the post-capillary venular 
endothelium and second step involves 
crossing the glia limitans

(86)

Lack of resident T-cells or professional 
APCs in brain parenchyma. Decrease in 
MHC-II expression on APCs inhibits 
antigen presentation in parenchyma of CNS

(86)

Afferent perivascular drainage pathway for 
ISF from CNS to regional cervical lymph 
nodes prevents cellular trafficking. Immune 
cells traffic through CSF’s lymphatic 
drainage

(86,87)
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