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Abstract Dental pulp stem cells constitute an

attractive source of multipotent mesenchymal stem

cells owing to their high proliferation rate and

multilineage differentiation potential. Osteogenesis

is initiated by osteoblasts, which originate from

mesenchymal stem cells. These cells express specific

surface antigens that disappear gradually during

osteodifferentiation. In parallel, the appearance of

characteristic markers, including alkaline phos-

phatase, collagen type I, osteocalcin and osteopontin

characterize the osteoblastic phenotype of dental pulp

stem cells. This review will shed the light on the

osteogenic differentiation potential of dental pulp

stem cells and explore the culture medium compo-

nents, and markers associated with osteodifferentia-

tion of these cells.
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Introduction

Dental pulp stem cells (DPSCs) are considered as

undifferentiated cells that can, when placed under

specific culture conditions, generate different cell

lineages, among which osteoblast-like cells. They are

mesenchymal stem cells (MSCs) exhibiting similar

features to those derived from bone marrow including

clonogenicity and capability of self renewal (Aghajani

et al. 2016). Their multilineage differentiation poten-

tial gives them a privileged status and they are

considered as a source of cells replacing lost clones

in regenerative medicine. Their immunological priv-

ilege adds to their importance in cellular therapy.

Their ability to be cryopreserved is another major

advantage making them accessible in a time dependent

manner (Takebe et al. 2017). The discovery of

multilineage differentiation of DPSCs prompted

researchers to characterize them as an emerging

source of multipotent cells when compared to bone

marrow-derived mesenchymal stem cells (BMMSCs).

Furthermore, DPSCs proliferation rate was proven to

be higher than that of BMMSCs (Shi et al. 2001;

Mortada et al. 2017). This could be due to the

developmental stage of the originating tissues, since

the wisdom teeth from which DPSCs are usually

extracted, are the last permanent teeth to develop

which makes them less mature than the bone marrow.

In this article, we are going to discuss the osteodif-

ferentiation process of DPSCs and explore the culture

medium components, and associated markers

expressed.
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Osteogenic differentiation potential

DPSCs can undergo transcriptional changes giving

precursor cells while preserving their self renewal

capacity and phenotype (Liu et al. 2016b; Shen et al.

2016). This progression is thought to be the earliest

step in stem cells commitment since precursor cells

have a more restricted developmental program at this

stage. The exit of DPSCs from the stem cell stage into

the commitment stage happens when the precursor cell

continues cell division and acquires specific properties

of fully committed mature cells with characteristic

phenotypes. The commitment and differentiation of

DPSCs to specific mature cell types, such as osteo-

cytes (Jaiswal et al. 1997; Heng et al. 2016), is a

controlled process that involves influence of chemical

stimuli and the activities of several growth factors,

cytokines, and extracellular matrix (ECM) compo-

nents (Doi et al. 2004). Studies have highlighted the

capacities of DPSCs to differentiate into functional

osteoblasts in vitro and they have also been found to

produce the extracellular and mineralized matrix (Shi

et al. 2001; Tabatabaei and Torshabi 2017) as

evidenced by the presence of several osteogenic

markers. Laino et al. demonstrated that DPSCs can

differentiate into osteoblast precursors and then into

osteoblasts, providing living autologous fibrous bone

(LAB) tissue. This tissue reacted with bone antibodies

and thus is a novel source of osteoblasts and miner-

alized tissue. After transplantation into immunocom-

promised rats, LAB formed lamellar bone-containing

osteocytes (Laino et al. 2005). In another in vivo

study, transplanted DPSCs could codifferentiate into

osteoblasts and endotheliocytes thus giving rise to

adult bone tissue (d’Aquino et al. 2007). Their

osteogenic capacity was further proved by radio-

graphic findings within three months of colonization

(d’Aquino et al. 2009). In a study investigating the

ability of human DPSCs to reconstruct large cranial

defects in non-immunosuppressed rats, the authors

reported the formation of a more mature bone in

defects supplied with collagen membrane and DPSCs

(de Mendonça Costa et al. 2008).

Culture medium components

Role of growth factors

Several studies attempted to characterize the effects of

specific factors on the osteoinduction of DPSCs. Bone

morphogenic proteins (BMPs) constitute the largest

subgroup of the transforming growth factor beta

(TGF-b) superfamily with pleiotropic functions dur-

ing development, and many are involved in skeletal

development, regeneration, and repair (Bragdon et al.

2011). Several BMP genes and their activities control

key steps in tooth development in mice (Wang et al.

2012). Among the members of the BMP family, BMP-

2 has an inductive effect on reparative dentinogenesis

as shown in the amputated pulp of canines in vivo

(Nakashima 1994). Several in vitro and in vivo studies

evidenced that BMP-2 promotes mouse DPSCs dif-

ferentiation into odontoblast lineages (Chen et al.

2008; Cho et al. 2010). In fact, SOX2 was capable of

promoting the osteogenic differentiation of DPSCs by

increasing the expression of the BMPs family (Yuan

et al. 2017). On the other hand, BMP-2 knockout mice

were generated by crossing Bmp2 floxed (Bmp2-fx/

fx) with a 3.6Col1a1-Cre mouse (Singh et al. 2008).

These mice showed a lack of odontoblast maturation

leading to the formation of hypomineralized dentin

and abnormal dentinal tubules (Yang et al. 2012a).

Vascular endothelial growth factor (VEGF) was also

found to facilitate neovascularization with increased

microvessel density of severed human dental pulp in a

tooth slice in vivo model (Mullane et al. 2008).

Besides its angiogenic effects on endothelial cells,

VEGF also has a direct effect on osteogenic cell

migration and differentiation as well as osteoclasto-

genesis in the context of bone development, regener-

ation, and repair (Yang et al. 2012b). VEGF enhances

osteoblast activity with increased mineral nodule

formation and stimulation of bone-specific genes in

preosteoblasts (Deckers et al. 2000). In terms of the

effects on human DPSCs, in vitro studies showed that

VEGF directly increases cell proliferation and osteod-

ifferentiation (I et al. 2011). A recent in vitro study

looking at the combined effects of BMP-2 and VEGF

on DPSCs osteodifferentiation showed that the addi-

tion of VEGF in the early phase rather than a

continuous presence of both VEGF and BMP-2,

enhances the differentiation process (Aksel and Huang

2017). In another study evaluating the osteogenic
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potential of epidermal growth factor (EGF) and

fibroblast growth factor (bFGF), DPSCs were cultured

in the presence of either growth factor. Results

revealed that cells treated with EGF lost MSCs

markers CD146 CD10, and produced calcium depos-

its. These cells also demonstrated increased mRNA

expression of alkaline phosphatase (ALP) and osteo-

calcin (OCN) in relation to control groups. On the

other hand, bFGF treatment had an inhibitory effect.

The authors therefore concluded that DPSCs in

combination with EGF can be an effective stem cell-

based therapy for bone tissue engineering applications

in periodontics and oral implantology (Del Angel-

Mosqueda et al. 2015). The role of bFGF was further

investigated in another study in which DPSCs were

mixed with bFGF during the osteodifferentiation

period or during the pretreatment period. The addition

of bFGF in the osteodifferentiation period caused a

decrease in the in vitro differentiation ability of

DPSCs, while 1 week pre-treatment with bFGF

increased the in vitro osteogenic differentiation ability

of DPSCs, whereas 2 weeks pre-treatment decreased

this process. The in vitro results were reproducible

in vivo. bFGF was therefore reported to affect the

osteodifferentiation of DPSCs in a treatment-depen-

dent manner both in vitro and in vivo (Qian et al.

2015). A previous study had reported that bFGF

inhibited ALP activity and mineralization of DPSCs in

an osteogenic medium, while mediating neurogenesis

in a neuroinductive medium (Osathanon et al. 2011).

Additionally, insulin-like growth factor 1 (IGF-1), and

tumor necrosis factor a (TNF-a) were found to

promote osteodifferentiation of DPSCs through the

mTOR and NF-jB signaling pathways, respectively

(Feng et al. 2013, 2014; Xing et al. 2015). On the other

hand, fibroblast growth factor 9 (FGF9) was reported

to enhance the phosphorylation of extracellular signal-

regulated kinase 1/2 (ERK1/2) leading to the inhibi-

tion of DPSCs osteodifferentiation (Lu et al. 2015).

Role of chemicals

Maintenance of mesenchymal cultures in the presence

of dexamethasone is known to enhance lineage

progression along the osteogenic or adipogenic lin-

eages, which may explain the relatively complex

patterns of cell morphology and differentiation cul-

tures (Ghali et al. 2015). Indeed, previous research has

proven that dexamethasone either alone or in

combination with ascorbate-2-phosphate (AsP), and

BMPs are osteogenic inducers of MSCs (Jorgensen

et al. 2004; Lim et al. 2016). A recent in vitro study

investigated the osteoinductive effects of dexametha-

sone on DPSCs (da Cunha Moretti et al. 2017). Cells

from the third molar pulp were divided into two

experimental groups differentiated by the intake of

dexamethasone in one of them. Following an assess-

ment of proliferation, differentiation and viability

through trypan blue, methylthiazol tetrazolium, and

von Kossa and alizarin red assays, respectively, results

showed that dexamethasone-treated cells exhibit ear-

lier differentiation than the remaining cells, when

observed in vitro. Moreover, hydroxyapatite/trical-

cium phosphate powder was also found to induce the

formation dentin-like structures upon DPSCs trans-

plantation into immunocompromised mice. Markers

of dentin matrix protein, including OCN and bone

sialoprotein (BSP) were detected in the DPSCs

transplants 6 weeks later (Gronthos et al. 2000).

Role of the extracellular matrix components

Differentiation is a continuously regulated process

where interactions between the cell and its microen-

vironment play an important role in maintaining

stable expression of differentiation-specific genes

(Blau and Baltimore 1991; Ravindran et al. 2013).

Co-culture of DPSCs with endothelial cells was

demonstrated to enhance their osteogenicity due to

physical interactions, such as heterotypic cellular

contacts, as well as chemical interactions because of

soluble factors that are known to play a critical role in

the regulation of DPSCs (Dissanayaka et al. 2012).

Several studies applied the mineral trioxide aggregate

(MTA) to DPSCs under osteoinductive conditions

(Seo et al. 2013; Wang et al. 2014a; Kulan et al. 2017;

Varalakshmi et al. 2013), revealing that MTA consis-

tently increased osteogenesis of DPSCs through the

upregulation of osteoblastic markers. In a study

involving inflammatory DPSCs, the authors reported

that MTA enhanced DPSCs osteodifferetiation by

activating the NF-jB pathway (Wang et al. 2014a).

The combination of simvastatin and a-tricalcium
phosphate (a-TCP) was also found to induce ostegenic
differentiation of DPSCs, and its effect was actually

superior to that of MTA (Varalakshmi et al. 2013).

Moreover, the addition of enamel matrix derivative, or

demineralized dentin matrix to DPSCs have been
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shown to independently upregulate the expression of

markers for odontoblast/osteoblast-like cells (Wang

et al. 2014b; Liu et al. 2016a). The presence of calcium

(Ca2?) was also associated with greater osteodiffere-

tiation potential of DPSCs. Sohn et al. studied the role

of ORAI1, an essential pore subunit of store-operated

Ca2?entry (SOCE), on odontogenic differentiation of

human DPSCs (Sohn et al. 2015). Results showed that

ORAI1 plays critical roles in the odontogenic differ-

entiation and mineralization of DPSCs via regulation

of Ca2? influx, highlighting a potential role for ORAI1

in enhancing reparative dentin formation. Oncostatin

M (OSM), one of the interleukin 6 (IL-6) family

cytokines has also been shown to enhance osteoblastic

differentiation of DPSCs via the JAK3/STAT3 sig-

naling pathway (Feng et al. 2016).

Markers of DPSCs osteodifferentiation

Although there is currently not a single marker to

determine osteodifferentiation of DPSCs, several

expression markers have been considered to study

the differentiation process. Evaluating osteoblast

proliferation and differentiation can be achieved by

estimating the expression of few osteodifferentiation-

specific genes (Kasperk et al. 1995; Su et al. 2014).

DPSCs were reported to express the typical osteoblas-

tic markers such as ALP, collagen type I (Col I),

opsteopontin (OPN), and OCN and they could differ-

entiate into osteoblast-like cells producing mineral-

ized matrix (Mori et al. 2011; Kermani et al. 2014;

Paduano et al. 2016). Other studies revealed an

increase in ALP and Col I mRNA expression during

initiation of bone formation (Jikko et al. 1999; Jaiswal

et al. 1997).

Alkaline phosphatase

Although ALP is a ubiquitous protein, it has an

influential role in osteogenesis and the mineralization

of the ECM (Marom et al. 2005). Several studies

reported it to be a marker for detecting osteodifferen-

tiation of cells at early stage, where the gene expres-

sion and ALP protein levels are greatly enhanced

during differentiation into osteogenic lineage and they

are therefore correlated with secretory activity of the

cell in a substantial way (Stucki et al. 2001; Chen et al.

2011). Two days following stimulation, the levels of

ALPmRNA have been shown to increase in parallel to

the osteodifferentiation process (Shui et al. 2003; Qi

et al. 2003). Furthermore, ALP is an ectoenzyme

implicated in the release of inorganic phosphate

during the cytodifferentiation phase of mineralization

and thus, it is a biological marker for bone turnover

(Kulterer et al. 2007). ALP is also important for the

formation of ECM and calcified tissue (Liu et al.

2008). Mori et al. (2011) cultured DPSCs in an

osteogenic medium and reported a gruadual increase

in ALP expression after 5 and 10 days.

Collagen type I

Col I is an important element of bone ECM which

binds to other ECM proteins and cell surface integrins.

However, it is not a bone specific protein and is present

in several other cell types. Col I mediates cell

adhesion, proliferation and differentiation of the

osteoblast phenotype. It was found to be upregulated

in response to several methods of in vitro force

application (Klein-Nulend et al. 1997; Jagodzinski

et al. 2004; Paduano et al. 2017) with its mRNA level

increasing after 2 days of stimulation (Pavlin and

Gluhak-Heinrich 2001; Pavlin et al. 2001). Col I can

therefore be considered an early marker of

osteodifferentiation.

Osteocalcin

OCN is a bone-specific protein which is considered as

a suitable marker for osteogenic maturation. It regu-

lates the mineralization of hard tissue and is usually

found in bone and dentin. Its production is restricted to

cells responsible for mineralization, such as osteo-

blasts, odontoblasts, and cementoblasts (Saygin et al.

2000; Sun et al. 2006). OCN expression regulates the

mineralization ability of cells and the formation of

mineral nodules (Nakamura et al. 2009; Khanna-Jain

et al. 2012; Thomson et al. 2003). Nakamura et al.

(2009) reported that OCN acts as an early osteoblastic

differentiation marker in MSCs cultured under

osteoinductive conditions. Other studies however

characterize it as a late indicator of osteodifferentia-

tion (Aubin 2001) and a terminal symbol in hard tissue

regeneration (Zhang et al. 2008). Indeed, OCN

expression was found to considerable increase in

DPSCs undergoing osteoinduction (Bakopoulou et al.
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2011; Khanna-Jain et al. 2012), especially at the fifth

day mark (Mori et al. 2011).

Osteopontin

OPN is a secreted adhesive glycophosphoprotein which

is present in many locations such as breast milk,

kidneys, bone, teeth, epithelial lining tissues and blood

plasma. Sodek et al. (2000) found that OPN, along with

BSP, are essential for the process of mineralization,

including the repair of mineralized tissue. In repairing

dentine, OPN facilitates the early formation and

mineralization of the tissue. It also mediates other steps

including cell division, chemotaxis, cell migration, cell

adhesion, cytodifferentiation (Smith et al. 2003) and

intracellular signaling (Sodek et al. 2000) needed for

the formation of a new generation of odontoblasts.

Dysregulation in OPN expression was associated with

tumor formation (Standal et al. 2004) and osteoporosis

in postmenopausal women. Interestingly, high OPN

expression may prevent osteogenesis, and counteract-

ing OPN may be effective in activating osteoclasts

(Yoshitake et al. 1999). In DPSCs osteoinduction, some

studies consider OPN an early marker of differentiation

(Jiang et al. 2009) while others regard it as a late

osteogenic marker (Khanna-Jain et al. 2012). In an

experiment studying OPN expression levels in bone

development, Aubin et al. (2001) reported a peak in the

proliferation phase (around day 4) as well as in the

mineralization phase (around day 14–21).

Growth factors and signaling pathways

As noted above, activation of specific growth factors

and signaling pathways is important during the process

of osteogenesis. Feng et al. (2013) analyzed the

function of TNF-a (10 ng/mL) on osteogenic differ-

entiation of human DPSCs and the role of the NF-jB
signaling pathway. TNF-a increased the mineralisa-

tion and the expression of BMP2, ALP, runt-related

transcription factor 2 (RUNX2) and COL I during this

process. PDTC, an NF-jB inhibitor, blocked the

osteogenic differentiation induced by TNF-a. The

authors also detected no effect of TNF-a on prolifer-

ation of DPSCs or cell cycle as evidenced by cell

counting assays and methylthiazolyldiphenyl-tetra-

zolium bromide (MTT) analysis. Another study on the

effects of IGF-1 showed a role for the mTOR pathway

in promoting the proliferation and osteogenic differ-

entiation of DPSCs (Feng et al. 2014). In a medium

consisting of DPSCs supplemented with 0.1 lmol/L

dexamethasone, 10 mmol/L b-glycerophosphate,

50 lg/mL ascorbic acid, and 100 ng/mL of IGF-1,

the authors noted an increased expression of RUNX2,

OCN, and COL1. IGF-1 was also found to increase

DPSCs proliferation via the CCK-8 assay showing a

higher proliferation rate in the IGF-1-treated group

compared to that of the untreated group. Supeno et al.

(2013) had testified that IGF-1 acts as controlling

switch for long-term proliferation of neural stem cells,

and IGF-1 can promote proliferation of placental

mesenchymal stem cells (PMSCs) via distinct signal-

ing pathways (Youssef and Han 2016; Youssef et al.

2014). Another study investigated the role of VEGF

and associated signaling pathways in relation to

DPSCs differentiation (Matsushita et al. 2000). Anal-

yses by the reverse-transcription/polymerase-chain-

reaction method and flow cytometry showed that the

mRNAs of two VEGF receptors, fms-like tyrosine

kinase and kinase insert domain-containing receptor,

were expressed in DPSCs. VEGF induced the activa-

tion of activator protein I (AP-1) and c-fos mRNA

expression in these cells. The AP-1 inhibitor as well as

the VEGF antisense oligonucleotide strongly inhibited

VEGF-induced ALP production in DPSCs. These

results suggest that VEGF produced by human DPSCs

acts directly upon human dental pulp cells in an

autocrine manner, and may promote the chemotaxis,

proliferation, and/or differentiation of human dental

pulp cells via the utilization of kinase insert domain-

containing receptor and in part through AP-1 by

increasing c-fos.

Conclusion

Emerging evidence highlight an important role for

DPSCs in osteogenesis and the advancement of

regenerative medicine. The selection of appropriate

healthy teeth extracted from young patients with a

good medical history, the adoption of improved

techniques of stem cells isolation and culture as well

as the employment of the best osteoinductive proto-

cols constitute the mainstay of a very promising

revolution in this field. However, the long term side

effects associated with the use of DPSCs and their

potential to transform into tumors over time have not
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been sufficiently studied thus far. More studies are

warranted to clarify possible long term risks related to

the use of these cells before DPSCs-based therapies

find their way to the bedside.
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