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•  Background and Aims  Information on cell cycle duration (T) in the root apical meristem (RAM) provides 
insight into root growth, development and evolution. We have previously proposed a simple method for evaluating 
T based on the dynamics of root growth (V), the number of cells in the RAM (Nm) and the length of fully elongated 
cells (l), which we named the rate-of-cell-production (RCP) method. Here, a global analysis was performed to 
confirm the reliability of this method in a range of angiosperm species and to assess the advantages of this approach.
•  Methods  We measured V, Nm and l from live or fixed cleared primary roots of seedlings or adventitious roots 
of bulbs and used this information to estimate the average T values in 73 angiosperm species via the RCP method. 
The results were then compared with published data obtained using the classical but laborious and time-consuming 
3H-thymidine method.
•  Key Results  In most species examined, the T values obtained by the RCP method were nearly identical to those 
obtained by the 3H-thymidine method.
•  Conclusions  The global analysis demonstrated that the relationship between the variables V, Nm and l in roots 
in the steady state of growth is correctly described by the equation T = (ln2 Nm l)V−1. Thus, the RCP method 
enables cell cycle duration in the RAM to be rapidly and accurately determined. This method can be performed 
using live or fixed roots for each individual cell type. The simplicity of the approach suggests that it will be widely 
used in phenomics, evolutionary ecology and other plant biology studies.

Key words: Angiosperms, cell cycle, cell cycle duration, cell proliferation, longitudinal zonation pattern, root 
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INTRODUCTION

To fulfil their functions, roots must grow continuously 
throughout the plant’s life cycle. This is possible due to root ap-
ical meristem (RAM) activity and subsequent rapid cell elong-
ation. The RAM is the source of all cells from which the root is 
built. Therefore, cell patterning in the RAM and the dynamics 
of cell division determine the architecture of the root system and 
are thus of paramount importance for the plant. Understanding 
these processes was one of the main interests of the late Peter 
W. Barlow. He and the senior author of this article proposed 
two exponential models for cell multiplication in the RAM that 
are essential for understanding root growth and RAM main-
tenance (Ivanov, 1974; Barlow, 1976b; Shishkova et al., 2008). 
Many aspects of root meristem patterning and organization 
were studied by Barlow, including the quiescent centre of the 
RAM and its stem cell properties (Barlow, 1973, 1976c, 1987, 
1994, 1997, 2015a, b, 2016; Dubrovsky and Barlow, 2015), cell 
cycle duration within the RAM (Barlow and MacDonald, 1973; 
Francis and Barlow, 1988; Barlow and Woodiwiss, 1992), 
the role of plant hormones in cell proliferation in the RAM 
(Barlow, 1976a, 1992; Barlow and Pilet, 1981, 1984; Barlow 
et al., 1991; Müller et al., 1993, 1994; Ponce et al., 2005), and 

the relationship between cell cycle duration (T) and haploid 
DNA content (Francis et al., 2008).

The root is an exceptionally convenient system for studying 
cell proliferation due to the relative simplicity of its structure, 
the clear distinction between the RAM and the elongation zone, 
and the ease of treating roots with various compounds. Howard 
and Pelc (1953) were the first to introduce the cell cycle con-
cept as we know it today. The authors proposed a fundamentally 
new approach for studying cell proliferation based on short-
term (pulse) labelling of cells with a radioactive DNA precursor 
(32P at that time) and subsequent analysis of the labelled cells. 
The authors used Vicia faba roots, an appropriate system for 
obtaining numerous labelled cells (see Dubrovsky and Ivanov, 
2003). Pulse labelling has since been performed in many stud-
ies based on this approach. Quastler and Sherman (1959), who 
analysed cell population kinetics in the mouse intestinal epi-
thelium, further improved the method used to determine the 
duration of the cell cycle and its phases. By applying certain 
assumptions about cell behaviour and examining the relative 
proportions of labelled (mitotic) and unlabelled (interphase) 
cells after administering a DNA precursor, tritiated thymidine, 
the authors developed a graphical method for estimating the 
duration of the cell cycle and its phases. This approach became 
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popular for analysing plant roots. Short-term incubation of 
roots in a nutrient solution supplemented with 3H-thymidine 
and their subsequent fixation at different time intervals after 
transfer into a solution without 3H-thymidine allows the per-
centage of labelled cells undergoing mitosis to be estimated. 
The labelled mitoses values are then plotted against time, and 
the resulting curves can be used to determine the duration of the 
cell cycle and its periods. This method, known as the labelled 
mitoses or 3H-thymidine (hereafter thymidine) method, has 
several limitations, as analysed by Baskin (2000). One of the 
disadvantages is the potential effect of radioactivity on the cell 
cycle itself (Torre and Clowes, 1974). Furthermore, the method 
is laborious, prompting Francis et al. (2008) to acknowledge the 
researchers ‘who strove through sleepless nights to obtain the 
cell cycle times’. Nonetheless, the thymidine method has been 
widely used in both animal and plant studies, and has yielded 
much data. Furthermore, some other methods have been devel-
oped to determine cell cycle duration, including the colchicine 
(Van’t Hof et al., 1960; Van’t Hof and Sparrow, 1963) and caf-
feine (Giménez-Martín et al., 1965) methods. However, these 
approaches are not always practical. Overall, cell cycle dur-
ation has been determined in 170 plant species from 53 genera 
belonging to 38 families (Grif et al., 2002). However, in recent 
years, this method has fallen out of favour. During the period of 
its greatest popularity (1970–1975), 107 papers were published 
in which this method was implemented, whereas in 1995–2000, 
only nine such studies were published (Grif et al., 2002). In the 
past decade, this method has almost never been used.

More recently, a kinematic approach was developed based on 
analyses of the velocities of cell displacement or cell flux (Sharp 
et al., 1988; Silk et al., 1989; Beemster and Baskin, 1998; van 
der Weele et al., 2003; Fiorani and Beemster, 2006; Yang et al., 
2017). Among other approaches (e.g. Cools et al., 2010), the 
DNA precursors bromodeoxyuridine and 5-ethynyl-2´, deoxy-
uridine, sometimes in combination with flow cytometry, have 
occasionally been used instead of thymidine for determination 
of T in the RAM (Moretti et al., 1992; Lucretti et al., 1999; 
Hayashi et al., 2013).

Ivanov (1968) proposed a simple method for T estimation 
based on the organization of the RAM and root growth. This 
method relies on data including the number of meristematic 
cells in files, the length of the cells that have completed 
their growth and root growth rate. The rationale behind this 
method, the assumptions and a proposed model of the rela-
tionship between the rate of root growth and cell production 
have been described in detail (Ivanov and Dubrovsky, 1997). 
Because this method is based on the analysis of cell produc-
tion over time, it is referred to as the rate-of-cell-production 
(RCP) method. The cell cycle duration values obtained with 
the RCP and thymidine methods have been shown to match 
using a few examples (Ivanov and Dubrovsky, 1997). This 
method has been repeatedly performed using various species: 
maize, Zea mays (Ivanov, 1994), wheat, Triticum aestivum 
(Demchenko, 1976), Cactaceae (Dubrovsky et al., 1998) and 
Arabidopsis thaliana (Dubrovsky et  al., 2000; Tapia-López 
et al., 2008; Garay‐Arroyo et al., 2013; López-Bucio et al., 
2014; Napsucialy-Mendivil et al., 2014). However, no global 
analysis of the RCP method has thus far been performed. 
Therefore, in the current study, we determined T in 73 angio-
sperm species using the RCP method and compared the results 

with published data obtained using the thymidine method. The 
results of this study confirm that the RCP method is a simple, 
rapid and accurate approach for determining T in roots.

MATERIAL AND METHODS

Species analysed and growth conditions

The roots of 73 species (Tables 1 and 2) were analysed. For 68 
of these species, the primary roots of seedlings were examined 
and for five species, the adventitious roots obtained from bulbs 
were examined. Seeds from many of the species were obtained 
from the Vavilov Research Institute of Plant Industry in Saint 
Petersburg, Russia (VIR), and from other research centres 
mentioned in the Acknowledgments. The respective varieties 
or lines are marked ‘VIR’ in Table 3, along with a number cor-
responding to their collection. Seeds were germinated in Petri 
dishes maintained in darkness on filter paper moistened with 
purified and filtered tap water. The bulbs were grown in dark 
glass bottles filled with tap water under natural illumination. 
The temperature during the experiments was between 20 and 
25 °C. Root length was measured using a ruler with an accuracy 
of 1 mm. After germination, root growth increased daily. When 
the roots started to grow at a constant rate, root tips (1–1.5 cm 
in length) were excised and fixed in 70 % ethanol. Prior to 
fixation, thicker roots were cut lengthwise with a razor blade. 
Immediately before analysis, thin roots were rinsed three times 
(5 min each) in distilled water, transferred onto a microscope 
slide in 50 % glycerol, and covered with a coverslip. Thicker 
roots or longitudinally halved root tips with denser layers of 
meristematic cells were cleared using the protocol of Malamy 
and Benfey (1997) and mounted in 50 % glycerol. For the roots 
of each species, the length of the RAM (Lm) was measured as 
the length from the distal boundary of the RAM to the point 
where a sharp increase in cell length began.

Principles of the RCP method and practical considerations

The RCP method has been described in detail (Ivanov and 
Dubrovsky, 1997). Here, we briefly outline the principles of 
this approach. It is based on the simplest model of cell prolif-
eration in the RAM under the following assumptions: (1) the 
average cell cycle duration (T) for all meristematic cells is the 
same; (2) all meristematic cells proliferate; (3) the number of 
cells in a meristem (or in a cell file within the meristem) is 
constant; and (4) the flux of cells into and out of the non-pro-
liferating elongation zone is the same (Ivanov and Dubrovsky, 
1997). Numerous studies confirm that these assumptions are 
valid for roots growing at a constant rate (Baskin, 2000; Fiorani 
and Beemster, 2006; Yang et al., 2017).

In the vast majority of wild-type (non-mutant) plants of vari-
ous species, the RAM cells of the growing root are in an active 
proliferation state. The average T is constant along the mer-
istem above the quiescent centre (Balodis and Ivanov, 1970; 
Barlow and MacDonald, 1973; Clowes, 1976; Baskin, 2000). 
Detailed analysis indicates that there is no reason to assume 
that several cell populations exist in the meristem that differ 
in T (Ivanov, 1974, 1987, 1994; Webster and MacLeod, 1980), 
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Table 1.  Cell cycle duration (T) determined by the rate-of-cell-production (RCP) method, published data obtained by the 3H-thymidine 
(thym) method and their comparison

Species T by RCP 
method (h)

T by thymidine 
method (h)

Reference Difference (h) Difference (%)

Aegilops squarrosa auct. (tauschii Coss.) 11.2 ± 1.0 11.4 Davies and Rees (1975) −0.2 −1.8
Aegilops umbellulata Zhuk. 12.9 ± 1.2 10.7 Kidd et al. (1987) 2.2 17.1
Agoseris heterophylla (Nutt.) Greene 10.9 ± 1.2 8.8 Price and Bachmann (1976) 2.1 19.3
Agoseris retrorsa (Benth.) Greene 11.8 ± 1.0 9.0 Price and Bachmann (1976) 2.8 23.7
Allium carinatum L. 15.1 ± 1.2 9.2 Bösen and Nagl (1978) 5.9 39.1
Allium sativum L. 22.7 ± 2.8 21.6 ± 1.8 See Table 2 1.1 4.8
Allium tuberosum Rottler ex Spreng. 20.7 ± 3.0 20.6 Van’t Hof (1965), Matagne (1968), Bryant 

(1969)
0.1 0.5

Allium сера L. 15.5 ± 1.6 16.0 ± 1.6 See Table 2 −0.5 −3.2
Allum porrum L. 23.0 ± 2.5 18.0 ± 1.2 See Table 2 5.0 21.7
Anacyclus radiatus L. 11.6 ± 1.5 14.0 Nagl (1974, 1978) −2.4 −20.7
Anthemis austriaca L. 8.0 ± 1.2 7.0 Nagl (1974, 1978) 1.0 12.5
Anthemis cota L. 8.2 ± 1.0 6.0 Nagl (1974, 1978) 2.2 26.8
Anthemis tinctoria (L.) J. Gay ex Guss. 12.0 ± 1.2 12.0 Nagl (1974, 1978) 0.0 0.0
Artemisia absinthum L. 9.3 ± 1.3 9.5 Nagl (1974, 1978) −0.2 −2.2
Artemisia annua L. 10.7 ± 1.0 8.0 Nagl (1974, 1978) 2.7 25.2
Avena pilosa (Roem. & Schult.) Bieb. 9.2 ± 1.7 8.9 Yang and Dodson (1970) 0.3 3.3
Avena strigosa Schreb 8.7 ± 1.4 9.8 ± 0.3 Yang and Dodson (1970) −1.1 −12.6
Beta vulgaris L. 12.7 ± 1.4 16.0 Titsu and Popovici (1970) −3.3 −26.0
Brassica junceae (L.) Czern. 12.5 ± 1.2 12.0 Srivastava and Levania (1978) 0.5 4.0
Coriandrum sativum L. 13.7 ± 3.1 13.0 Olszewska et al. (1990) 0.7 5.1
Crepis capillaris L. 10.3 ± 1.3 11.0 ± 1.0 See Table 2 −0.7  −6.8
Crepis tectorum L. 12.4 ± 2.6 12.0 Langridge et al. (1970) 0.4 3.2
Cucurbita pepo L. 12.8 ± 3.0 18.0 Marciniak et al. (1978) −5.2 −40.6
Dactylis glomerata L. 9.6 ± 1.5 12.1 ± 1.8 See Table 2 −2.5 −26.0
Daucus carota L. 8.0 ± 2.2 8.0 Bayliss (1975) 0.0 0.0
Epilobium hirsutum L. 14.0 ± 1.6 7.0 Thomas (1992) 7.0 50.0
Eragrostis tef (Zuccagni) Troffer 11.1 ± 2.1 9.7 Kidd et al. (1987) 1.4 12.6
Fagopyrum esculentum Moench. 7.1 ± 1.0 6.0 Seyhodjaev (1971) 1.1 15.5
Festuca rubra L. 14.7 ± 1.8 16.2 ± 0.2 See Table 2 −1.5 −10.2
Glycine max (L.) Merr. 13.0 ± 1.2 8.6 ± 1.1 See Table 2 4.4 33.8
Helianthus annuus L. 12.2 ± 1.5 12.0 ± 1.2 See Table 2 0.2 1.6
Hordeum bulbosum L. 12.7 ± 2.2 14.0 Kidd et al. (1987) −1.3 −10.2
Hordeum vulgare L. 10.5 ± 0.6 12.5 ± 0.3 See Table 2 −2.0 −19.0
Hyacinthus orientalis L. 33.0 ± 3.5 24.0 Evans and Rees (1971) 9.0 27.3
Impatiens balsamina L. 10.2 ± 1.4 9.0 Van’t Hof (1965) 1.2 11.8
Lactuca sativa L. 12.0 ± 1.3 10.0 Mazzuka et al. (2000) 2.0 16.7
Lathyrus articulatus L. 18.3 ± 1.3 14.3 Evans and Rees (1971) 4.0 21.9
Lathyrus latifolius L. 16.4 ± 0.9 24.0 Olszewska et al. (1990) −7.6 −46.3
Lathyrus odoratus L. 23.3 ± 2.5 20.0 Olszewska et al. (1990) 3.3 14.5
Lathyrus tingitanus L. 18.5 ± 2.4 16.8 Evans et al. (1972) 1.7 9.2
Lilium longiflorum Thunb. 51.0 ± 5.9 24.0 Kidd et al. (1987) 27.0 52.9
Linum usitatissimum L. 13.7 ± 1.2 14.0 Evans et al. (1972) −0.3 −2.2
Lolium perenne L. 9.2 ± 0.9 8.1 Evans et al. (1972) 1.1 12.0
Luzula purpurea Lowe 21.0 ± 3.6 22.0 Montezuma-de-Carvalho (1962) −1.0 −4.8
Lycopersicum esculentum L. ssp. Cultum 9.7 ± 1.2 13.0 Van’t Hof (1965), Titsu (1967) −3.3 −34.0
Melandrium album (Mill.) Garcke 15.1 ± 1.2 15.5 Choudhury (1969) −0.4 −2.6
Nicotiana plumbaginifolia Viv. 12.8 ± 1.5 11.0 Gupta (1969) 1.8 14.1
Nicotiana tabacum L. 11.2 ± 1.8 9.0 Gupta (1969) 2.2 19.6
Nigella damascena L. 14.0 ± 1.7 16.5 Evans et al. (1972) −2.5 −17.9
Ornithogalum umbellatum L. 49.3 ± 8.9 14.0 Tagliasacchi et al. (1983) 35.3 71.6
Oryza sativa L. 7.9 ± 0.8 10.8 Kidd et al. (1987) −2.9 −36.7
Papaver nudicale L. 12.7 ± 2.2 10.0 Olszewska et al. (1990) 2.7 21.3
Papaver orientale L. 12.0 ± 1.6 16.0 Olszewska et al. (1990) −4.0 −33.3
Papaver somniferum L. 10.8 ± 1.2 12.0 Olszewska et al. (1990) −1.2 −11.1
Pennisetum americanum (L.) Leeke 11.3 ± 0.8 12.4 Kidd et al. (1987) −1.1 −9.7
Phalaris canariensis L. 14.6 ± 1.0 14.5 Prasad and Gоdward (1965) 0.1 0.7
Pisum sativum L. 11.7 ± 0.7 15.3 ± 1.0 See Table 2 −3.6 −30.8
Pyrrhopappus caroliniana L. 12.7 ± 3.1 12.0 Price and Bachmann (1976) 0.7 5.5
Rumex thyrsiflorus Fingerh. 17.8 ± 1.7 16.0 Zuk (1969) 1.8 10.1
Scilla sibirica Andrews 77.0 ± 10.5 67.0 Baumann (1972) 10.0 13.0
Secale cereale L. 12.7 ± 1.1 14.0 ± 1.3 See Table 2 −1.3 −10.2
Sorghum bicolor (L.) Moench 17.0 ± 1.1 13.9 Kidd et al. (1987) 3.1 18.2
Triticosecale Wittm. & A.Camus 13.0 ± 1.1 11.7 ± 0.4 Kaltsikes (1971), Kidd et al. (1987) 1.3 10.0
Triticum aestivum L. 11.6 ± 0.9 14.3 ± 1.2 See Table 2 −2.7 −23.3
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although T may fluctuate through consecutive divisions. The 
values of T for individual cells vary within a range of approxi-
mately 15–20 % (Ivanov, 1971).

The decrease in the mitotic index in the basal half of 
the meristem is caused by a gradual exit of cells from the 
cell cycle and not by an increase in T (Balodis and Ivanov, 

1970). The only exception is developing metaxylem cell files 
in some monocots, in which mitoses terminate much more 
closely to the root apex than in other tissues, but these cells 
comprise only a small fraction of all cells in the meristem. 
Note that at the boundary of the meristem and the elongation 
zone, there is the transition domain of the RAM in which 

Table 2.  Comparison of cell cycle duration values in the root apical meristem obtained by the thymidine method for the same species 
reported in different studies (means ± s.e.)

Number of  
data points

Average cell cycle  
time, T (h)

Max.  
value (h)

Min.  
value (h)

References

Allium cepa L. (seeds) 3 16.0 ± 1.6 17.8 12.8 Bryant, 1969; Evans and Rees, 1971; Van’t Hof, 1965
Allium cepa L. (bulbs) 8 16.6 ± 1.3 23.0 13.5 Antosiewicz, 1990; Arcara and Nuti, 1967; Gimenez-

Abian et al, 1987; González-Fernández et al., 1971; 
Matagne, 1968; Morcillo et  al., 1978; Navarrete 
et al., 1983.

Allium porrum L. 3 18 ± 1.2 20.0 16.0 Berta et al., 1991; Olszewska et al., 1990.
Allium sativum L. 3 21.6 ± 1.8 23.8 18.0 Deysson and Bonaly, 1970; Benbadis, 1970; Pareyre 

and Deysson, 1975.
Crepis capillaris L. 2 11.1 ± 1.0 12.0 10.1 Generalova, 1969; Kaznadzei, 1971; Van’t Hof, 1965.
Dactylis glomerata L. 7 12.1 ± 1.8 21.0 7.0 Creber et al., 1993.
Festuca rubra L. 2 16.2 ± 0.2 16.4 16.0 Powell et al., 1986.
Glycine max (L.) Merr. 2 8.6 ± 1.1 10.7 7.0 Olszewska et al., 1990; Reckless, 1995.
Helianthus annuus L. 4 12.0 ± 1.2 14.0 10.0 Marciniak et al., 1978; Burholt and Van’t Hof, 1971; 

Tоdorоva and Ronchi, 1969.
Hordeum vulgare L. 3 12.5 ± 0.3 13.0 12.0 Kidd et  al., 1987; Svarinskaya and Gavrilova, 1976; 

Bennett and Finch, 1972.
Pisum sativum L. 10 15.3 ± 1.0 22.4 12.0 Bogdanov, 1967; Bogdanov et al., 1967; Gudkov and 

Grodzinsky, 1972, 1976; Gudkov et al., 1971, 1974; 
Olszewska et al., 1990; Van’t Hof, 1963, 1966.

Secale cereale L. 6 14.0 ± 1.3 20.0 12.0 Evans and Rees, 1971; Grif and Valovich, 1973a, b; 
Kaltsikes, 1971; Kidd et al., 1987; Olszewska et al., 
1990; O’Toole, 1970.

Tradescanthia paludosa 
E.S.Anderson & Woodson

4 19.4 ± 0.8 20.5 17.0 Van’t Hof, 1965; Van’t Hof and Sparrow, 1963; 
Wimber, 1960, 1966; Wimber and Quastler, 1963.

Triticocereale Wittm. & A.Camus 3 11.7 ± 0.4 12.1 11.0 Kaltsikes, 1971, 1972; Kidd et al., 1987.
Triticum aestivum L. 6 14.3 ± 1.2 19.7 12.0 Daviеs and Rees, 1975; Evans and Van’t Hоf, 1975; 

Filippenko, 1983; Grif, 1981; Grif and Machs, 1996; 
Gudkov and Grodzinsky, 1976.

Vicia faba L. 10 17.1 ± 1.3 28.0 13.5 Deweу and Howard, 1963; Evans and Rees, 1971; 
Evans and Savage, 1963; Evans and Scott, 1964; 
Gahan et al., 1986; Ganassi, 1978; Grant and Heslot, 
1965; Gudkov et al., 1971; Keusсh, 1971; MacLeod, 
1968, 1971; Olszewska et  al., 1989; Webster and 
Davidson, 1968.

Vicia sativa L. 2 13.2 ± 0.8 15.0 11.0 Essad, 1973; Olszewska et al., 1990.
Zea mays L. 14 12.5 ± 0.2 13.0 11.9 Barlow, 1976a; Essad and Maunoury, 1979; Evans 

et  al., 1972; Gahan and Hurst, 1976; Kidd et  al., 
1987; Olszewska et  al., 1990; Pachter and Mitra, 
1977; Verma and Lin, 1978, 1979; Verma, 1980.

Species T by RCP 
method (h)

T by thymidine 
method (h)

Reference Difference (h) Difference (%)

Triticum dicoccoides (Körn. ex Asch. & 
Graebn.) Schweinf.

11.1 ± 0.8 12.7 Davies and Rees (1975) −1.6 −14.4

Triticum monococcum L. 13.7 ± 1.0 12.0 Davies and Rees (1975) 1.7 12.4
Triticum spelta L. 19.0 ± 2.9 19.7 Davies and Rees (1975) −0.7 −3.7
Triticum timopheevi (Zhuk.) Zhuk. 14.5 ± 1.2 15.0 Davies and Rees (1975) −0.5 −3.4
Triticum turgidum (durum) Desf. 13.7 ± 1.1 12.3 ± 0.9 Kaltsikes (1971) 1.4 10.2
Tropaeolum majus L. 25.5 ± 1.7 8.0 Olszewska et al. (1990) 17.5 68.6
Vicia faba L. 12.8 ± 1.1 16.3 ± 1.3 See Table 2 −3.5 −27.3
Vicia sativa L. 13.4 ± 1.2 13.2 ± 0.8 See Table 2 0.2 1.5
Zea mays L. 12.0 ± 0.7 12.5 ± 0.2 See Table 2 −0.5 −4.2

Dif, difference between the two methods in hours and relative terms. Data are means ± s.e.

Table 1.  Continued
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Table 3.  Cell cycle duration (T) in the root apical meristem of 
different varieties of the same species obtained by the RCP method 

(n = 8, means ± s.e.)

Species and variety or cultivar Cell cycle duration, T (h)

Pisum sativum L. ‘Premium’ 17.2 ± 1.9
Pisum sativum L. ‘Miracle’ 15.6 ± 2.0
Pisum sativum L. ‘Ramensky’ 10.0 ± 0.7
Pisum sativum L. ‘Pioneer’ 14.4 ± 1.3; 16.5 ± 1.4
Pisum sativum L. ‘Alpha’ 10.7 ± 0.7; 12.7 ± 0.7
Pisum sativum L. VIR No. 2227 13.8 ± 0.8
Pisum sativum L. VIR No. 6892 16.6 ± 1.0
Pisum sativum L. VIR No. 993 15.9 ± 0.8
Allium porrum L. VIR No. 2078 26.0 ± 2.6
Allium porrum L. VIR No. 2389 23.0 ± 2.5
Triticum dicoccoides (Körn.ex Asch. & Graebn.) 

Schweinf. VIR No. 61842
11.1 ± 0.8

Triticum dicoccoides (Körn.ex Asch. & Graebn.) 
Schweinf. VIR No. 61833

9.9 ± 1.0

Hordeum bulbosum L. VIR No. 250 12.4 ± 2.2
Hordeum bulbosum L. VIR No. 613 10.0 ± 1.1
Daucus carota L. ‘Long red’ 8.0 ± 2.2
Daucus carota L. VIR No. 4 12.0 ± 1.1; 1.0 ± 1.4
Coriandrum sativum L. VIR No. 360 13.7 ± 3.1
Coriandrum sativum L. VIR No. 420 16.0 ± 2.5
Cucurbita pepo L. ‘Aeronaut’ 12.8 ± 3.0
Cucurbita pepo L. VIR No. 4800 16.7 ± 1.0
Cucurbita pepo L. ‘Gribovsky early’ 19.5 ± 3.0
Glycine max (L.) Merr. ‘Killer whale’ 10.1 ± 1.2
Glycine max (L.) Merr. ‘Flyer’ 18.0 ± 1.6
Zea mays L. ‘Interkras’ 9.6 ± 0.7; 14.4 ± 1.4
Zea mays VIR No. 1329 9.5 ± 0.3
Zea mays VIR No. 6634 9.2 ± 0.8
Zea mays VIR No. 6343 11.8 ± 1.2
Zea mays VIR No. 18399 12.3 ± 0.8
Zea mays L. VIR No. 14a 5.6 ± 0.4; 7.3 ± 0.5
Zea mays L. VIR No. 15b 7.2 ± 0.6; 7.1 ± 0.4
Zea mays L. VIR No. 23427 10.4 ± 1.0
Zea mays L. VIR No. 23427 8.8 ± 0.9
Zea mays L. VIR No. 19019 8.5 ± 0.6
Zea mays L. VIR No. 19019 8.2 ± 0.6
Zea mays L. VIR No. 18997 13.2 ± 1.1
Zea mays L. VIR No. G 6.9 ± 0.4
Zea mays L. VIR No. Е 8.5 ± 0.6
Zea mays L. VIR No. Е 8.5 ± 0.6
Tropaeolum majus L. ‘Golden highlight’ 24.0 ± 1.6; 27.0 ± 1.7
Tropaeolum majus L. ‘American Queen’ 22.8 ± 1.2
Tropaeolum majus L. ‘Empress of India’ 26.9 ± 2.0
Lilium longiflorum L. ‘Eagle’ 51.0 ± 6.0
Lilium longiflorum L. ‘Nuance’ 55.0 ± 7.4

cells do not divide, instead growing at almost the same 
relative rate as in the proliferation domain of the meristem 
(Verbelen et  al., 2006; Baluška et  al., 2010; Ivanov and 
Dubrovsky, 2013). The length of the transition domain var-
ies among species (Ivanov and Dubrovsky, 2013). In some 
species, for instance A. thaliana, the transition domain may 
comprise up to 15–27 % of the meristem length (Pacheco-
Escobedo et al., 2016), but it is usually shorter in other spe-
cies (e.g. Z.  mays, Allium cepa) (Ivanov and Dubrovsky, 
2013; Kirschner et al., 2017). Note that in a root that obeys 
the above-mentioned assumptions where T is constant along 
the meristem, the cells located at a level that is about half the 
length of the RAM, and all of the cells above that level, tran-
sit to the elongation zone during a time period equal to one 
cycle. This observation suggests that cells pass through the 
transition domain during a short period of time, i.e. shorter 

than T. This explains why the probability of observing divi-
sions in the transition domain is very low. Thus, if the root 
grows at a constant rate and the cell number in the RAM 
does not change over time, the root growth rate (V), length 
of fully elongated cells (l), number of meristematic cells in 
a file (Nm) and T are associated via a simple relationship 
(Ivanov, 1974, 1994; Ivanov and Dubrovsky, 1997):

	
T Nm l V= ( ) −ln2 1

	 (1)

Under these assumptions, not all cells from the basal half of 
the meristem have time to divide before exiting the meristem. 
If the root grows at a non-constant rate and Nm and l change 
over time, the average values can be used instead, although this 
may cause errors.

The number of meristematic cells in a file was calculated as 
the ratio between RAM length (Lm) and the average length of 
cortical meristematic cells (lm). The latter was determined for 
eight to ten 50-µm portions per root located along the RAM 
by counting the number of cells per portion and dividing the 
length of the portion by the number of cells. Fifty fully elon-
gated cortical cells per root were measured with an ocular 
micrometer, and the average elongated cell length (l) was used 
to estimate T. Cell lengths in the middle cortex layers were 
usually measured. For most species, eight roots were exam-
ined per experiment. For some species, independent experi-
ments were performed two to four times (Supplementary Data 
Table S1). The values of T (h) were calculated using eqn (1). 
For each variable of eqn (1), the average value and standard 
error (s.e.) were estimated. The s.e. of T was estimated using 
the following equation:

	

s z
s

x

s

yz
x y=

æ

è
ççç

ö

ø
÷÷÷÷ +

æ

è
çççç

ö

ø
÷÷÷÷÷

2 2

	 (2)

where x̅ and y̅ are average variables and Sx ̅and Sy̅ are standard 
errors of the respective averages, and Z ̅ and S ̅

Z̅ are the x̅-to-y̅ 
ratio (or x̅ and y̅ product) and the standard error of the ratio (or 
the product), respectively (Urbach, 1964). T values reported in 
different laboratories for a species were used to estimate the 
global average value; s.e. was also estimated using eqn (2). For 
comparison purposes, only those reported T values determined 
by the thymidine method which were obtained for plants grown 
at 23 ± 2 °C were used (listed in Table 1).

RESULTS

Duration of the mitotic cycle estimated by the 3H-thymidine method 
varies little for roots of the same species

Before comparing the results obtained by the two methods, we 
analysed the variability of the data for T values reported for 
the same species obtained by various laboratories. We obtained 
data reported more than once for the same species from young 
seedlings of 17 species grown at 22–24 °C (Table S1). For most 
of these species, T varied within a narrow limit, with a few 
exceptions. This result is somewhat surprising, since the data 
encompass research results from several studies performed in 
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different countries and years on the roots of seedlings of differ-
ent ages under diverse growing conditions.

We encountered several difficulties in comparing these data. 
T values can vary across different varieties or cultivars of the 
same species. Some reports do not mention the cultivars or 
varieties examined. Creber et  al. (1993) recorded a variation 
of T in roots from different populations of Dactylis glomerata, 
which also differed slightly in terms of haploid DNA content. 
However, the curves of labelled mitoses in Creber et al. (1993) 
diverge significantly from the classical curves, which probably 
indicates significant heterogeneity of T in individual roots or 
heterogeneity in T within the RAM. Furthermore, it is important 
to consider that T can change in the same root during growth. 
Gahan and Hurst (1976) showed that in maize roots, the aver-
age T value changed a few times over a 20-d period. Notably, in 
most of the studies cited (Table 2), the roots of seedlings were 
sampled several days after germination, when they were grow-
ing at a constant and relatively high rate.

To date, an evaluation of the accuracy of T estimated by 
the thymidine method has not been reported. The T values are 
frequently provided at an accuracy of up to tenths of an hour, 
but the method used to determine the percentage of labelled 
mitoses is clearly less precise. For example, to measure the 
percentage of mitotic labelled cells, 100 mitoses are often ana-
lysed each time root cells are fixed. If the proportion of labelled 
mitoses equals 50  %, the standard deviation for the analysis 
of 100 mitoses is at least 5 %. Therefore, the actual accuracy 
of T value determinations is at least 10 %. Nevertheless, des-
pite these shortcomings, there is a striking similarity among the 
estimated T values for roots of the same species obtained in 
different studies performed in different laboratories and years. 
This finding allowed us to compare T for the same species 
obtained by the thymidine versus RCP methods.

Estimating cell cycle duration using the RCP method

We determined T in the RAMs of various angiosperm species 
using the RCP method. Under our growth conditions, the vari-
ation of T within a species occurred in a relatively narrow win-
dow (Tables 1 and 3). The standard error of T estimated by the 
RCP method for a single species was approx. 10 % (Table 1). 
The reproducibility of repeated estimates was on the order of 
10–15 % (Table S1). These results are similar to those obtained 
by the thymidine method (Table 1, Fig. 1).

We determined T in the seedling roots of different varie-
ties of several plant species (Table 3). This question has not 
previously been addressed in the literature. We found that 
in some species, such as maize, variations between varie-
ties were high, and T determined by the RCP method ranged 
from a minimum of 5.1 to a maximum of 14.4 h (Table 3). 
Nonetheless, the average T values determined by the RCP 
and thymidine methods differed by only 30 % (Table  1). 
Such differences are of interest, since it is unlikely that the 
roots of different varieties of plants differ significantly in 
terms of haploid DNA content, a generally recognized fac-
tor that affects T (e.g. Francis et al., 2008). There are sev-
eral possible explanations for the variation in T. In Dactylis 

glomerata, a significantly larger T, as determined by the 
thymidine method (Table 2), was detected in seedlings from 
various populations with some deviations in haploid DNA 
content, although these deviations were <10 % (Creber et al., 
1993). There might be another explanation for the variability 
in T among populations (Table 3). T is noticeably higher in 
roots before a constant growth rate is attained compared to 
roots growing at a constant rate, as observed for Vicia faba 
and Pisum sativum roots (data not shown). This difference 
might not have been accounted for in some studies.

Comparison of the results obtained from the thymidine versus RCP 
methods

We determined T for 73 angiosperm species using the 
RCP method and compared the results with published results 
obtained by the thymidine method. For 69 of the species, the 
estimates of T obtained by the two methods were nearly iden-
tical (Table 1, Fig. 1). The T values obtained differed signifi-
cantly from previously published data for only a few species: 
Epilobium hirsutum, Tropaeolum majus, Ornithogalum umbel-
latum and Lilium longiflorum. Repeated T estimates using the 
RCP method obtained from different groups of seedlings grown 
from different seed stocks coincided (Table S1). Hence, these 
differences were not due to discrepancies in the methods used 
for these species. Overall, these results indicate that the two 
methods yield similar results, which confirm the previously 
observed similarity in T values reported for only a few species 
(Ivanov and Dubrovsky, 1997). Thus, the RCP method, which 
is based on a simple exponential model of cell proliferation in 
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Fig. 1.  Correlation between cell cycle duration determined using the rate-of-
cell-production (RCP) method (obtained in this study) and the 3H-thymidine 
method (reported in the literature) for the same species. For 73 species, the 
primary data are presented in Tables 1 and 2; correlation coefficient r = 0.80. 
If excluding data from the Epilobium, Tropaeolum, Ornithogalum and Lilium 

species (n = 69), R2 = 0.86 and r = 0.93.
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the RAM, confirms the results of the more complicated thymi-
dine method.

Root growth rate calculated based on measured l and Nm values 
and from published T values obtained by the thymidine method 
agrees with measured values

To validate the model of the link between cell cycle dura-
tion, rate of cell production and rate of root growth (Ivanov 
and Dubrovsky, 1997), we compared the experimentally deter-
mined root growth rates (V) with the root growth rates (Vc) 
calculated based on published data, where T was determined 
by the thymidine method and from measured Nm and l values. 
From eqn (1), it follows that

	 Vc Nm l T= ( ) - ln2  1 	 (3)

Nm and l were measured in the species listed in Table 1, and T 
values were obtained from published results (listed in Table 1). 
In most cases, the Vc values coincided with experimentally 
measured V values, except for a few species where data 
from the thymidine and RCP methods greatly diverged (i.e. 
Epilobium hirsutum, Tropaeolum majus and Ornithogalum 
umbellatum) (Fig. 2).

DISCUSSION

Our results show that T values determined by the RCP method 
are in good agreement with published data obtained by the 
thymidine method for 69 out of 73 species; it remains unclear 
why these values differ in the five species. Overall, this analy-
sis demonstrates that (1) despite their different methodological 
approaches, the two methods yield nearly the same or similar 
results; (2) the model used in the RCP approach appears to be 
correct; and (3) despite the differences in growth conditions used 
in different laboratories and the different methods of analysis, 
not much variability was found in the distribution of T measure-
ments within a species. In practical terms, this indicates that the 
RCP method, which is much simpler and less time-consuming 
than the thymidine method, can be routinely used for many spe-
cies. Prior to the current study, the RCP approach was used in 
only a few laboratories.

The good agreement in the values obtained by the RCP and 
thymidine methods suggests that the assumptions used for the 
exponential model of cell proliferation to estimate cell cycle 
duration are correct. We are aware that any assumption repre-
sents a simplification. Nonetheless, the results obtained by the 
two methods differed by only an average of 0.6 ± 2.7 % for 
69 of the 73 species [mean ± s.e., calculated based on data in 
Table 1: Epilobium hirsutum, Tropaeolum majus, Ornithogalum 
umbellatum and Lilium longiflorum were excluded (see 
below)], which is surprisingly accurate for a biological process. 
Nevertheless, it might appear that the main assumptions of the 
model (that all cells in the RAM proliferate and that the average 
T for all meristematic cells is the same) are weak. To explain the 
basis of these assumptions, we must consider the longitudinal 
organization of root growth zones and the behaviour of the cells 

y = 0.713x + 6.229

R2 = 0.88

n = 28

y = 0.631x – 42.554

R2 = 0.88

n = 5

y = 0.708x – 10.073

R2 = 0.90

n = 37

V
 m

ea
su

re
d 

(μ
m

 h
–1

)

0

500

1000

1500

2000

V
 m

ea
su

re
d 

(μ
m

 h
–1

)

0

500

1000

1500

2000

V
 m

ea
su

re
d 

(μ
m

 h
–1

)

0

500

1000

1500

2000

2500

3000 A

B

C

0 500 1000 1500 2000 2500 3000

0 500 1000

V calculated (μm h–1)

1500 2000

Fig. 2.  Correlation between the measured rate of root growth and the predicted 
rate of root growth calculated based on the cell cycle duration reported in the 
literature (determined by the 3H-thymidine method). The rate of root growth 
was calculated using eqn (3). (А) Primary roots of monocotyledonous species. 
(B) Primary roots of dicotyledonous species. (C) Adventitious roots of mono-

cotyledonous species. Correlation coefficients r = 0.94 (A, B) and 0.95 (C).



Zhukovskaya et al. — Cell cycle time in the root apical meristem818

within them. Some authors considered that cells in the basal 
portion of the RAM have a longer cycle time than in the rest 
of the RAM (Hejnowicz, 1959) or that not all cells in the basal 
RAM portion proliferate (Clowes, 1971, 1976), which contra-
dict our assumptions. However, these conclusions were drawn 
based on labelled mitosis curves and did not consider the expo-
nential age distribution of cells within the RAM (Ivanov, 1974, 
1994; Webster and Davidson, 1980). Our analysis showed that 
the proximal portion of the RAM represents a transition domain 
where cells still divide (Lavrekha et al., 2017), and the relative 
cell growth rate is the same as in the rest of the RAM (Ivanov 
and Dubrovsky, 2013). Also, the duration of the last cell cycle 
in the RAM is the same as in the proliferation domain (Balodis 
and Ivanov, 1970), but exit from the cell cycle at the end of the 
RAM is a heterogeneous process. At a given time point, cell 
division is less common in this domain than in the other regions, 
but not because cells divide less frequently or because not all 
cells proliferate. The lower incidence of cell division is a con-
sequence of cell flux. With increasing distance from the quies-
cent centre, the cells are displaced more rapidly from the RAM 
(Ivanov, 1974, 1994; Ivanov and Dubrovsky, 1997, 2013). This 
analysis shows that during the time equal to one cell cycle, ln2 
number of cells in the meristem (~69 %) are displaced from the 
RAM to the elongation zone. Therefore, during the last cycle, 
while the cells are displaced from the RAM, not all of them 
have sufficient time to pass through mitosis. This explains why 
the mitotic index decreases sharply in the transition domain. On 
the other hand, cells in the quiescent centre, including initial 
cells, have much longer cycle times (Barlow, 1976b; Ivanov, 
1994), but these cells commonly comprise less than 1 % of all 
cells in the RAM. Therefore, we assume that the average cycle 
time is the same for all cells. If the differences in T between 
individual cells were significant, the cell length within the 
RAM would also vary significantly, but we know this is not the 
case (Ivanov, 1971; Baskin, 2000). Analysis of heterogeneity of 
T in sister cells within the maize RAM showed they do not vary 
by more than 15–20 % (Ivanov, 1971). Recent time-lapse stud-
ies in arabidopsis showed that variation in sister cell T averaged 
8.3 % (von Wangenheim et al., 2017b; data extracted from their 
Video 3, n = 6 sister groups). Another source of heterogeneity 
is that some cell types (metaxylem in monocots) stop proliferat-
ing earlier, but the fraction of these cells is also not significant. 
Therefore, in the model, it is assumed that all cells have the 
same average T and that all cells proliferate. It is important to 
note that a reference thymidine method for determination of T 
also assumes that all cells proliferate, and only average T for all 
the meristem is determined. The use of live-cell imaging and 
high-resolution visualization of vertically grown roots (Maizel 
et al., 2011; von Wangenheim et al., 2017a, b) will reveal how 
close the results obtained by the two methods are to reports of T 
determinations based on time-lapse studies (see also Table S2).

Another important aspect of this work is related to the iden-
tification of the proximal meristem boundary. We defined the 
RAM as an area that includes the proliferation and transition 
domains, where cells proliferate more actively in the former 
than in the latter (Ivanov and Dubrovsky, 2013). However, 
dividing cells are indeed present in the transition domain and 
recent work on arabidopsis confirms this notion (Lavrekha 
et al., 2017). When T is determined by the thymidine method, 
all RAM cells, counting those in the transition domain, are 

included in the analysis. As the goal of this study was to com-
pare the RCP method with the thymidine method, the number 
of RAM cells was determined for both domains instead of 
only the proliferation domain. Clearly, this can be one of the 
limitations of the RCP method used here. Strictly speaking, as 
the method applies an exponential model, only the prolifera-
tion domain of the RAM should be considered and eqn (1) 
should take into account the number of cells in the prolifera-
tion domain and not the total number of meristematic cells. 
This corrected approach was successfully used for determi-
nation of T in arabidopsis (see below). The main result of 
the current study is a good overall agreement in T values 
determined using the RCP and thymidine methods; the dif-
ference for all the species was not statistically significant (P 
> 0.05, Student’s t-test) and T determined by the RCP method 
was on average only 10 % greater than that determined by 
the 3H-thymidine method. This suggests that the exponential 
model can indeed be applied to the entire RAM, at least in 
practical terms, when determining the average T in the RAM. 
It is important to underline that the RCP approach permits 
estimation of average T values and does not reflect possible 
differences between different cell types, cell locations within 
the RAM and variations in T between sister cells.

Table  1 includes a comparison of the methods for the 73 
species for which determinations by the thymidine method are 
available. Note that some data available in the literature lack 
certain details (plant age, temperature, growth conditions) and 
the results might not be comparable. The T values obtained by 
the RCP method differed significantly from published data for 
Epilobium hirsutum. The T value for this species determined by 
the thymidine method was obtained from a review by Francis 
et al. (2008), who cite a PhD thesis that is not publicly avail-
able. Data for another outlier, Tropaeolum majus, were taken 
from Olszewska et al. (1990), but no details were provided in 
their study. Our results obtained by the RCP method for this 
species were consistent for three different varieties and differed 
by only 15.6 % (Table 3). Similarly, for adventitious roots of 
Ornithogalum umbellatum, no data were available for param-
eters such as bulb age and root growth dynamics (Tagliasacchi 
et  al., 1983). One possible explanation for why all outliers 
among T values determined by the RCP method were larger 
than previously reported values is that in these studies, no root 
growth dynamics were evaluated, and T was determined during 
the root growth acceleration stage.

It is also interesting to compare the results of T determina-
tions by the RCP method with those of other methods used 
in the model plant A. thaliana. This species was not included 
in our current analysis because, although many reports of T 
determinations are available, the only data obtained by the thy-
midine method are for young seedlings, and the RCP method 
cannot be applied to plants of a similar age (Table S2). A sin-
gle T determination was obtained by the thymidine method for 
arabidopsis roots of seedlings on the first day after germina-
tion (Van’t Hof et al., 1978), when no steady-state growth has 
been attained (Table S2). Since in the reported studies using 
the RCP method, T was estimated at later stages, a pertinent 
comparison with the thymidine method is not possible. Details 
of T estimation in arabidopsis by the RCP method can be 
found (Napsucialy-Mendivil et al., 2014; López-Bucio et al., 
2014). In most studies, T values obtained by the RCP method 
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use the number of cells in the proliferation domain for eqn (1); 
however, some studies use the number of cells in the entire 
RAM (Table S2). Taking into account estimations obtained 
using other methods, irrespective of ecotype, the average T in 
roots of arabidopsis seedlings aged 6–12 d after germination 
(dag) grown at 20–23 °C is 16.6 ± 0.8 h, which is comparable 
to the average T of 15.0 ± 1.2 h (in both samples n = 8, mean 
± s.e., P > 0.05 Student’s t-test, Table S2) estimated by the 
RCP method for 5–8 dag arabidopsis seedlings grown at the 
same temperature when the number of cells was determined 
in the proliferation domain. Interestingly, the T values were 
very close for the same ecotype (Col-0) at the same tempera-
ture (23 °C) and age (5 dag), i.e. 14.3 h in time-lapse studies 
(Yin et al., 2014; von Wangenheim et al., 2017) and 16.4 h 
estimated by the RCP method (Table S2). These studies show 
that, similar to other species, an exponential model of cell 
proliferation is appropriate for estimating cell cycle duration 
in the arabidopsis RAM.

In summary, our results indicate that in 96 % of the species 
examined, T values in the RAM determined by the thymidine 
and RCP methods were very similar. This indicates that the RCP 
method is a reliable, straightforward approach that can be used 
to investigate numerous subjects. Notably, T is a highly stable 
parameter, as estimations for a single species grown under dif-
ferent conditions and in different countries, years and varieties 
produced highly similar values. Our data also indicate that T 
can be considered a species-specific feature. The duration of the 
cell cycle in the RAM is an important root trait. Analysis of this 
trait will provide insight into root growth mechanisms and their 
endogenous and exogenous control and into the general evo-
lutionary ecology and phenomics of roots. However, this trait 
has not yet been used in large-scale analyses investigating these 
processes (Walter and Schurr, 2005; Furbank and Tester, 2011; 
Comas et al., 2012; Maherali, 2017; Valverde-Barrantes et al., 
2017). The application of the RCP method may help fill this gap.

SUPPLEMENTARY DATA

Supplementary data are available online at www.aob.oxford-
journals.org and consist of the following. Table S1: Results of 
independent experiments for determinations of T by the RCP 
method (n = 8, mean ± s.e.). Table S2: Cell cycle duration in 
wild type Arabidopsis thaliana L.  (Heynh) root apical meri-
stem determined by different methods.
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