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• Background The evolutionary origin of the eukaryotic nucleus is obscure and controversial. Currently preferred 
are autogenic concepts; ideas of a symbiotic origin are mostly discarded and forgotten. Here we briefly discuss 
these issues and propose a new version of the symbiotic and archaeal origin of the eukaryotic nucleus.
• Scope and Conclusions The nucleus of eukaryotic cells forms via its perinuclear microtubules, the primary 
eukaryotic unit known also as the Energide–cell body. As for all other endosymbiotic organelles, new Energides are 
generated only from other Energides. While the Energide cannot be generated de novo, it can use its secretory apparatus 
to generate de novo the cell periphery apparatus. We suggest that Virchow’s tenet Omnis cellula e cellula should be 
updated as Omnis Energide e Energide to reflect the status of the Energide as the primary unit of the eukaryotic cell, 
and life. In addition, the plasma membrane provides feedback to the Energide and renders it protection via the plasma 
membrane-derived endosomal network. New discoveries suggest archaeal origins of both the Energide and its host cell.
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PETER BARLOW AND PROBLEMS WITH THE 
CELL THEORY

As documented by papers in this Annals of Botany special issue, 
the interests of Peter Barlow were wide-ranging and profound. 
These interests touched significantly also on the fundamental 
problems associated with the current version of the cell theory 
(Baluška et al., 1997, 1998, 2004a, b). Multinuclear cells, the 
supracellular nature of plants and fungi, and the many exam-
ples of cells within cells are all exceptions to cell theory. The 
supracellular nature of higher plants is complemented with the 
inherent property of animal cells of generating cytoplasmic 
channels known as tunnelling nanotubes (Wang et  al., 2010; 
Zani and Edelman, 2010; Abounit and Zurzolo, 2012; Wang 
and Gerdes, 2012; Austefjord et  al., 2014). In higher plants, 
migration of nuclei from cell to cell is known as cytomixis 
(Heslop-Harrison, 1966; Liu et al., 2007; Lone and Lone, 2013; 
Mursalimov et  al., 2013; Kravets et  al., 2017). The individu-
ality of eukaryotic nuclei is apparent from red algal parasites, 
which transfer whole nuclei in their host cells, and these then 
redirect the host cell biology and physiology for the parasite’s 
benefit (Goff and Coleman, 1984, 1985, 1987, 1995; Goff and 
Zuccarello, 1994; Salomaki and Lane 2014).

There are numerous examples of unicellular but multi-
Energide coenocytic organisms, including marine algae such 
as Caulerpa, Cladophora and Acetabularia (Strasburger, 
1913; Menzel and Elsner-Menzel, 1990; Menzel, 1994; Mine 
et al., 2008; Baluška et al., 2012). Probably the most flagrant 
violation of the current problematic version of the cell theory 

is provided by Ascomycota (Gladfelter, 2006; Lang et  al., 
2010; Roper et  al., 2011) and Glomeromycota (Kuhn et  al., 
2001; Bewer and Wang, 2005; Jany and Pawlowska, 2010; 
Marleau et al., 2011; Boon et al., 2015; Young, 2015). Their 
fungal mycelia harbour genetically different nuclei in the same 
cytoplasm. In other words, these coenocytic ‘cells’ provide 
shelter for genomically diverse organismal units. For example, 
one single multinucleate spore of Glomus irregulare contains 
up to 1000 nuclei. In addition, large heterogeneity exists in 
the number of nuclei (Energides) among sister spores (Marleau 
et al., 2011). Moreover, non-self vegetative fusions are typical 
of hyphae of the arbuscular mycorrhizal fungus Glomus intra-
radices (Croll et al., 2009).

EVOLUTION OF THE ENERGIDE–CELL BODY 
CONCEPT: SACHS, MAZIA AND OTHERS

Discoveries of centrosomes and centrioles organizing both fla-
gella and mitotic spindles of eukaryotic cells (Boveri, 1895; 
Flemming, 1891; Baltzer, 1967; Paweletz, 2001) strongly sug-
gest that nuclei of eukaryotic cells are closely associated, via 
perinuclear microtubules (Baluška et  al., 1997, 1998, 2004a, 
b), with both centrosomes and centrioles. Daniel Mazia was the 
first to realize that there is not only structural but also func-
tional unity between all these organelles and he proposed the 
‘cell body’ concept at the end of his scientific career (Mazia, 
1987, 1993). Daniel Mazia’s cell body concept was preceded 
by Julius Sachs, who proposed his Energide concept in 1893 
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(Sachs, 1893; Baluška et al., 2006). But Sachs was not aware 
of microtubules, centrioles and centrosomes. Under the influ-
ence of Theodor Boveri, it was Max Hartmann (1911) followed 
by Karl Bělař (1926) who further evolved the Energide con-
cept in this respect (discussed in Chen, 2003). It is not known 
whether Daniel Mazia was aware of the Energide concept 
(Energidenlehre in German; see Chen, 2003) when he proposed 
the cell body concept in 1993 (Mazia, 1993). However, he had 
come to think the centrosome was potentially far more than 
just the organizer and initiator of microtubule synthesis. They 
were ‘bearers of information about cell morphology’ and that 
‘something exists at a level of complexity higher than that of 
molecules akin to the level of the complexity of chromosomes’, 
and that something was what he called the ‘cell body’ (Mazia, 
1987; Lyons, 2018).

In 1997, 1998 and 2004, together with Peter Barlow, we 
updated Mazia’s hypothesis and proposed that the nucleus with 
perinuclear microtubules represents the smallest and basic unit 
of eukaryotic life (Baluška et al., 1997, 1998, 2004a, b). This 
hypothesis solves the problem of syncytia and coenocytes, 
which are incompatible with the classical cell theory stating 
that the whole cell is the basic unit of eukaryotic life (Baluška 
et  al., 1997, 1998, 2004a, b, 2006). In 2009, we extended 
the Energide–cell body concept to central nervous systems 
(Agnati et  al., 2009). Later, we discussed the Energide–cell 
body hypothesis from the perspective of the Neo-Energide 
concept (Baluška et al., 2006; see also Nicholson, 2010), ori-
ginally proposed by Julius Sachs (Sachs, 1892a, b). Recently, 
the evolutionary origins of the Energide–cell body complex, as 
well as its eukaryotic cell, were discussed from evolutionary 
perspectives (Baluška and Lyons, 2018). Here, we briefly sum-
marize the Energide–cell body concept and highlight the latest 
evidence of its validity.

The Energide–cell body theory provides a robust explan-
ation as to why there is eukaryotic sex and why male gametes 
are typically small, flagellated and motile, whereas female 
gametes are large, not motile and based on the actin cytoskel-
eton. The flagella of sperm cells are made of microtubules 
and typically lack any actin cytoskeleton while the larger egg 
cells are based primarily on the actin cytoskeleton (Baluška 
et  al., 2004a, 2006). Importantly, nuclear pores are proto-
types of cell–cell channels, resembling plasmodesmata in 
plants and tunnelling nanotubes in animals. The Energide–
cell body concept is useful in explaining such perplexing 
discoveries as entosis and cannibalism in animal cells (Fais, 
2007; Overholtzer et al., 2007; Janssen and Medema, 2011; 
Sharma and Dey, 2011). Moreover, developing erythroblasts 
extrude their nuclei, which are then engulfed by macrophages 
(Yoshida et  al., 2005; Klei et  al., 2017). Further examples 
of the independent nature of nuclei from cells include cell–
cell transport of nuclei in plants (Lone and Lone, 2013; 
Mursalimov et al., 2013; Kravets et al., 2017) and infectious 
transfer of nuclei in parasitic red algae (Goff and Coleman, 
1984, 1987). In contradiction to the current version of the 
cell theory is the unique multigenomic nature of coenocytic 
(multi-Energidic) Glomeromycota fungi, whose spores con-
tain up to 1000 nuclei (Energides–cell bodies) within one 
huge single coenocytic cell (Marleau et  al., 2011; Boon 
et al., 2015; Young, 2015).

ARCHAEAL ORIGINS OF SYMBIOTIC ENERGIDES–
CELL BODIES AND THEIR HOST CELLS 

(CHRONOCYTES)

In the contemporary literature, diverse versions of autogen-
ous theories for the origin of the eukaryotic cell predominate. 
However, it is very important to consider that, although initially 
treated with scepticism, the symbiotic origin of mitochondria 
and plastids turned out to be true. Viewing the nucleus as the 
primary eukaryotic endosymbiosis event would solve problems 
with the sudden appearance on the evolutionary scene of the 
complex eukaryotic cell, with its nucleus inherently associated 
with an endoplasmic reticulum and microtubular cytoskeleton. 
The various autogenous theories also are not able to explain why 
the last eukaryotic ancestors (LECAs; Woese, 1998, 2002) were 
complex organisms having almost all the eukaryotic features, 
including centrosomes, nuclei with lamina and nuclear pores, as 
well as the flagellar apparatus based on microtubules (Gräf et al., 
2015; Grau-Bové et al., 2015; Vicente and Wordeman, 2015). 
All this provides evidence for the parasitic–symbiotic concept 
of a small motile cell, using its microtubular flagella, invad-
ing a large non-motile host cell based on the actin cytoskeleton 
(Baluška et al., 2004a). Recent advances in our understanding 
of these elusive issues reveal archaeal origins of this eukaryotic 
complexity (Guy and Ettema, 2011; Guy et al., 2014; Koonin 
and Yutin, 2014; Koonin, 2015; Eme et  al., 2017; Zaremba-
Niedzwiedzka et al., 2017). All these data point to the archaeal 
nature of both the host and guest cells that generated the LECA 
(Eme et al., 2017; Baluška and Lyons, 2018). Archaeal host cells 
[termed ‘chronocytes’ by Hartman and Fedorov (2002)] were 
proposed to acquire microtubule-based guest cells endosymbi-
otically (Baluška and Lyons, 2018), and these cells transformed 
into eukaryotic nuclei associated with the microtubule-based 
cytoskeleton. Thus, both the discovery of critical eukaryotic sig-
nature proteins (ESPs; Hartman and Fedorov, 2002) in Archaea 
of the ‘TACK’ superphylum (Guy and Ettema, 2011; Eme et al., 
2017; Spang et al., 2017; Zaremba-Niedzwiedzka et al., 2017) 
and new discoveries in cell biology (summarized by Baluška and 
Lyons, 2018) suggest archaeal origins of both the Energides–
cell bodies and their host cells.

THE ENERGIDE–CELL BODY COMPLEX AS THE 
SMALLEST UNIT OF EUKARYOTIC LIFE

Autogenous evolution is a kind of self-generated evolution 
(O’Malley and Müller-Wille, 2010); whereas the parasitic–sym-
biotic scenarios for the evolutionary origin of complex eukaryotic 
cells are examples of evolution by associations imposed on cells 
from outside (Baluška et al., 2004a, b, 2006; Klepzig et al., 2009; 
Sapp, 2010; Gilbert et al., 2012; Baluška and Lyons, 2018). The 
symbiotic origin of the nucleus as an Energide–cell body com-
plex, as proposed in the latest version of the Neo-Energide theory 
(Baluška and Lyons, 2018), is supported by several unique fea-
tures of eukaryotic cells that are not compatible with the diverse 
autogenous theories. First of all, the eukaryotic cilia and flagel-
lar apparatus share their basal bodies with the perinuclear cen-
trioles and centrosomes (Baluška and Lyons, 2018). Importantly, 
SYNE proteins, which anchor nuclei to neuromuscular synaptic 
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junctions (Grady et al., 2005) and centre nuclear positions within 
eukaryotic cells (Zhu et al., 2017), are also integral proteins of 
ciliary rootlets (Potter et al., 2017). Relevant in this respect are 
algae such as Chlamydomonas and the protozoan Giardia, which 
have flagellar basal bodies connected to the nuclear surfaces via 
centrin-based contractile fibres (Salisbury, 1988; Wright et  al., 
1989; Koblenz et al., 2003; Dawson and House, 2010). The fla-
gellar apparatus is an ancient eukaryotic organelle that is based on 
basal bodies acting as the primary microtubule-organizing centres 
(MTOCs) of the eukaryotic cell (Azimzadeh, 2014; Gräf et al., 
2015). Nuclear pores resemble and act like classical cell–cell 
channels (Lee et al., 2000; Baluška et al., 2006; Bloemendal and 
Kück, 2013). There are also similarities between nuclear pores 
and flagellar entry domains (McClure-Begley and Klymkowsky, 
2017; Rout and Field, 2017). Intriguingly in this respect, flagellar 
centrins (Salisbury, 1988; Salisbury et al., 1988) are components 
of plant-specific cell–cell channels (plasmodesmata; Blackman 
et al., 1999) and nuclear pores (Resendes et al., 2008); and also 
connect centrioles/centrosomes to the nuclei (Gräf et al., 2015). 
The symbiotic origin not only of nuclei (Baluška and Lyons, 
2018) but also of cilia and flagella is strongly supported by 
numerous similarities between cilia/flagella and immunological 
synapses (Stinchcombe and Griffiths, 2014; Stinchcombe et al., 
2015). There are strong parallels between ciliogenesis and the for-
mation of immunological and cytotoxic synapses (Stinchcombe 
et al., 2015; Dieckmann et al., 2016).

In the recently proposed updated version of the Energide–cell 
body theory, the endoplasmic reticulum membranes represent an 
outgrowth of the outer part of the nuclear envelope (Baluška and 
Lyons, 2018) and membranes of the Golgi apparatus represent 
specialized extensions of the endoplasmic reticulum (Chapman 
and Alliegro, 2012; Baluška and Lyons, 2018). Finally, the 
Energide–cell body complex is proposed to represent the primary 
and smallest unit of eukaryotes that can generate a complete cell, 
whereas de-nucleated eukaryotic cells can never generate a new 
Energide–cell body de novo (Baluška et al., 2006; Baluška and 
Lyons, 2018). This primacy of the Energide–cell body unit over 
the rest of the eukaryotic cell can also be seen during cell div-
ision, which invariably starts with the division of the centriole/
centrosome, is followed by nuclear division and completed by 
cytoplasmic/cell periphery division, known as cytokinesis. The 
latter is instructed by the newly emerged daughter Energides–cell 
bodies of early cytokinetic cells. In conclusion, Rudolf Virchow’s 
famous tenet Omnis cellula e cellula should be updated to Omnis 
Energide e Energide (Baluška and Lyons, 2018).

DANIEL MAZIA VERSUS LYNN MARGULIS: 
ENERGIDE–CELL BODY VERSUS KARYOMASTIGONT

In their karyomastigont hypothesis, Lynn Margulis and her 
co-authors proposed the origin of the nucleus via the karyo-
mastigont, which consisted of a nucleus and flagellar apparatus 
(Margulis, 1996; Margulis et al., 2000, 2005, 2006, 2007). The 
problematic part of the karyomastigont concept is the spiro-
chaete origin of the tubulin-based flagellum, which should 
be descended from putatively Mixotricha-like ectosymbionts 
(Margulis, 1996; Margulis et al., 2000, 2006; König et al., 2006; 
Radek and Nitsch, 2007). In our recent Energide–cell body con-
cept (Baluška and Lyons, 2018), the microtubule-based putative 

flagellated Archaea are proposed to invade the actin-based host 
cell Archaea and be transformed into the Energide–cell body. 
This Archaea–Archaea concept of eukaryotic origin explains 
why the eukaryotic nucleus is inherently associated with micro-
tubule-based flagella via centrin-based and contractile rootlet/
rhizoplast structures in evolutionarily ancient protists, including 
Naegleria, Giardia and Breviata (Walker et al., 2006; Minge 
et al., 2009; Dawson and House 2010; Fritz-Laylin and Fulton, 
2016) and in flagellated algae, including Chlamydomonas rein-
hardtii (Salisbury, 1988; Salisbury et al., 1988; Dutcher, 2003). 
Later in eukaryotic evolution, the nucleus was liberated from 
the flagellar apparatus (sensu the akaryomastigont of Margulis 
and colleagues) but remained functionally coupled to cilia via 
basal bodies, centrioles and centrosomes (Dolan et al., 2000a, 
b). Moreover, higher plant cells accomplished further liberation 
when their Energides–cell bodies lost corpuscular centrioles/
centrosomes during land plant evolution (Mazia, 1987, 1993; 
Baluška et al., 1997, 1998, 2004a, b). The Energide–cell body 
concept provides answers as to why centrioles and basal bod-
ies share not only the same centrin-based architecture (Dutcher, 
2003; Koblenz et al., 2003; Ruiz et al., 2005), but also why their 
duplication is typically linked to the nucleus, accomplished only 
once per cell cycle (Salisbury, 1995, 2007), and why there are 
similarities between cilia/flagella and immunological synapses 
(Stinchcombe and Griffiths, 2014; Stinchcombe et al., 2015).

OUTLOOK

The main reason the Energide–cell body concept has essen-
tially been ignored is because researchers have been reluctant 
to accept the endosymbiotic origin of the nucleus (Baluška and 
Lyons, 2018). A better understanding of the true nature of the 
eukaryotic cell is not only important for understanding the de-
velopment of multicellular organisms but is also essential for 
our ability to cure cancer (Boveri, 1929; Mazia, 1987; Lingle 
et al., 2005; Cosenza and Krämer, 2016). Our understanding of 
the true nature of the eukaryotic cell as a symbiotic consortium 
organized via Energide–cell body activities is essential for our 
ability to comprehend life based on eukaryotic cells and their 
nucleus-based Energides–cell bodies. The archaeal nature of 
both the Energide–cell body and its host cell supports the two-
domain Tree of Life (Eme et al., 2017; Spang et al., 2017). This 
is a real archaeal revolution in our understanding of the evolu-
tionary origins of eukaryotic cells and their nuclei.
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