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RESEARCH IN CONTEXT: PART OF A SPECIAL ISSUE ON FUNCTIONAL–DEVELOPMENTAL 
PLANT CELL BIOLOGY

Anaesthetics stop diverse plant organ movements, affect endocytic vesicle 
recycling and ROS homeostasis, and block action potentials in Venus flytraps
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• Background and Aims Anaesthesia for medical purposes was introduced in the 19th century. However, the 
physiological mode of anaesthetic drug actions on the nervous system remains unclear. One of the remaining 
questions is how these different compounds, with no structural similarities and even chemically inert elements 
such as the noble gas xenon, act as anaesthetic agents inducing loss of consciousness. The main goal here was to 
determine if anaesthetics affect the same or similar processes in plants as in animals and humans.
• Methods A single-lens reflex camera was used to follow organ movements in plants before, during and after 
recovery from exposure to diverse anaesthetics. Confocal microscopy was used to analyse endocytic vesicle 
trafficking. Electrical signals were recorded using a surface AgCl electrode.
• Key Results Mimosa leaves, pea tendrils, Venus flytraps and sundew traps all lost both their autonomous and 
touch-induced movements after exposure to anaesthetics. In Venus flytrap, this was shown to be due to the loss 
of action potentials under diethyl ether anaesthesia. The same concentration of diethyl ether immobilized pea 
tendrils. Anaesthetics also impeded seed germination and chlorophyll accumulation in cress seedlings. Endocytic 
vesicle recycling and reactive oxygen species (ROS) balance, as observed in intact Arabidopsis root apex cells, 
were also affected by all anaesthetics tested.
• Conclusions Plants are sensitive to several anaesthetics that have no structural similarities. As in animals and 
humans, anaesthetics used at appropriate concentrations block action potentials and immobilize organs via effects 
on action potentials, endocytic vesicle recycling and ROS homeostasis. Plants emerge as ideal model objects to 
study general questions related to anaesthesia, as well as to serve as a suitable test system for human anaesthesia.

Key words: Anaesthetics, Arabidopsis roots, cress seeds, chlorophyll accumulation, endocytic vesicle recycling, 
Drosera leaf trap, Mimosa seedlings, pea tendrils, plant movements, plant action potentials, reactive oxygen 
species, Venus flytrap

INTRODUCTION

The use of ether for medical purposes, such as anaesthesia, 
was introduced and first described in 1818 by Michael Faraday, 
famous for his work on electromagnetic fields (Bergman, 
1992). In 1846, its utility was first demonstrated during a sur-
gical procedure to painlessly remove a tumour from the neck 
of a patient who had inhaled ether vapour. Before that, ‘sur-
gery’ and ‘pain’ were synonymous (Rinaldi, 2014). Many dif-
ferent chemicals have since been found to induce anaesthesia. 
These include diethyl ether, chloroform, halothane, isoflurane 
and xenon. In the current pharmaceutical market, an enormous 
number of anaesthetic drugs are being produced industrially. 
However, although anaesthetics have been used over a 150-year 
period, the exact mode of anaesthetic drug action on the animal 
nervous system remains controversial. One of these mysteries 

is how these different compounds with no structural similari-
ties, even chemically inert elements such as xenon (a noble 
gas), behave as anaesthetic agents inducing loss of conscious-
ness (Lawrence et al., 1946; Cullen and Gross, 1951; Pauling, 
1961; Sonner, 2008; Sonner and Cantor, 2013; Turin et  al., 
2014). In the early history of anaesthesia research, the theory 
of the Meyer–Overton correlation was proposed (Meyer, 1899; 
Overton, 1901). This explains that the magnitude of anaesthesia 
of different compounds correlates well with their lipid-solubil-
ity. This ‘general’ theory has been abandoned and researchers 
are now attempting to identify specific receptors or neurons 
responding to anaesthetics (Franks, 2008). Remarkably, anaes-
thesia extends to plants. Claude Bernard demonstrated that the 
sensitive plant, Mimosa pudica L., was unresponsive in closing 
leaves upon touch under diethyl ether. He concluded that plants 
and animals must share a common biological essence that is 
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disrupted by anaesthetics (Bernard, 1878; Perouansky, 2012; 
Grémiaux et al., 2014). After the work of Claude Bernard, many 
plant physiologists reported similar effects of anaesthetics on 
plants (Bancroft and Rutzler, 1931; Bünning, 1934; De Luccia, 
2012; Perouansky, 2012; Grémiaux et al., 2014). However, it is 
still not known whether the effects of anaesthetics in plants are 
related to plant action potentials and which cellular processes 
are affected by these compounds in plant cells.

The relevance of anaesthetics for plants is also clear given that 
they generate their own endogenous anaesthetics such as ethanol, 
divinyl ether and ethylene, especially when under stress (Dillard, 
1930; Finer, 1965; Stumpe et al., 2008; Fammartino et al., 2010). 
For example, Kimmerer and Kozlowski (1982) reported that 
stressed pine and birch seedlings, as well as 11 other analysed 
plants, release ethylene, ethane, acetaldehyde and ethanol, all 
compounds that have anaesthetic actions in animals and humans 
(Koppanyi, 1945; Eger and Laster, 2001). In fact, plants emit 
huge amounts of low-molecular-mass hydrocarbons and other 
volatile compounds (Sharkey, 1996; Niinemets et  al., 2004; 
Loreto et al., 2006), and many of these compounds have anaes-
thetic properties (Eger and Laster, 2001; Baluška et al., 2016). 
Interestingly, plants release volatile compounds not only to cope 
with stress but also to perform better in plant competition, many 
of the compounds acting as allelochemicals (Kegge and Pierik, 
2009). Plants produce both general and local anaesthetics such 
as diverse alkaloids and flavonoids, menthol, cocaine, atropine, 
monoterpenes and phenylpropanes (Ghelardini et  al., 2001; 
Ruetsch et  al., 2001; Facanha and Gomes, 2005; Watt et  al., 
2008; de Lima Silva et al., 2013; Behcet, 2014; Tsuchiya, 2017). 
We can expect that this list will become much longer in the fu-
ture. Recently, dozens of anaesthetics and anaesthesia-related 
compounds isolated from plants were reviewed, including essen-
tial oils, terpenoids and alkaloids (Tsuchiya, 2017).

In addition to plant stress adaptation, other plant processes 
are known to be under control of endogenous compounds hav-
ing anaesthetic actions. Ethanol and other anaesthetics overcome 
dormancy of Panicum dichotomiflorum and other plant species 
seeds and this effect can be reversed by pressure of >1 MPa dur-
ing seed exposure to these anaesthetics (Taylorson and Hendricks, 
1979, 1980). Moreover, secondary dormancy induction via high-
temperature incubation of giant foxtail (Setaria faberi) seeds was 
prevented by anaesthetics (Taylorson, 1982). The pressure re-
versal of the impacts of anaesthetics on plants was also confirmed 
in their effects on lipid composition in barley root cells (Jackson 
and John, 1984). As in cells of animal and humans, anaesthet-
ics fluidize membranes and pressure reverses these impacts. This 
feature suggests strongly that anaesthetics induced genuine an-
aesthetic actions on plants as pressure is well known to reverse 
all actions of anaesthetics, including loss of consciousness, in ani-
mals and humans (Johnson and Miller, 1970; Wlodarczyk et al., 
2006; Heimburg and Jackson, 2007; Græsbøll et al., 2014).

In the present study, we have used a wider range of plants 
compared with published studies. We show that anaesthetics 
stop both action potentials and plant movements. Moreover, 
the anaesthetics tested affect endocytic vesicle recycling and 
homeostasis of reactive oxygen species (ROS). These results 
suggest that the action of anaesthetics is similar in plants and 
animals and that they target some general molecules and/or 
processes related to cellular membranes rather than specific 
receptors. Finally, anaesthetics also affect plant-specific aspects 
such as chlorophyll accumulation and seed germination.

MATERIALS AND METHODS

Plant materials

Sensitive plant (Mimosa pudica L.), Venus flytrap (Dionaea 
muscipula Ellis), Cape sundew (Drosera capensis L.), pea 
(Pisum sativum L.) and garden cress (Lepidium sativum L.) 
were obtained from a local garden store. These plants were 
maintained in a growth chamber at 23 °C several days before 
the anaesthetic experiments. Arabidopsis (Arabidopsis thaliana 
L.) Columbia wild type (Col-0) seeds were soaked in a steriliz-
ing solution containing 12 % sodium hypochlorite and 0.1 % 
Triton X-100 for 15 min and washed at least five times with 
sterile distilled water. Sterilized seeds were planted on a 0.4 %  
phytagel-fixed half-strength Murashige-Skoog (MS) growth 
medium without vitamin B. Petri dishes were incubated verti-
cally at 23 °C under 16-h/8-h light–dark cycle.

Impacts of anaesthetics on plant movements

These plants were acclimated in a glass chamber under a 
fume hood. A certain volume of diethyl ether (Carl Roth GmbH, 
Karlsruhe, Germany) reaching 15 % of vapour was poured into 
a small beaker, and Mimosa and Dionaea were treated for 1 h in 
the sealed glass chamber. The same procedure was made for the 
pea plant experiment. The approximate volume of diethyl ether 
was calculated using ideal gas constant (standard state of gas as 
22.4 l–1 mol). For instance, to obtain 15 % vapour in a 1-litre test 
chamber, a liquid phase of 700 µL diethyl ether (74.12 g mol–1, 
0.71 g cm–3) was poured into a beaker and allowed to evaporate 
inside the sealed glass chamber. There are no toxic impacts of this 
concentration of diethyl ether, as well as of the other anaesthetics 
used, and the effects are fully reversible after their removal.

For the lidocaine experiment, Mimosa roots were gently 
washed to remove soil and cultured in water-filled Erlenmeyer 
flasks for several days for adaptation to hydroponic growth con-
ditions. A  1 % lidocaine hydrochloride monohydrate (Sigma-
Aldrich, Schelldorf, Germany) solution was replaced with water 
in the flask, and only the roots of Mimosa were treated for 4 h. 
Leaves of Mimosa were stimulated with a paintbrush by stroking 
along petioles. Trigger hairs in traps of Dionaea were touched 
at least twice with the tip of the metal needle. Trap movement p 
was recorded with a single-lens reflex camera (Canon EOS Kiss 
X7i). The sequences of plant responses were followed in the 
same individuals. The responses of anaesthetic-treated plants 
were observed at least three times and representative images and 
movies are shown here.

The Cape sundew plants (Drosera capensis L.) were enclosed 
in a small jar (volume of 5 litres) in an atmosphere of 15 % di-
ethyl ether. At the same time the control plants were enclosed 
in another jar without diethyl ether. After 90 min, three crushed 
dead fruit flies (Drosophila melanogaster) were put on indi-
vidual sticky adhesive traps of sundew in control and diethyl 
ether-treated traps. In this way, four or five traps were fed on 
the same plant. We used dead crushed prey because in a di-
ethyl ether atmosphere, the flies were anaesthetized (they do 
not move and do not provide mechanical stimuli) in comparison 
to control plants. The plants were kept for another 3 h in an at-
mosphere of diethyl ether. The effectiveness of the anaesthetic 
was observed and quantified as tentacle and trap bending reac-
tion. After 3 h, the diethyl ether was removed to observe speeds 
of recovery after treatments.
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Measurement of action potentials

Venus flytrap plants were incubated in 15 % diethyl ether 
for 2 h in a polypropylene bag with attached electrodes in-
side. The bag was then opened and the trigger hair was touched 
repeatedly every 100 s. The action potentials were measured 
on the trap surface inside a Faraday cage with non-polarizable 
Ag–AgCl surface electrodes (Scanlab systems, Prague, Czech 
Republic) fixed with a plastic clip and moistened with a drop 
of conductive EV gel (VUP, Prievidza, Slovakia) commonly 
used in electrocardiography. The reference electrode was taped 
to the side of the plastic pot containing the plant submerged 
in 1–2 cm of water in a dish beneath the pot. The electrodes 
were connected to an amplifier made in-house [gain 1–1000, 
noise 2–3 µV, bandwidth (–3 dB) 105 Hz, response time 10 
µs, input impedance 1012 Ω]. The signals from the amplifier 
were transferred to an analog–digital PC data converter (eight 
analog inputs, 12-bit converter, ±10 V, PCA-7228AL, supplied 
by TEDIA, Plzeň, Czech Republic), collected every 6 ms.

Effects of anaesthetics on seed germination and chlorophyll 
accumulation

Garden cress seeds were directly placed on damp double-
layered filter paper with 4 mL of distilled water in 9-cm cir-
cular Petri dishes. Lidocaine was dissolved in distilled water. 
For gaseous compounds, diethyl ether or ethyl vinyl ether was 
applied as liquid phase into a small container made from a lid 
of a 1.5-mL Eppendorf tube, and the Petri dish was immedi-
ately sealed to obtain 15 % vapour inside the dish. For xenon 
treatment, xenon and oxygen (both from Sigma-Aldrich) were 
premixed at a ratio of 80: 20 % in a 60-mL plastic syringe. The 
xenon gas was then insufflated into the tightly sealed Petri dish 
through a silicon tube. The dishes were incubated for 24 h at 
room temperature under continuous light conditions. For re-
covery experiments, the anaesthetic compounds were removed 
either by exchanging air or distilled water. For extraction of 
chlorophyll, the leaf samples were collected from the 2-d-old 
anaesthesia-treated seedlings (24  h of anaesthesia treatment 
followed by 24 h of incubation). The sample was weighed and 
ground in 1.5 mL of cold acetone. Crude extract was centri-
fuged at 10 000 g for 5  min. The supernatant was collected 
and mixed with 2.5 mm K-phosphate buffer (pH 7.4) to obtain 
80 % acetone-extract solution. Absorbance of the extracted so-
lution was measured at wavelengths of 663.6 and 646.6  nm 
with a spectrophotometer. The content of chlorophyll a and 
chlorophyll b in each sample was calculated using the equa-
tions given by Porra et al. (1989).

Histochemical ROS staining

Nitro blue tetrazolium salt (NBT; Sigma-Aldrich) was dis-
solved in 0.1 m Tris-HCl buffer (pH 9.5) with 0.1 m NaCl and 
0.05 m MgCl2 to obtain 5 mm of stock solution. For maize and 
Arabidopsis roots, 500  µm and 5 mm of NBT was used for 
staining, respectively. Roots were treated with xenon (Xe 80 %:  
O2 20 %) or 15 % diethyl ether or 1 % lidocaine (w/v) in the 
same manner as described above for 1 h at room temperature. 

The samples were then incubated in NBT solution for 15 min 
prior to microscopic observation.

Effects of anaesthetics on endocytic vesicle recycling in root apex 
cells

Five days after germination, Arabidopsis seedlings were 
stained with 4 µm N-(3-triethylammoniumpropyl)-4-(6-(4-
(diethylamino) phenyl) hexatrienyl) pyridinium dibromide 
(FM4-64; Sigma-Aldrich) dye dissolved in distilled water for 10 
min. Seedlings were then rinsed and soaked in either 0 or 1 %  
lidocaine solution for 30 min. For gaseous anaesthetic treatments, 
seedlings were placed back into 1/2 MS plates after FM4-64 
staining and treated. For diethyl ether treatment, approximately 
25 µL diethyl ether was dropped onto the surface of phytagel and 
the lid of the Petri dish was quickly closed to obtain 15 % diethyl 
ether vapour. For xenon treatment, xenon and oxygen were mixed 
at a ratio of 80: 20 % in a 60-mL syringe. The xenon gas was 
then insufflated into the tightly sealed Petri dish with seedlings. 
In total, 200 mL of gas was used for each dish. The diethyl ether 
and xenon treatments were conducted for 30 and 90 min, respect-
ively. After treatment with these anaesthetics, all seedlings were 
treated with 35 µm Brefeldin A (BFA; Sigma-Aldrich), which 
blocks endocytic vesicle recycling (Lippincott-Schwartz et al., 
1991; Baluška et al., 2002), for 30 min.

Confocal microscopy

Images of FM4-64-stained BFA-treated cells were taken 
by confocal laser microscopy (Fluoview FV1000; Olympus, 
Germany). The FM4-64 was excited at 545 nm by an He–Ne 
laser. Fluorescence emissions were collected between 630 and 
700 nm. The summation of BFA compartment areas visualized 
with FM4-64 fluorescence in a unit area (50 µm2) was calcu-
lated from the confocal image of root epidermal cells. The 
square contains about 20–30 BFA compartments. They were 
then averaged from independent root samples with ImageJ soft-
ware (Mac OSX version 1.43r).

Statistical analysis

For statistical analyses of the quantification of chloro-
phyll contents (see Fig. 3B) and BFA compartment size (see 
Fig. 4D), P-values were calculated with a two-tailed Student’s 
t-test. P-values <0.05 were considered significant.

RESULTS

Effects of anaesthetics on plant organ movements

Diethyl ether vapour immobilized the leaf-closing reaction of sen-
sitive plants Mimosa pudica (Fig. 1A). Leaf closure was observed 
by gently stroking the petiole with a paintbrush (Supplementary 
Data Video S1). After 1 h of 15 % diethyl ether treatment, the 
Mimosa plants completely lost their response to touch stimuli 
(Video S2). Once diethyl ether was removed by exchanging the 
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air in a treatment chamber, leaf response was gradually recovered, 
and returned to normal 7 h after its removal (Video S3).

Another moving plant, Venus flytrap (Dionaea muscipula), 
was also introduced in order to monitor the effect of diethyl 
ether. As shown in Fig. 1B, control plants closed the leaf trap 
after two or three stimulations of the trigger hair inside the 
leaves (Video S4). One hour of 15 % diethyl ether treatment 
completely abolished the response even though trigger hairs 
were stimulated many times (Video S5). The response recov-
ered 15 min after the removal of diethyl ether (Video S6).

Cape sundew (Drosera capensis) is a well-known carnivor-
ous plant that captures its prey by moving leaves covered with 
sticky tentacles. As shown in Fig. 1C, all leaves tested in the 
control plants had a strong leaf and tentacle bending reaction 
within 1  h in response to being fed crushed dead fruit flies. 
By contrast, leaves treated with 15 % diethyl ether showed no 
bending reaction. The reaction was not merely slowed but com-
pletely inhibited. After the removal of diethyl ether, the leaf 
bending reaction was recovered within a few hours (not shown).

Under normal conditions, growing pea tendrils show a rotating 
trajectory in free space (Fig. 1D and Video S7) (Jaffe and Galston, 
1966). When the pea plants were exposed to 15 % diethyl ether, 
tendrils completely stopped their autonomous circumnutations 
immediately and were immobilized in a curled shape (Video S8). 

Interestingly, the application of a 1 % lidocaine solution only 
to the root part (local anaesthesia) of sensitive plant leaves also 
abolished the response to touch stimulus after 5 h of treatment 
(Video S9). Leaf responsiveness recovered 17 h after the solution 
was replaced with distilled water (Video S10).

Loss of action potentials in trigger hairs of Venus flytrap under 
diethyl ether

The 15 % diethyl ether treatment completely attenu-
ated action potentials in response to trigger hair stimulation 
(Fig.  2A). After removal of diethyl ether, the amplitude of 
recorded action potentials gradually recovered (recorded every 
100 s) and returned to the normal state after 900 s. Importantly, 
this recovery time of action potential is remarkably consistent 
with the observed leaf movements shown in Fig. 1B.

Anaesthetics induce exaggerated production of ROS in 
Arabidopsis and maize root apices

We used the NBT histochemical staining procedure to detect 
superoxide production in Arabidopsis root apex. The treatment 

Control

A

B

C D

1 h diethyl ether 7 h after removal

Control 1 h diethyl ether 15 min after removal

Control Diethyl ether15 % diethyl etherMock

Fig. 1. Effects of a volatile anaesthetic agent, diethyl ether, on plant movements. (A) The leaf-closing movement of Mimosa pudica under 15 % diethyl ether. After 
1 h of treatment, leaves completely lost the response to touch stimuli. All leaves gradually recovered closure movement after 7 h following the removal of diethyl 
ether. Arrows indicate closed leaves. (B) The rapid trap movement of Dionaea muscipula disappeared after 1 h of 15 % diethyl ether treatment. The arrow indicates 
the leaf stimulated. (C) Sundew plant (Drosera capensis) showed no prey reaction under 15 % diethyl ether atmosphere. Arrows show normal trap bending reac-

tion. (D) The movement of tendrils disappears with 15 % diethyl ether. The relevant movies are available as Supplementary Data.
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of roots with diethyl ether for 1 h promoted exaggerated gener-
ation of superoxide in the meristem and the root apex transition 
zones (Fig. 2B). Similarly high ROS production was observed 
in maize root apices under the lidocaine and xenon 1  h ex-
posure. The purple–blue colour represents the area of super-
oxide generation (Fig. 2C).

Anaesthetics inhibit dormancy breaking and chlorophyll 
accumulation

Intriguingly, seeds of garden cress (Lepidium sativum) failed 
to break dormancy under the anaesthetic treatments. Seeds 
were incubated on moist filter paper under continuous light. 
Petri dishes were tightly sealed and filled with individual treat-
ments of 15 % diethyl ether, 15 % ethyl vinyl ether or 80 % 
xenon with 20 % oxygen. For lidocaine treatment, filter paper 
was moistened with 1 % lidocaine solution instead of distilled 
water. As shown in Fig. 3A, dormancy was prolonged for 24 h 
under all the anaesthetics whereas the mock treatment revealed 
seed germination. Once the anaesthetics were removed, all seeds 

broke their dormancy over the following 24 h. Cotyledons of 
germinated seedlings treated with anaesthetics exhibited a dis-
tinct yellowish colour. Treatment with diethyl ether, lidocaine 
and xenon reduced the chlorophyll content in leaves (Fig. 3B). 
These results suggest that the anaesthetics used here impede 
dormancy breaking and chlorophyll synthesis and/or assembly 
in the thylakoid membranes. As anaesthetics also impair mito-
chondrial functions (Sanchez et al., 2011; Boscolo et al., 2012), 
these compounds might also have negative effects on the for-
mation of thylakoid membranes of chloroplasts.

Anaesthetics affect membrane dynamics and vesicle trafficking in 
root apex cells

It is currently proposed that many anaesthetics are likely 
to interfere with lipid membranes. We checked the effect of 
anaesthetics on Arabidopsis root cells in terms of membrane 
trafficking, which is based on an elaborate maintenance of cel-
lular membrane dynamics. The 15 % diethyl ether and 1 % lido-
caine treatments slowed the rate of endocytic vesicle recycling, 
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Fig. 2. Disappearance and recovery of action potentials in Dionaea muscipula, and the production of reactive oxygen species in Arabidopsis roots under anaes-
thesia. (A) Recovery of diethyl ether inhibition of action potential on leaves of Venus flytrap in response to trigger hair stimulation recorded every 100 s after 
removal of diethyl ether. (B) NBT histochemical staining to detect superoxide production in Arabidopsis root apex. The treatment with anaesthetics promoted 
the generation of superoxide between the meristem and transition zones. (C) NBT staining in maize roots under lidocaine and xenon treatment. The purple–blue 
colour represents the area of superoxide generation. The black arrows indicate the position of strong NBT staining pattern. Representative images are shown from 

7–9 stained samples.
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a process that was, in particular, completely diminished in the 
presence of diethyl ether (Fig. 4A, B). By contrast, xenon treat-
ment increased the size of BFA-induced compartments in root 
epidermal cells. Although the mechanism involved remains un-
clear, these results indicate that anaesthetics alter normal mem-
brane properties and vesicle trafficking in plant root cells.

DISCUSSION

The fact that plant cells responded to these compounds in a 
similar manner to animals and humans is intriguing. It has 
previously been demonstrated that Mimosa plants lose their 
leaf-closing response to touch stimulus under exposure to lido-
caine and xenon (Weigl, 1968; Milne and Beamish, 1999). 
Importantly, as we show here, exposure of just roots of Mimosa 
seedlings to lidocaine is sufficient to block the movements of 
their shoots. Plant sensitivity to anaesthetics might help to re-
veal elusive mechanisms of their actions. It is puzzling how 
such chemically and physically diverse compounds, includ-
ing the chemically inert gas xenon, the volatile organic solvent 
ether and water-soluble molecule such as lidocaine, can induce 
very similar impacts in both plants and animals.

Our present data not only expand on the plant systems tested 
for anaesthetics by using pea tendrils (Jaffe and Galston, 1966), 

seeds of garden cress and cape sundew leaf traps, but also show 
for the first time that the immobilization of plant organ move-
ments is based on inhibition of action potentials. In other words, 
as in animals and humans, bioelectricity and action potentials 
animate not only humans and animals but also plants. In Venus 
flytrap, action potentials are also necessary to close the trap and 
to initiate the digestive processes (Hodick and Sievers, 1989; 
Böhm et al., 2016). The number of action potentials is translated 
via gland cells into the touch-inducible jasmonate signalling that 
promotes the formation of acidic secretory vesicles, which drive 
development of this ‘green stomach’ (Escalante-Pérez et al., 
2011; Scherzer et al., 2017; Pavlovič et al., 2017). The ultimate 
prediction from our present data is that anaesthetics will prevent 
closure of the Venus flytrap and its subsequent transformation 
into the ‘green stomach’. That animals/humans and also plants 
are animated via action potentials is of great importance for our 
ultimate understanding of the elusive nature of plant movements 
and plant-specific cognition/intelligence based plant behav-
iour (Pollan, 2013; Gagliano, 2014; Baluška and Levin, 2016; 
Calvo et al., 2016; Gagliano et al., 2016; Gross, 2016; Trewavas, 
2016, 2017; van Loon, 2016; Calvo and Friston, 2017; Krausko 
et al., 2017). It should be not surprising that plants are sensitive 
to anaesthetics as they express and use similar critical proteins 
that have been discussed as possible targets of anaesthetics in 
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animals and humans, including glutamate and γ-aminobutyric 
acid (GABA) receptors (Price et al., 2012; Ramesh et al., 2015, 
2017; Weiland et al., 2016; Žárský, 2015; Chen et al., 2016; De 
Bortoli et al., 2016). Saltveit (1993) reported that the anaesthet-
ics halothane and methoxyflurane reduced chilling injury in cu-
cumber cotyledons, cucumber hypocotyls and tomato pericarp. 
The relative effectiveness of the anaesthetics in reducing chill-
ing injury was similar to their relative effectiveness in inducing 
anaesthesia in animals and their relative lipid solubility.

Although there is a strong consensus that anaesthesia results 
in loss of consciousness, it remains unclear how different kinds 
of chemical compounds bring about the same anaesthetic state. 
It is logical to expect that any cellular system that is affected 
or disrupted by an anaesthetic compound must be important 
for maintaining neural activities. Extensive work has been 
performed to investigate specific receptors or mechanisms 
perceiving anaesthetic compounds (Franks, 2008). However, 
many controversies remain, for example lipid (membrane) 
theory versus protein (receptor) theory (Rinaldi, 2014). One 
of main reasons behind this problem is the limited access to 
living tissues under anaesthesia treatment. Here we showed 
that the sensitive plant, Venus flytrap and Cape sundew plants, 
as well as pea tendrils, were immobilized with diethyl ether. 

Under anaesthesia treatment, Venus flytrap lost the ability to 
generate action potentials in response to touch, whereas pea 
tendrils stopped their autonomous searching movements and 
were immobilized in a curled stature. Xenon was effective at 
different levels of responses, such as seed germination, chloro-
phyll accumulation, ROS production and vesicle recycling. 
Importantly, seismonastic movements of Mimosa leaves are 
also based on action potentials in pulvinus motor cells (Volkov 
et al., 2010a, b). These electrical signals in pulvinus motor cells 
are closely associated with the actin cytoskeleton and calcium 
signalling (Kanazawa et al., 2006; Visnovitz et al., 2007; Yao 
et al., 2008). In future, patch clamp analysis of these excitable 
motor cells might prove to be useful. All these results suggest 
that critical molecules and/or lipids of membranes are targets of 
anaesthetics. As in animals, they block action potentials due to 
their actions on membranes and their lipids also in plants.

Although the current mainstream prefers the receptor theory 
of the action of anaesthetics, the fact that all life can be anaes-
thesized (Bernard, 1878; Wolfe et al., 1998; Eckenhoff, 2008; 
Sonner, 2008; La Monaca and Fodale, 2012; Perouansky, 2012; 
Sonner and Cantor, 2013; Rinaldi, 2014; Baluška et al., 2016) 
and the general validity of high-pressure reversal of anaes-
thesia speak strongly against this anaesthetic receptor theory 
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(Johnson and Miller, 1970; Taylorson and Hendricks, 1979, 
1980; Wlodarczyk et al., 2006; Heimburg and Jackson, 2007; 
Græsbøll et al., 2014). The physical action of anaesthetics was 
also supported recently by Turin et al. (2014) who reported 
connections between electron spin and anaesthesia. It is pos-
sible that the ultimate target of anaesthetics will be shown to 
be the electronic structure of critical proteins embedded within 
lipid bilayers of membranes (Ueda et al., 1977; Kamaya et al., 
1981; Heimburg and Jackson, 2007; Booker and Sum, 2013; 
Græsbøll et al., 2014). Anaesthetics impact lipid bilayer thick-
ness and mechanical properties, both of which are well known 
to control protein functions (Andersen and Koeppe, 2007). 
Lipid rafts, in particular, which have central roles in intracel-
lular communication and signalling (Lingwood and Simons, 
2010; Simons and Sampaio, 2011; Head et al., 2014; Sezgin 
et al., 2017), are particularly sensitive to anaesthetics (Morrow 
and Parton, 2005; Bandeiras et al., 2013).

Importantly, Arabidopsis expresses a homologue of the 
lipid raft organizer flotillin Flot1, which is involved in the 
clathrin-independent endocytic pathway (Li et al., 2012; Yu 
et al., 2017) in root apex cells (Li et al., 2012). Interestingly 
in this respect, lipid rafts are very abundant at the Arabidopsis 
root apex cross walls (Zhao et al., 2015a, b), and are active 
in endocytic vesicle recycling (Zhao et al., 2015b), which 
is a typical feature for this root apex zone (Baluška et al., 
2002; Baluška et al., 2010; Baluška and Mancuso, 2013). 
Arabidopsis thaliana respiratory burst oxidase homologue D 
(RbohD) was reported to be localized to lipid rafts and we 
have shown that ROS regulate endocytic vesicle recycling 
(Hao et al., 2014; Yokawa et al., 2016). As our present data 
show that anaesthetics inhibit endocytic vesicle recycling in 
Arabidopsis root apex cells and disrupt ROS homeostasis, 
one possible scenario would be that anaesthetics primarily 
target the physical properties of membranes, especially lipid 
rafts. Consequently, this would then cause aberrant func-
tions of membrane proteins and vesicle trafficking, inhibiting 
action potentials, and precluding plant organ movements.

In contrast to all the other anaesthetics used in our study, 
water-soluble lidocaine is a local anaesthetic known to act in 
animals via inhibition of the non-selectively voltage-gated 
sodium channels (Bean et  al., 1983; Chevrier et  al., 2004; 
Fozzard et al., 2011). The relevance of our data in this regard is 
still unclear and will await further experimental studies.

Arabidopsis model systems, with their excellent tools and 
mutant collections, represent an ideal in aims to illuminate 
the elusive mechanisms underlying both anaesthetic and the 
phenomenon of consciousness (Trewavas and Baluška, 2011; 
Mashour and Alkire, 2013; Baluška et al., 2016; Calvo et al., 
2017). As plants in general, and the model plant A. thaliana in 
particular, are suitable to experimental manipulation (they do 
not run away) and allow easy electrical recordings, we propose 
them as ideal model objects to study anaesthesia and to serve as 
a suitable test system for human anaesthesia.
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