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A B S T R A C T

Dynamic causal modelling (DCM) for resting state fMRI – namely spectral DCM – is a recently developed and
widely adopted method for inferring effective connectivity in intrinsic brain networks. Most applications of
spectral DCM have focused on group-averaged connectivity within large-scale intrinsic brain networks; however,
the consistency of subject- and session-specific estimates of effective connectivity has not been evaluated.
Establishing reliability (within subjects) is crucial for its clinical use; e.g., as a neurophysiological phenotype of
disease progression. Effective connectivity during rest is likely to vary due to changes in cognitive, and physio-
logical states. Quantifying these variations may help understand functional brain architectures – and inform
clinical applications. In the present study, we investigated the consistency of effective connectivity within and
between subjects, as well as potential sources of variability (e.g., hemispheric asymmetry). We also addressed the
effects on consistency of standard data processing procedures. DCM analyses were applied to four longitudinal
resting state fMRI datasets. Our sample comprised 17 subjects with 589 resting state fMRI sessions in total. These
data allowed us to quantify the robustness of connectivity estimates for each subject, and to generalise our
conclusions beyond specific data features. We found that subjects showed systematic and reliable patterns of
hemispheric asymmetry. When asymmetry was taken into account, subjects showed very similar connectivity
patterns. We also found that various processing procedures (e.g. global signal regression and ROI size) had little
effect on inference and the reliability of connectivity estimates for the majority of subjects. Finally, Bayesian
model reduction significantly increased the consistency of connectivity patterns.
1. Introduction

During quiet wakefulness the brain shows several patterns of
coherent activity, referred to as resting state networks (RSNs; Dam-
oiseaux et al., 2006). RSNs include regions that are both functionally and
structurally related (Van Den Heuvel et al., 2009). Most studies charac-
terising resting state networks are based on functional connectivity,
which is defined as the statistical dependency among brain signals.
However, interactions between brain regions are directed and are
therefore not fully captured by (undirected) functional connectivity
(Friston, 2011; Razi and Friston, 2016). Studying directed influences
between brain regions allows one to assess the relative strength (of
lmgren).
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reciprocal connectivity) that regions exert on each other, which is
thought to be relevant for diagnosis, prognosis, and assessment of
treatment responses of neurological and psychiatric disorders (Stephan
et al., 2017). Various methods have been developed to infer directed
influences between brain regions, among which a prominent framework
is Dynamic Causal Modelling (DCM; Friston et al., 2003).

DCM uses Bayesian model inversion procedures to estimate effective
connectivity among neural populations from observed signals (e.g.,
BOLD-signals). It incorporates a biophysically plausible hemodynamic
model (i.e., the Balloon model; Buxton et al., 1998) to generate predicted
BOLD-responses from neuronal states. Initially DCM was developed to
estimate effective connectivity for experimental (task) fMRI studies
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(Friston et al., 2003). Recently, a particular DCM – referred to as spectral
DCM (spDCM) – has been developed to infer effective connectivity in
resting state fMRI (Friston et al., 2014). This DCM is based on a gener-
ative model of (complex) cross spectra between regional BOLD signals,
and uses a power-law function (in the spectral domain) to model (random
and endogenous) neuronal fluctuations. Fitting spectral (second-order)
data features makes spDCM deterministic, which renders the estimation
scheme computationally and statistically more efficient than its sto-
chastic counterpart – that fits the (first-order) timeseries per se (i.e.,
stochastic DCM; Li et al., 2011).

The construct validity of spectral DCM has been established using
both simulated and empirical data (Friston et al., 2014; Razi et al., 2015).
Friston et al. (2014) simulated resting state fMRI timeseries for a network
with three regions. Their results showed that spDCM estimates extrinsic
effective connectivity with high accuracy, but tends to underestimate
intrinsic connectivity (i.e., the inhibitory influence regions exert on
themselves). In a subsequent in silico validation study, (Razi et al., 2015)
demonstrated a similar accuracy for a network consisting of four regions.
Interestingly, both studies showed that the root mean squared error
(between the true and estimated connectivity) decreases with the num-
ber of scans. Both studies also showed that spDCM is sensitive for
detecting group differences in effective connectivity. Most research using
empirical data has focused on effective connectivity within the default
mode network (e.g., Razi et al., 2015; Sharaev et al., 2016; Ushakov et al.,
2016; Zhou et al., 2018). Both Razi et al. (2015) and Sharaev et al. (2016)
estimated connectivity within the ‘core’ DMN, which included left and
right intraparietal cortices (IPC), medial prefrontal cortex (mPFC), and
posterior cingulate cortex (PCC). Both studies found reciprocal positive
connectivity between IPC, and positive projections from lateral to medial
brain regions. Ushakov et al. (2016) showed that adding extra regions
(i.e., left and right parahippocampal gyri) to the four-region DMN did not
have a substantial impact on its effective connectivity pattern. Zhou et al.
(2018) showed that the salience and dorsal attention network have a
negative influence on the core DMN, while the converse influence was
slightly positive. Moreover, within the core DMN the same pattern of
connectivity was found as in other spectral DCM studies.

In summary, studies that have applied spectral DCM to the DMN have
yielded quite consistent results. However, these studies generally focus
on group-averaged connectivity. While group studies are very useful to
establish predictive validity, a thorough examination of subject and
session-specific differences in effective connectivity during rest is an
outstanding challenge. Quantifying within-subject stability is especially
important in the context of single-patient diagnostics and predictions
(Stephan et al., 2017). For other DCMs (e.g., DCM for task fMRI)
test-retest reliability has been assessed between a few sessions, and was
found to be good to excellent (e.g., Fr€assle et al., 2015; Schuyler et al.,
2010).

Here, we wanted to assess within-subject reliability (and between-
subject consistency) of effective connectivity estimated by spectral DCM
across many resting state fMRI sessions acquired in longitudinal studies.
Although effective connectivity during resting state fMRI should be suf-
ficiently reliable to be used in a clinical context, it is likely to vary as a
consequence of changes in physical, emotional and cognitive states (e.g.,
amount of sleep), and the sources of this variability need to be estab-
lished. Assessment of these longitudinal variations in effective connec-
tivity could yield important insights in the effects of behavioural and
psychological states on macroscopic brain dynamics (see, e.g., Laumann
et al., 2015). The goals of the present study were to assess whether, and
to what extent, connectivity patterns in the default mode network are
consistent both within and between subjects, and to investigate the
sources of variability in effective connectivity. To meet these aims, we
used four longitudinal datasets, with a minimum of ten resting state
sessions for each subject. These datasets allowed us to quantify the sta-
bility of the posterior estimates of (effective) connectivity in the default
mode network across sessions, and to generalise conclusions beyond
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specific datasets (e.g., subjects' characteristics, scanning parameters, etc).

2. Methods

2.1. Datasets and subjects

Data were obtained from four extensive longitudinal datasets ac-
quired at different research institutions. The total sample consisted of 20
subjects (11 females, age range at start of studies: 24–45 years) with a
minimum of 10 resting state sessions for each subject. Altogether, the
datasets contained 653 rsfMRI sessions. A summary of the datasets is
shown in Table 1.

Dataset 1. The first dataset (‘myconnectome’) was part of the MyCon-
nectome project (see, Laumann et al., 2015). During this project, resting
state fMRI scans were acquired from a single person (male, 45 years at the
start of study) on 89 occasions over the period of 1.5 years. MRI data were
obtained with a Siemens MAGNETOM Skyra 3T MRI scanner (Siemens,
Erlangen, Germany), using a 32-channel head coil. Resting state fMRI was
acquired using a multi-band echo-planar imaging (MBEPI) sequence
(TR¼ 1160ms; TE¼ 30ms; voxel size¼ 2.4mm� 2.4mm x 2mm;
FOV¼ 230mm; flip angle¼ 63�; multi-band factor¼ 4). Functional im-
ages for the first 14 sessions contained 68 slices; images from remaining
sessions comprised 64 slices. Resting state scan length was approximately
10min (518 images). T1 imageswere acquired using aMPRAGE sequence
(TR¼ 2400ms; TE¼ 2.14ms; TI¼ 1000ms; voxel size¼ 0.8mm
isotropic; 256 sagittal slices;flip angle¼ 8�; GRAPPA factor¼ 2). Only the
T1-weighted image acquired during the session prior to the first rsfMRI
session was used in the present study (i.e., for coregistration and
normalization). This dataset was obtained from the OpenfMRI database.
Its accession number is ds000031.

Dataset 2. The second dataset (‘Kirby’) contained data acquired from a
single subject (40 years at the start of study, male) on 156 occasions (3.5
years; see, Choe et al., 2015). The subject was scanned using a 3T Philips
Achieva scanner (PhilipsHealthcare, Best,Netherlands),with a16-channel
neurovascular coil. Functional resting state data were acquired using a
multi-slice SENSE-EPI sequence (TR¼ 2000ms; TE¼ 30ms; voxel
size¼ 3mm� 3mm x 3mm; flip angle¼ 75�; 37 axial slices; SENSE fac-
tor¼ 2). Scan length was approximately 7min (200 images). T1-weighted
images were acquired using a MPRAGE sequence (TR¼ 6.7ms;
TE¼ 3.1ms; TI¼ 842ms; voxel size¼ 1.0mm� 1.0mm� 1.2mm; flip
angle¼ 8�; SENSE factor¼ 2). The T1-weighted image acquiredduring the
first scan session was used in the present study.

Dataset 3. The third dataset (‘day2day’) contained data acquired from
eight subjects (6 females; age range 24–32 years; Filevich et al., 2017).
The number of scan sessions per subject ranged from 11 to 50 (sessions in
total), and were acquired within a period of 2–13 months. Subjects were
scanned using a 3T Magnetom Trio MRI scanner (Siemens, Erlangen,
Germany) and a 12-channel head coil. RsfMRI data was acquired using a
T2*-weighted echo planar imaging (EPI) sequence (TR ¼ 2000 ms;
TE¼ 30ms; voxel size¼ 3mm� 3mm� 3mm; flip angle¼ 80�; 36 axial
slices; GRAPPA acceleration factor ¼ 2). The length of resting state
scanning was approximately five minutes (150 images). Structural MRI
scans were acquired using a MPRAGE sequence (TR ¼ 2500 ms;
TE¼ 4.77 ms; TI¼ 1100 ms; voxel size¼ 1.0 mm� 1.0 mm� 1.0 m; flip
angle ¼ 7�). Only the T1-weighted image acquired during the first scan
session was used.

Dataset 4.The fourthdataset (‘midnight scan club’) contained data from
ten subjects (5 females; age range 24–35 years; see, Gordon et al., 2017).
Participants were scanned at midnight on twelve consecutive days with a
3T Siemens Trio MRI scanner (Siemens, Erlangen, Germany). On ten oc-
casions, rsfMRI data were acquired with a gradient-echo EPI sequence
(TR¼ 2200ms; TE¼ 27ms; voxel size¼ 4mm� 4mm� 4mm; flip
angle¼ 90�; 36 axial slices). Each session contained 818 vol (approxi-
mately 30min). Structural scans were acquired using a gradient-recalled
inverse recovery (GR-IR) sequence (TR¼ 2400ms; TE¼ 3.74ms;



Table 1
Subject information.

Subject Dataset M/
F

Agea Total
sessionsb

Spanc Total scans
(time)d

S1 MyConn M 45 89 �1.5
years

518
(�10min)

S2 Kirby M 40 156 �3.5
years

200 (�7min)

S3 Day2day F 24 50 �5.5
months

150 (�5min)

S4 Day2day F 28 13 �3.5
months

150 (�5min)

S5 Day2day F 31 50 �13
months

150 (�5min)

S6 Day2day M 32 11 �2
months

150 (�5min)

S7 Day2day F 29 45 �7
months

150 (�5min)

S8 Day2day F 24 47 �5.5
months

150 (�5min)

S9 Day2day M 30 43 �7
months

150 (�5min)

S10 Day2day F 29 49 �7.5
months

150 (�5min)

S11 MSC M 34 10 17 days 818
(�30min)

S12 MSC M 34 10 10 days 818
(�30min)

S13 MSC F 29 10 12 days 818
(�30min)

S14 MSC F 28 10 15 days 818
(�30min)

S15 MSC M 27 10 14 days 818
(�30min)

S16 MSC F 24 10 15 days 818
(�30min)

S17 MSC F 31 10 39 days 818
(�30min)

S18 MSC F 27 10 18 days 818
(�30min)

S19 MSC M 26 10 16 days 818
(�30min)

S20 MSC M 31 10 21 days 818
(�30min)

Abbreviations: MyConn¼Myconnectome, MSC¼Midnight Scan Club.
a Age at the start of study.
b Total number of sessions initially included in the present study (these differ

slightly from the original studies because some low-quality images were not
shared, duplicates were encountered, or initial pilot sessions were not included).

c Span¼ approximate time over which all rsfMRI scan sessions took place.
d Total number of scans in each session
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TI¼ 1000ms; voxel size¼ 0.8mm� 0.8mm� 0.8mm;224 sagittal slices;
flip angle¼ 8�). The first structural image acquired from each subject was
used for the analyses. This datawas obtained from theOpenfMRI database.
Its accession number is ds000224.
2.2. Data analyses

2.2.1. Preprocessing
Preprocessing was performed using the SPM12 software package

(revision 6906; Wellcome Centre for Human Neuroimaging; www.fil.ion.
ucl.ac.uk/spm/software/spm12). The first five images of each session's
rsfMRI sequence were discarded to allow for T1 equilibration. First,
resting state fMRI images were corrected for differences in slice timing
(using the central slice of each volume as a reference). Next, images were
realigned to the first functional volume of each session. Images were then
coregistered to the skull-stripped anatomical image. Finally, images were
normalized to MNI space (Montreal Neurological Institute) and
smoothed using a Gaussian kernel (6mm FWHM).
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2.2.2. Time-series extraction
Session-specific DMN voxels were identified by specifying and esti-

mating a GLM containing: (1) a discrete cosine basis set as principal
regressor (frequency range: 0.0078–0.1 Hz), (2) six head motion re-
gressors (three translational, three rotational), (3) a regressor for CSF
signal (principal eigenvariate of 5 mm ROI within CSF circulation sys-
tem), and (4) a regressor containing WM signal (principal eigenvariate
of 7mm ROI within brainstem). The number of cosine components
depended on the number of scans within a session. An F-contrast was
specified across all DCT components to produce an SPM (testing for high
amplitude fluctuations in the frequency range model), which was
masked using ROIs (sphere radius¼ 10mm) extracted from template
ICA maps (Smith et al., 2009). ROI centre coordinates were (x¼ 2;
y¼�58; z¼ 30) for precuneus, (x¼ 2; y¼ 56; z¼�4) for medial pre-
frontal cortex, (x¼�44; y¼�60; z¼ 24) for the left inferior parietal
cortex, and (x¼ 54; y¼�62; z¼ 28) for the right inferior parietal
cortex (see, Fig. 1: left panel). Coordinates were labelled using the AAL
atlas. Time-series were acquired by computing the principal eigenvari-
ate of signals from voxels centred on the peak voxel of the aforemen-
tioned F-contrast (session-specific; sphere radius¼ 8mm) within each
ROI. This procedure accommodated session- and subject-specific dif-
ferences in the exact location of DMN regions. Voxels were only
included if they survived an a priori specified threshold: if sessions
contained less than 200 scans per session, voxels were included if they
exceeded an uncorrected (full brain) alpha-threshold of 0.05. If sessions
contained more scans, a stepwise increase in alpha-threshold
(alpha¼ 0.001, 0.01, to 0.05) was applied, until significant voxels
were detected (using an upper boundary of alpha¼ 0.05). Importantly,
the alpha-level specified here is used to detect voxels that contain
low-frequency fluctuations, and is independent from the criterion used
to infer connectivity.

2.2.3. (Spectral) Dynamic causal modelling and hierarchical Bayes
Spectral DCM for resting state fMRI (Friston et al., 2014) estimates the

intrinsic effective connectivity (i.e., the ‘A-matrix’) between brain re-
gions from observed BOLD responses, taking into account (modelled)
effects of (neuro)vascular processes and (spectral) noise at different
levels. DCM models the rate of change in activity (per second) of one
region as a function of activity in another region, therefore expressing
effective connectivity in Hertz (Hz). Since DCM uses Bayesian estimates
of effective connectivity, each parameter (i.e., connection strength) is
equipped with a prior density. The priors for extrinsic effective connec-
tions in DCM are shrinkage priors, which are minimally informative with
respect to the sign of the connection but preclude extreme values.
Intrinsic (self) connections have more informative priors to reflect
cortical gain control and the ensuing stability of neuronal dynamics. To
estimate parameters at the group-level, a hierarchical or Parametric
Empirical Bayesian framework (PEB; Friston et al., 2016) is used to
model effects at multiple levels (e.g. session- and subject-level). At all
levels, parameters (e.g., between-subject variance) are supplemented
with appropriate priors (in fixed proportion to the above priors on
within-subject connectivity). Precision components specify whether the
variance of between-subject (and between-session) random effects is
equal or differs for connectivity parameters.

In the present study, DCMs (with all possible connections among re-
gions) were specified and inverted for each session separately (DCM12;
revision 6801), without the specification of exogenous (i.e., experi-
mental) inputs. Default priors implemented in SPM were used for all
parameters at this level. Sessions were excluded from analysis if they did
not meet five diagnostic criteria; namely, (1) explained variance of pre-
dicted BOLD signals above 60%, (2) at least one connection with a
connection strength greater than 1/8 Hz, (3) at least one effectively
estimated parameter (based on Kullback-Leibler divergence of posterior
from prior distribution), (4) maximum frame-wise displacement (FD)
under 1.5mm, and (5) a maximum alpha-threshold of 0.05 for which
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Fig. 1. Left panel: location of ROIs used in the present study. Middle panel: Estimated effective connectivity (from columns to rows) at the group level. Diagonal
elements reflect self-inhibition parameterised in log-scale (relative to the prior mean of �0.5 Hz). A posterior probability criterion of 90% was used (ns depicts not
significant, i.e., posterior probability below 90%). Right panel: estimated between-subject variability for each connection (PEB.Ce). It is evident that the left and right
IPC showed the greatest between-subject variability in self-inhibition (log-scale) and extrinsic connectivity (hertz).
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significant voxels were found in all DMN regions for that session. Three
subjects (i.e., S13, S18, and S19) were rejected because they had less than
8 sessions after rejection based on diagnostic checks. Additionally, thirty-
one sessions (across subjects and datasets) were excluded because they
did not meet diagnostic criteria, and three sessions were discarded
because of other problems (e.g., incomplete volumes). A total of 589
rsfMRI sessions were included after quality and diagnostic checks.

To compute average connectivity at the subject-level we specified
Parametric Empirical Bayes (PEB; Friston et al., 2016) models with one
regressor (comprising a column of ones) that modelled average (with-
in-subject) connectivity over sessions. The subject-specific PEB models
were then included in a group-level PEB model, including again one re-
gressor to model average (between-subject) connectivity over subjects.
Default settings were used for estimation at the subject and group level;
i.e., the prior covariance of connections had the same form at the session,
subject and group-level, where the between-session and between-subject
prior covariance was 1/16th of the prior covariance of connections at the
session-level (see, Friston et al., 2016). Each parameter was equipped
with a separate between-subject precision component. Only effective
connectivity parameters were included as dependent variables in subject
and group analyses. Inference concerning effective connectivity (at all
levels) was based on a posterior probability criterion of 90% for each
connection.

2.2.4. Stability criteria
Stability of the strength and direction of connections was assessed for

three different network characteristics. (1) We tested hemispheric
asymmetry for each session and subject by computing the posterior
probability that the average outgoing connectivity (i.e., efferent or out-
degree) from the left IPC differed from the average outgoing connectiv-
ity from the right IPC (posterior probability criterion¼ 90%). The
‘asymmetry index’ was computed as the average outgoing connectivity
from left minus the average outgoing connectivity from right IPC. Be-
tween (resp., within) subject stability of asymmetry was evaluated by
computing the ratio of subjects (resp., sessions) that showed most
prominent influence from either right or left IPC. (2) We assessed sta-
bility of the estimated connectivity matrices (i.e., over all connections) by
calculating the average correlation between vectorised connectivity
matrices for each pair of subjects and sessions. (3) We assessed between
(resp., within) subject stability of the type of connection (i.e., excitatory,
inhibitory, or no influence) by computing the percentage of subjects
(resp., sessions) that showed either a positive, negative, or non-existent
influence between regions (using the 90% posterior confidence crite-
rion). The latter stability measure was computed for each connection
separately.
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2.2.5. Effect of (pre)processing steps
The effect of three (pre)processing steps on connectivity and stability

was assessed. (1) (Empirical) Bayesian model reduction was applied to
assess the effect of using subject-specific and group connectivity as
empirical priors for session- and subject-specific estimation, respectively.
We compared stability with and without empirically optimising con-
nectivity parameters at the session and subject level (as implemented by
spm_dcm_peb.m). (2) To assess the effect of ROI size on connectivity and
stability, we reanalyzed the data using spherical ROIs with radii of 4 mm,
8mm, 12mm and 16mm. ROIs were centred at the average coordinate of
the (session-specific) voxels included in the previous ‘basic’ analyses. To
allow proper comparison, we calculated the eigenvariate of all significant
voxels in the sphere (i.e., without using the conjunction with the ROI
derived from the ICA template). The same subjects were excluded as in
the basic analyses. To ensure proper comparison between analyses with
different ROI sizes, sessions were excluded if they did not reach diag-
nostic thresholds for all ROI sizes. Consequently, 57 sessions were dis-
carded, which yielded a total sample of 563 sessions. (3) Finally, we
assessed the influence of global signal regression (GSR) on the reliability
and connectivity. Therefore we repeated the ‘basic’ analyses with GSR,
which was done by scaling (preprocessed) fMRI volumes with the inverse
of the scan-specific global mean intensity (in SPM: global normaliza-
tion¼ ‘scaling’). All subsequent analyses (e.g., peak-value coordinate
detection, time-series extraction) were performed using these scaled
images. Again, same subjects were excluded as in the basic analyses.
Forty-two sessions were excluded because they did not reach diagnostic
thresholds for one or both analyses (i.e., with or without GSR), which left
a sample of 578 rsfMRI sessions.

2.2.6. Statistical inference
At each level of the hierarchy (i.e., session, subject, and group) a

posterior density was estimated for each connection (constituting a
multivariate distribution over parameters). Inference concerning
connection strengths (see, e.g., Fig. 1) was based on these posterior
densities. Inference regarding asymmetry was based on a contrast (i.e.,
difference) of connections arising from left and right IPC. The resulting
density was then used to evaluate the significance of asymmetry. For
inference regarding other metrics (e.g., regarding the within-subject
reliability of asymmetry, or the effect of processing steps), statistical
tests were performed using maximum-a-posteriori (MAP) estimates as
summary statistics (e.g., representing connection strength or asymme-
try). For each specific context, an appropriate test was performed (e.g.,
standard binomial test for reliability of asymmetry, randomization
testing for the effect of preprocessing on reliability) to establish classical
statistical significance.
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3. Results

3.1. Group-level

Estimated connectivity at the group level is shown in Fig. 1. Con-
nections from bilateral IPC were stronger compared to other connections.
Moreover, the left IPC showed a stronger outgoing influence compared to
right IPC (mean difference¼ 0.15; SD¼ 0.03; posterior probabil-
ity> 0.99) and the lowest self-inhibition. Between-subject variability for
both extrinsic (i.e., between-regions) and intrinsic connections (i.e., self-
inhibition) was greater for projections arising from left and right IPC
compared to other regions.

3.2. Between-subject variability

3.2.1. Between-subject variability in hemispheric asymmetry
Average connectivity for some exemplar subjects is shown in Fig. 2

(panel A; see, Fig. S1 for connectivity estimates of all subjects). All but
one subject showed a dominant influence from either left or right IPC.
Post-hoc tests comparing average outgoing connectivity from left IPC to
average connectivity from right IPC indeed confirmed our observations:
ten subjects showed significantly higher influence from left IPC, while six
subjects showed significantly greater influence from right IPC
(PP> 0.90). The average difference between left and right IPC connec-
tivity was 0.60 Hz, indicating a non-trivial effect (about six times the
heuristic threshold of 0.1 Hz used in DCM studies; see, e.g., Razi et al.,
2015). The dominant IPC showed lowest self-inhibition in fifteen out of
sixteen asymmetric subjects. The predominance of asymmetry in
between-subject variability was confirmed with a principal component
analysis (PCA) on effective connectivity across subjects. The first prin-
cipal component showed highest (and opposite) loadings on left and right
IPC (see, Fig. 2 panel B), and explained approximately 62% of total
variance. Self-connections showed opposite loadings compared to ipsi-
lateral extrinsic connections, which suggests that subjects with high
extrinsic influence show high self-inhibition of ipsilateral IPCs.

3.2.2. Effective connectivity in terms of (out-degree) dominant versus non-
dominant

Next, we accommodated between-subject differences in asymmetry
by rearranging the connectivity matrices at the subject-level (and their
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respective (co)variances) from a left-right orientation to a dominance-
related orientation. Specifically, we swapped left and right IPC for sub-
jects that showed significant right asymmetry. This produced reordered
connectivity matrices for which the second column and row represented
the dominant hemisphere and the fourth column and row represented the
non-dominant IPC in all subjects. The subject with a low evidence for
hemispheric asymmetry was excluded from these analyses. First, we
assessed the effect of accounting for asymmetry on group-level connec-
tivity estimates. Therefore we re-estimated group-level connectivity (i.e.,
by re-inverting the second level PEB model) using dominance-ordered
connectivity matrices (see, Fig. 3: Panel A). When effective connectiv-
ity (at the subject-level) was casted in terms of dominant versus non-
dominant IPC, the non-dominant IPC showed no outgoing connectivity
at the group-level, and was slightly inhibited by medial regions
(PP> 0.90).

Second, we assessed between-subject consistency in terms of
connection type using original and re-ordered connectivity matrices
(using subject-level matrices). Therefore, we enumerated (for each
connection separately) the number of subjects showing excitatory,
inhibitory, or non-existent influence (i.e., with a posterior probabil-
ity< 90%). The results are shown in Fig. 3 (Panel B). After accommo-
dating hemispheric asymmetry, the results showed that the dominant IPC
exerted a positive influence on all other regions for all subjects, while the
influence of the non-dominant IPC varied between subjects. Moreover,
connectivity from the mPFC to dominant IPC was negative in 12 out of 16
subjects (75%).

Third, we assessed the change in similarity of connectivity patterns
between subjects after taking into account asymmetry. Therefore, we
calculated correlations between (vectorised) connectivity matrices for all
possible pairs of asymmetric subjects (120 pairs in total) for both left-
right and dominance-ordered connectivity matrices (estimates at
subject-level). The results of this analysis are shown in Fig. 3 (Panel C).
The ensuing average correlation was 0.55 (range: [-0.31 0.96]) for the
left-right and 0.83 (range: [0.52 0.98]) for the dominance-ordered con-
nectivity matrices. To test whether the increase in correlation was
significantly higher than what would be expected under the null-
hypothesis (i.e., that left-right dominance swapping does not lead to a
greater correlation), we performed a randomization-based statistical test.
Specifically, we randomized the matrix entries that represented extrinsic
connectivity from either left or right IPC. This was done pair-wise,
Fig. 2. Panel A: Connectivity patterns for exemplar
subjects. For extrinsic connections (i.e., between re-
gions), red lines denote positive connectivity and blue
lines negative connectivity. For self-connections, red
lines depict connectivity above the prior mean, while
blue lines depict connectivity below the prior mean
(i.e., �0.5 Hz). Line thickness and brightness reflect
the strength of the respective connection. Across
datasets, subjects showed most dominant influence
from either left (e.g., S2 and S3) or right IPC (e.g., S16
and S17). Moreover, self-inhibition was lowest for the
dominant IPC in 15 subjects. Panel B: Loadings on the
first principal component of effective connectivity
across subjects. Coefficients of the left and right IPC
show opposite signs. Self-connections (shown on di-
agonal in negative log-scale) have opposite loadings
compared to ipsilateral extrinsic (off-diagonal) con-
nections, which indicates that subjects with high
extrinsic influence show high self-inhibition of the
ipsilateral IPC.



Fig. 3. Panel A: Effective connectivity at group-level
using original and dominance-ordered matrices.
When hemispheric dominance was accommodated at
the subject-level, results suggest that the non-
dominant hemisphere has no outgoing effective con-
nectivity and is slightly inhibited by medial regions.
Ns depicts not significant (i.e., posterior probability
below 90%). Panel B: Number of subjects with excit-
atory (positive) or inhibitory (negative) influences
(posterior probability> 90%; effective connectivity
from column to row regions). Connections that were
positive or negative in more than 70% of subjects are
shown in green or red, respectively. Self-connections
are omitted for simplicity. The dominant IPC showed
positive influence on all other regions, while the in-
fluence of the non-dominant IPC differed between
subjects. Moreover, the left mPFC exerted inhibitory
influence on the dominant IPC in 12 out of 16 (75%)
asymmetric subjects. Panel C: Violin plots of correla-
tions between left-right (left plot) and dominance-
ordered (right plot) connectivity-matrices for all
possible pairs of subjects. Horizontal green lines depict
the mean correlation. The consistency is significantly
greater when hemispheric dominance was taken into
account. Anatomical labels: PRC¼ precuneus;
mPFC¼medial prefrontal cortex; dIP¼ dominant
inferior parietal cortex; ndIP¼ non-dominant inferior
parietal cortex; l/rIPC¼ left/right inferior parietal
cortex.
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meaning that connectivity to a region was switched with connectivity to
that same region but from the contralateral IPC.We swapped the columns
and rows of all permuted matrices for which the left IPC showed greater
outgoing connectivity compared to the right IPC. We then computed the
average correlation between all pairs of subjects. The difference between
the correlations – with and without swapping – for all permutations
constituted our (empirical) null-distribution. The number of randomi-
zations was set to 5000. Results from the empirical data showed that the
increase in between subject similarity was significantly greater than what
could be expected under the null-hypothesis (Effect size¼ 0.28, p <

0.001). Thus, casting effective connectivity in terms of (out-degree)
dominant versus non-dominant, as opposed to right versus left, hemisphere
markedly (and significantly) improved between-subject consistency. In
short, interesting and systematic connectivity patterns emerge when
between-subject differences in hemispheric asymmetry are taken into
account.
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3.3. Within-subject variability

3.3.1. Within-subject reliability of asymmetry and connection type
The same tests for hemispheric asymmetry (i.e., comparing average

connectivity from left versus average connectivity from right IPC) were
performed on every session's connectivity matrix. Results for all subjects
are shown in Fig. 4. In total 94% of sessions showed significant lateral-
ization (PP> 0.90). For subjects showing significant asymmetry at the
subject-level (N¼ 16) on average 71% (range: [0.4 0.93]) of sessions
showed the same asymmetry as the respective subject-specific asymme-
try. To test which subjects showed significant stability in asymmetry (i.e.,
left or right dominance), we performed a (two-tailed) binomial test for
each subject separately. To correct for multiple comparisons (N¼ 16;
symmetric subject left out) we applied the Benjamini-Hochberg method
(Benjamini and Hochberg, 1995) using a false-discovery rate (FDR) of
5%. To allow proper comparison to a chance level of 50%, sessions



Fig. 4. Upper panel: Session-specific hemispheric
asymmetry for all subjects, in order of decreasing
proportion of left hemisphere-dominant sessions. The
asymmetry index was computed as the average
efferent influence from the left minus the mean
efferent influence from the right IPC. Dots represent
the asymmetry index for each session of the respective
subject (positive¼ left dominant; negative¼ right
dominant). Blue dots depict sessions without evidence
for hemispheric dominance. Asterisks above data
clouds indicate subjects with stability in asymmetry
significantly different from zero (FDR¼ 5%). Blue box
plots of subject-specific asymmetry indices are super-
imposed on data clouds. Lower panels: Hemispheric
asymmetry for the most stable left and right asym-
metric subject. Black circles represent the average
outgoing influence from left (x-axis) and right IPC (y-
axis). Circles below the reference line indicate sessions
with higher influence from left IPC, circles above the
reference line depict sessions with higher influence
from right IPC. Light-blue circles depict sessions for
which asymmetry did not survive the posterior prob-
ability criterion.
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without significant asymmetry (6%) were discarded from these analyses.
Effect sizes showed that twelve asymmetric subjects had at least 70% of
sessions with the same (left versus right) asymmetry, statistical analyses
revealed that nine subjects had a consistent asymmetry that was signif-
icantly different from 50% (see, Table 2).

In subsequent analyses we assessed the sign-stability of connections
(i.e., inhibitory, excitatory, or non-existent) within subjects (including all
sessions). Fig. 5 shows connections that had the same influence (i.e.,
Table 2
Stability of asymmetry in effective connectivity within the DMN. The second
column reports the number of sessions (and percentage) that showed significant
asymmetry (i.e., irrespective of hemisphere) for each subject. The third column
depicts the proportion of asymmetric sessions that showed the same dominance
as the respective subject. Effect sizes of at least 70% are shown in bold. The fourth
column shows the p-values for the proportion of asymmetric sessions for each
subject, not corrected for multiple comparisons. The final column shows the p-
values after correction for multiple comparisons using the Benjamini-Hochberg
method (FDR¼ 5%). FDR-corrected p-values lower than 0.05 are shown in bold.

Subject Number Asym. Sessions
(%)

Effect size
(%)

Unc p-
value

FDR-cor p-
value

S1 74 (99%) 71.6 0.000 0.001
S2 135 (89%) 74.8 0.000 0.000
S3 48 (98%) 87.5 0.000 0.000
S4 12 (100%) 66.6 0.388 0.443
S5 46 (96%) 60.9 0.184 0.268
S6 8 (89%) 87.5 0.070 0.113
S7 41 (91%) 75.6 0.001 0.003
S8 43 (93%) 88.4 0.000 0.000
S9 40 (93%) 77.5 0.001 0.002
S10 42 (98%) 95.2 0.000 0.000
S11 10 (100%) 90.0 0.021 0.038
S12 10 (100%) 90.0 0.021 0.038
S14 10 (100%) 40.0 0.754 0.754
S16 8 (100%) 75.0 0.289 0.385
S17 10 (100%) 70.0 0.344 0.423
S20 8 (89%) 62.5 0.727 0.754
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inhibitory or excitatory) in at least 75% of sessions for exemplar subjects
(similar figures for all subjects are shown in Supplementary Fig. 2).
Subjects showed notably stable positive connectivity from either left or
right IPC (e.g., subject 3 and subject 16, respectively), which nicely co-
incides with the average subject-specific hemispheric asymmetry
reviewed in the previous paragraph. Additionally, each subject showed
unique stable connections.

3.3.2. Characterization of within-subject variability
To characterize variability in effective connectivity within subjects,

we performed principal component analyses on effective connectivity for
each subject separately. Subjects for which hemispheric asymmetry was
an important explanation of within-subject variability were detected
using the following criteria. If two out of three highest (positive) values
loaded on outgoing connections from left (right) IPC, while two out of
three lowest (i.e., most negative) values loaded on outgoing connections
from right (left) IPC, respectively, subjects were considered to have
within-subject variability in asymmetry. Results showed that the first
principal component of 8 subjects had such opposite loadings on left
versus right IPC, accounting on average for 40% (range: 24–73%) of
between-session variance (see, Supplementary Table 1). Additionally, for
two subjects (S2 and S19) between-session variability was characterized
by opposite and high loadings on (outgoing) connectivity from right IPC
and precuneus.

3.3.3. Effective connectivity in terms of (out-degree) dominant versus non-
dominant

Next, we investigated whether within-subject stability would increase
more than expected from chance if session-specific asymmetry is taken
into account. We therefore compared the reliability of connectivity pat-
terns before and after re-arranging connectivity matrices from a left-right
to a dominance-related order. Reliability was computed as the average
correlation across all possible pairs of sessions for both original and
reordered matrices. Randomization testing (as described in the previous



Fig. 5. Upper panel: Connections having the same
sign in at least 75% of sessions within the respective
(exemplar) subject. The line colours depict the source
of a connection (e.g., green lines depict connections
from the lIPC to other regions). Stable connections
arise from left or right IPC, which nicely coincides
with the subject-specific asymmetry. For visualization
purposes the precuneus is shown more anteriorly than
in reality. Lower panel: Posterior estimates of the
strongest connection for subject 3, plotted against
session number.
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section) was performed for each subject separately. Results were cor-
rected for multiple comparisons (N¼ 16) using the method of Benjamini-
Hochberg (Benjamini and Hochberg, 1995) with an FDR of 5%. The
average increase in correlation after re-arranging matrices was 0.13
(range: 0.04–0.34). Analyses revealed that 12 out of 16 subjects showed
significantly increased reliability when asymmetry was taken into
account.

3.4. Effect of (Pre)processing

3.4.1. Bayesian model reduction (BMR)
At the subject level, hemispheric asymmetry was not flipped (i.e.,

from left to right or vice versa) in any subject after including empirical
priors. The similarity between subject-specific connectivity matrices
increased after empirical BMR (Effect size¼ 0.057). To test the statistical
significance of this increase, we randomized labels (i.e., before versus
after BMR) in a pair-wise way and computed the difference in average
correlation for each randomization. These values formed our empirical
null-distribution for subsequent inference. The number of randomiza-
tions was 50000. Randomization testing showed that the increase in
average correlation after BMRwas highly significant (Effect size¼ 0.057;
p< 0.001). Correlations between session-specific connectivity matrices
increased for 14 out of 17 subjects after BMR (average increase in cor-
relation was 15.4%). The same randomization test described above was
used, with the Benjamini-Hochberg correction using a false-discovery
rate (FDR) of 5% (N¼ 17). 10000 randomizations were performed for
each subject. This procedure showed that the increase in correlation was
significant for 7 subjects.
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3.4.2. Effect of ROI size
Next, we assessed the influence of ROI size on connectivity at the

group- and subject-level, as well as its influence on reliability. Group-
level results are shown in Fig. 6. Generally, connectivity patterns were
very similar for different ROI sizes at the group-level (mean correla-
tion¼ 0.980; range¼ 0.954–0.997). Asymmetry decreased with
increasing ROI size (see Fig. 6, lower panel), but was left dominant, even
for larger ROI sizes (posterior probability> 0.90). At the subject level
(not shown), hemispheric asymmetry did not change for any ROI size in
11 subjects (65%), while in three subjects (18%) hemispheric asymmetry
flipped for some ROI sizes. The between-subject similarity (i.e., average
correlation between all pairs of subjects' connectivity matrices) was 0.59,
0.61, 0.56, and 0.64 for increasing ROI radii. The same statistical tests as
above were used to test the difference in similarity between consecutive
ROI sizes (i.e., 4 vs. 8mm, 8 vs. 12mm, 12 vs. 16mm), using an FDR of
5% (N¼ 3). This procedure showed that the consistency of connectivity
estimates did not change significantly between any ROI size (Effect
size¼ [0.023 0.025 0.078]; uncorrected p-value¼ [0.58 0.69 0.06];
FDR-corrected p-value¼ [0.69 0.69 0.19], for the three contrasts,
respectively). The reliability of connectivity between session-specific
connectivity matrices, assessed as the average correlation between
effective connectivity matrices, was 0.40, 0.39, 0.43, and 0.41 for
increasing ROI radii (i.e., 4, 8, 12, and 16mm), showing that the size of
the ROI did not have a discernible influence on the reliability of con-
nectivity estimates. The same tests for significance between consecutive
ROI sizes were performed for each subject, which showed that only one
subject's stability (subject 2) changed significantly between two ROI sizes
(i.e., between 12 and 16mm; Effect size¼ 0.02; uncorrected p-
value¼ 0.001; FDR-corrected p-value¼ 0.036).



Fig. 6. Group-average connectivity for the smallest
and largest ROI sizes. Upper panels: effective connec-
tivity matrices for each ROI size at the group-level.
Upper number indicates the correlation between
(vectorised) matrices. Lower panels: asymmetry of the
group-level network (positive¼ left dominant; nega-
tive¼ right-dominant). Larger ROI sizes yielded less
asymmetry at the group level. However, even at bigger
ROIs the network was left-dominant (see posterior
probability). Ns depicts not significant (i.e., posterior
probability below 90%).
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3.4.3. Effect of global signal regression
Connectivity with and without GSR is shown in Fig. 7. At the group-

level, extrinsic connectivity decreased slightly in magnitude after GSR
(mean decrease¼ 0.05 Hz), while intrinsic connectivity changed in
either a negative or positive direction (depending on the specific region).
Importantly, no sign flips were observed. At the subject level, 14 (82%)
subjects' asymmetry patterns were unaffected by GSR, although asym-
metry was often less pronounced after GSR. The between-subject simi-
larity of connectivity matrices did not change significantly after GSR
(Effect size¼ 0.04; Number permutations¼ 50000; p¼ 0.076). The
within-subject reliability of connectivity patterns was very similar after
GSR (average within-subject correlation was 0.39 and 0.37 without and
with GSR, respectively). The statistical significance of this difference was
assessed for each subject using 10000 randomization and an FDR of 5%
(N¼ 17). This procedure showed that one subject's (subject 2) reliability
Fig. 7. Group-average connectivity with GSR (blue bars), with narrow red bars
showing 90% confidence intervals (i.e., Bayesian credible intervals) and without
GSR (grey bars). Generally, extrinsic connectivity decreased in magnitude, while
intrinsic connections changed in either positive or negative direction. However,
no dramatic changes (e.g., significant changes in sign) were found.
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changed significantly after GSR (Effect size¼�0.036; uncorrected p-
value¼ 0.002; FDR-corrected p-value¼ 0.039).

4. Discussion

In this study, we combined fMRI data from multiple longitudinal
studies to investigate within and between subject variability of effective
connectivity. Collectively, spectral DCM furnished robust connectivity
estimates for each subject, enabled us to track changes in fluctuations
across scan sessions, and allowed us to draw conclusions beyond
participant groups, scanners, and scanning parameters. Our results sug-
gest that, across datasets, individuals consistently show hemispheric
asymmetry in effective connectivity within the default mode network.
Previous studies using spectral DCM have also shown some levels of
asymmetry at the group-level. Razi et al. (2015) and Zhou et al. (2018)
found larger influence from left compared to right parietal cortex, while
Sharaev et al. (2016) found the opposite pattern (although the left-right
difference was small). Moreover, all studies found that the parietal cortex
has a driving influence in the core DMN (Zhou et al., 2018). The present
study reproduced the latter result for individual subjects, and suggests
that the (small) differences between studies might be attributed to a
difference in lateralization patterns of the individual subjects studied. It
is worth noting that we found that self-inhibition was lowest for the
dominant IPC in 15 out of 16 asymmetric subjects. This makes sense from
a network perspective; since a region that dominates the network should
indeed show prolonged (i.e., disinhibited) activity. This observation
suggests that the parameters estimated by spectral DCM covary in an
intuitive and consistent way.

Lateralization of the default mode network has also been found in
other studies using functional connectivity (e.g., Agcaoglu et al., 2015;
Nielsen et al., 2013). Agcaoglu et al. (2015) applied independent
component analysis to a large group of subjects (n¼ 603) and found that
almost all default mode network components were left lateralized.
Similarly, Nielsen et al. (2013) showed that many left-lateralized resting
state hubs are part of the default mode network. Our results complement
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these studies, in showing that hemispheric asymmetry is expressed in
terms of effective connectivity, and that the asymmetry is mainly present
for interhemispheric connections and connections from lateral to medial
areas. Moreover, we have shown that hemispheric asymmetry of effective
connectivity is a source of between-subject variability explaining more
than 50% of between-subject variance.

The pattern of hemispheric asymmetry was reliable for several sub-
jects: Asymmetry was found to be stable (i.e., effect size> 70%) in twelve
subjects and the null-hypothesis of random asymmetry could be rejected
for 9 out of 16 asymmetric subjects. Furthermore, individual connections
arising from either right or left IPC showed high sign-stability, which
coincided with the individual's asymmetry. Longitudinal studies assess-
ing the reliability of functional connectivity (e.g., Choe et al., 2015;
Gordon et al., 2017) do not usually focus on hemispheric asymmetry.
However, hemispheric specialization is an important issue in cognitive
neuroscience (see, e.g., Herv�e et al., 2013). Crucially, a change in DMN
lateralization has been associated with psychiatric syndromes (see, e.g.,
Swanson et al., 2011). The overall stability of the asymmetry of effective
connectivity in the DMN could speak to its use as a biomarker for future
studies. We also found that some subjects showed more variable hemi-
spheric asymmetry. Within-subject variations in connectivity patterns
have also been observed in longitudinal functional connectivity studies.
Gordon et al. (2017) found that one specific participant showed
considerable lower reliability compared to the others, which they
attributed to a higher level of drowsiness. Although this precise subject
was left out of the present analyses, it is likely that subject or session
specific characteristics (e.g., emotionality) might have caused more
variable asymmetry in some subjects compared to others.

It is interesting to compare variability in asymmetry at the subject-
level to variability at the session-level. Our results suggested that asym-
metry plays a more prominent role for between-subject variability
compared to between-session variability. First, only 8 out of 16 lateral-
ized subjects showed (within-subject) asymmetric loadings on the first
principal component. Second, the explained within-subject (i.e., over
sessions) variance of the first principal component was lower in 7 out of 8
subjects (i.e., subjects having asymmetric PCA loadings) compared to the
explained variance at the between-subject level. Third, the increase in
within-subject similarity after swapping left-right labels was lower than
the increase in between-subject similarity after doing similar swapping at
the session-level (increase in similarity was 28% at the between-subject
level vs. 13% at the between-session level). In fact, only one out of 17
subjects showed more increase in stability when swapping labels
compared to the between-subjects case. Of course these findings do not
provide conclusive evidence that asymmetry does not play a role at the
within-subject level for some subjects. However, variability in asymme-
try between sessions might be explained by the fact that the resting state
has few constraints (i.e., the subject receives little instruction), and
therefore asymmetry (or lateralization) is likely to change between ses-
sions in some participants. Asymmetry might depend on many factors,
including emotional state, amount of sleep, or physiological processes
(e.g., caffeine intake). The finding that some participants showed more
stability in asymmetry compared to other participants might also be
related to subject-specific stability of emotional, behavioural, and/or
physiological processes.

The correlation between session-specific effective connectivity
matrices, reflecting reliability of whole network connectivity, was on
average (across subjects) around 0.4 (range¼ 0.08–0.71). Studies
assessing reliability of resting-state functional connectivity using longi-
tudinal datasets (e.g., Gordon et al., 2017) have typically reported higher
values of reliability of whole-brain connectivity matrices (average cor-
relation> 0.60). The lower correlation found in the present study might
be attributed to the fact that we focused on a specific network, while
other studies focused on whole-brain connectivity. Possibly,
network-specific reliability is lower compared to whole-brain reliability
of connectivity. In light of this, Pannunzi et al. (2017) showed that
whole-brain functional connectivity is more reliable than single
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connections. Furthermore, reliability of connectivity could depend on the
specific network in question. Regarding identifiability, Finn et al. (2015)
showed that some networks (namely the frontoparietal networks)
contribute more to identifiability of individual subjects' connectivity
matrices than other networks, which might be related to a difference in
reliability.

To assess the effect of processing methods on connectivity and reli-
ability, the analyses were repeated using global signal regression, varying
ROI sizes, and (empirical) Bayesian model reduction. Generally, pro-
cessing techniques had little effects on our results. Global signal regres-
sion had no effect on hemispheric asymmetry for most subjects (82% of
subjects) and did not alter the (within-subject) stability of effective
connectivity. Such robustness is quite remarkable, given that the global
signal is an important subject of debate in many functional connectivity
studies (see e.g., Murphy and Fox, 2017). The robustness of spectral DCM
to global confounds is probably explained by the fact that global fluc-
tuations in fMRI signal are modelled explicitly. In other words, param-
eters representing different sources of noise that are included in DCM can
capture fluctuations in global signal that is not mediated by changes in
effective connectivity.

Similarly, ROI size had no effect on asymmetry for most subjects (11
out of 17 subjects) and did not have an impact on the reliability of
connectivity patterns. Importantly, Bayesian model reduction (BMR;
Friston et al., 2016) increased both within- and between-subject consis-
tency of effective connectivity patterns. This suggests that the use of
subject and group-specific priors to update the parameters at the session
and subject level may enhance reliability, by increasing the probability
that parameters are drawn out of local extrema towards the subject or
group mean.

Generally, the results raise the question of what might explain the
differences between subjects (e.g., hemispheric asymmetry, connection
types) and fluctuations within subjects. Variability between subjects
might be explained by several factors. First, variability might be related
to subject-specific characteristics such as age, gender, and intelligence
level. Agcaoglu et al. (2015), for example, showed that age and gender
are related to a difference in asymmetry in some resting state networks,
most notably the visual network. Similarly, Joliot et al. (2016) showed a
relationship between language lateralization and lateralization of resting
state connectivity. Our sample comprised participants with a wide
age-range (between 24 and 45 years) and was balanced with respect to
gender (55% females). Possibly these subjects' characteristics might have
played a role in the extent of asymmetry or at the level of individual
connections. Second, differences in scan procedures and sequences might
explain observed differences between subjects. Resting state scans are
acquired when subjects have either their eyes open or closed; however,
no consistent paradigm has been adopted. Studies have shown that a
difference in ‘eyes open’ versus ‘eyes closed’ conditions might have an
impact on connectivity and reliability during rest (e.g., Zhang et al.,
2015; Zou et al., 2015). In our study, the ‘day2day’ dataset was acquired
under ‘eyes closed’ conditions and showed a higher proportion of left
dominant subjects compared to the ‘MSC’ dataset, which was acquired
during ‘eyes open’ conditions. Such procedural differences might thus
explain observed differences among subjects. Although several accounts
can be offered for between-subject differences, our sample size was too
small (n¼ 17 after exclusion) to support robust explanations. Future
studies using datasets with more subjects could try to address possible
sources of between-subject variability in effective connectivity, while
accounting for within-subject variability.

Fluctuations within individuals might also be explained by several
factors. First, fluctuations in effective connectivity might be related to
day-to-day changes in mood, behaviour (e.g., amount of sleep), or
physiology (e.g., hormonal cycle). Some studies have shown that func-
tional connectivity within the DMN is related to sleepiness (Ward et al.,
2013) and is diminished after sleep deprivation (De Havas et al., 2012).
Other studies found an influence of female hormones on functional
connectivity during rest (e.g., Pletzer et al., 2016). Second,
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between-subject fluctuations in connectivity might be explained by dif-
ferences in regional or global noise. Although we did not find a notable
difference in parameter estimates with and without GSR, this is not
explicit evidence for an influence of global signal on connectivity (or its
absence). Similarly, if region-specific noise levels change across sessions,
parameter estimates might be affected by conditional dependencies be-
tween connectivity and (scale free) noise estimates. Third, Park et al.
(2017) have shown that effective connectivity during resting state fluc-
tuates on a short time scale. These faster fluctuations might cause dif-
ferences among scanning sessions, and therefore explain longitudinal
variability in effective connectivity. Indeed, Park et al. (2017) showed
that between-session consistency increased when within-session fluctu-
ations were taken into account.

Longitudinal datasets afford the opportunity to test the above hy-
potheses. Such analyses however fall outside the scope of the present
study. Our aim was to provide a framework to test both between- and
within-subject variability and consistency of effective connectivity in a
single design. The use of PEB, upon which this framework was build,
allows researchers to assess relations between connectivity patterns (e.g.,
asymmetry) and other measures (e.g., physiology), which is of great
importance for neuroscience. Future studies could address more refined
accounts of between and within subject variability in further detail.
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