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ABSTRACT
Many important cellular processes involve protein–protein interactions (PPIs) me-
diated by a Short Linear Motif (SLiM) in one protein interacting with a globular
domain in another. Despite their significance, these domain-motif interactions (DMIs)
are typically low affinity, which makes them challenging to identify by classical
experimental approaches, such as affinity pulldown mass spectrometry (AP-MS) and
yeast two-hybrid (Y2H). DMIs are generally underrepresented in PPI networks as a
result. A number of computational methods now exist to predict SLiMs and/or DMIs
from experimental interaction data but it is yet to be established how effective different
PPI detectionmethods are for capturing these low affinity SLiM-mediated interactions.
Here, we introduce a new computational pipeline (SLiM-Enrich) to assess how well a
given source of PPI data captures DMIs and thus, by inference, how useful that data
should be for SLiM discovery. SLiM-Enrich interrogates a PPI network for pairs of
interacting proteins in which the first protein is known or predicted to interact with the
second protein via a DMI. Permutation tests compare the number of known/predicted
DMIs to the expected distribution if the two sets of proteins are randomly associated.
This provides an estimate of DMI enrichment within the data and the false positive
rate for individual DMIs. As a case study, we detect significant DMI enrichment in a
high-throughput Y2H human PPI study. SLiM-Enrich analysis supports Y2H data as a
source of DMIs and highlights the high false positive rates associated with naïve DMI
prediction. SLiM-Enrich is available as an R Shiny app. The code is open source and
available via a GNUGPL v3 license at: https://github.com/slimsuite/SLiMEnrich. Aweb
server is available at: http://shiny.slimsuite.unsw.edu.au/SLiMEnrich/.

Subjects Bioinformatics, Computational Biology, Molecular Biology
Keywords Protein–protein interactions, Domain-motif interactions, Protein disorder, Short
linear motifs, Yeast two-hybrid, Shiny app

INTRODUCTION
Proteins interact with their partners through two main classes of functional modules:
globular domains and Short Linear Motifs (SLiMs) (Bhattacharyya et al., 2006). SLiMs
are short protein regions (typically 3–10 amino acids long) with a small number
of key residues that mediate domain-motif interactions (DMIs) with the globular
domain of a protein–protein interaction (PPI) partner (Davey et al., 2012). These DMIs
underpin critical cellular functions, including cell cycle regulation, cell compartment
targeting, post-translational modification, protein degradation, and signal transduction
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(Van Roey et al., 2014). Knowledge of DMIs can provide molecular details of cellular
processes and thus it is important to discover SLiMs and link them to their domain
partners (Davey et al., 2012; Neduva & Russell, 2005). Despite this, only a small fraction
of the likely range of SLiMs, and the DMIs they mediate, have been identified (Tompa et
al., 2014) and curated in resources such as the Eukaryotic Linear Motif (ELM) resource
(Gouw et al., 2018), Linear Motif mediated Protein Interaction Database (LMPID) (Sarkar,
Jana & Saha, 2015), interActions of moDular domAiNs (ADAN) (Encinar et al., 2009), and
the database of three-dimensional interacting domains (3did) (Mosca et al., 2014). SLiM-
mediated interactions are typically low affinity (Davey et al., 2012) and are thus vulnerable
to being overlooked by classical PPI detection methods, such as affinity pulldown mass
spectrometry (AP-MS) and yeast two-hybrid (Y2H), where high stringencies are typically
employed to reduce false positive interactions. Early analyses of high throughput data
revealed that known SLiM-mediated interactions account for less than 1% of interactions
(Neduva & Russell, 2006). This was used as evidence that many more SLiMs and DMI are
yet to be discovered, but also raises concerns that these methods are depleted for DMIs.

A range of computational tools now exist for the two main tasks in SLiM prediction:
(1) identifying functional instances of known motifs, and (2) de novo prediction of new
SLiM classes (Edwards & Palopoli, 2015). In principle, the task of interrogating a protein
sequence for known motif patterns is quite simple. Motif definitions are available from
ELM (Gouw et al., 2018; Gouw et al., 2017) and PROSITE (Hulo et al., 2006), and various
tools exist for searching proteins for these patterns or resource-specific motif definitions
(Edwards & Palopoli, 2015). Other tools, like Minimotif Miner (MnM) (Lyon et al., 2018),
will search sequences for similarity to known SLiMs or post-translational modifications
(PTMs), but do not make motif definitions or tools available for proteome-scale searches.
The short and degenerate nature of most SLiMs hampers the usefulness of predictions
due to the high possibility of false positive results. This is particularly true for SLiMs with
very few known occurrences, which will lack the data required for detailed modelling. It is
therefore important to improve the specificity of predictions by incorporating contextual
information such as evolutionary conservation and/or protein structure (Krystkowiak &
Davey, 2017; Mi et al., 2012), or knowledge of interaction partners containing relevant
SLiM recognition domains (e.g., Encinar et al., 2009; Kelil, Levy & Michnick, 2016; Luck et
al., 2011;Weatheritt et al., 2012).

The de novo prediction of SLiMs is inherently more challenging and relies on assembling
sets of proteins that share a SLiM. The most widespread approach is to mine PPI data to
identify sets of proteins that interact with a common partner (e.g., Edwards et al., 2012;
Lieber, Elemento & Tavazoie, 2010; Neduva et al., 2005). The success of prediction methods
is highly dependent on the signal to noise ratio in these data, in terms of the proportion of
proteins likely to contain the SLiM (Edwards et al., 2012; Edwards & Palopoli, 2015). Before
attempting SLiM discovery, it is therefore useful to know how well the input PPI data is
capturing SLiM-mediated interactions. Different experimental parameters will influence
how depleted the recovered interactions are for DMIs, and so this assessment is also useful
for experimentalists when establishing an appropriate stringency threshold.
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Here, we introduce a new computational pipeline (SLiM-Enrich) that assesses how well
PPI data are capturing DMIs and thus, by inference, how useful that data should be for
SLiM discovery. SLiM-Enrich evaluates DMI enrichment through permutation tests and
reports the probability of randomly recovering as many interacting domain-motif pairs as
are found in the real PPI data. SLiM-Enrich can use known SLiM-mediated interactions
for high stringency analysis, or incorporate DMI predictions by using SLiM predictions
and/or known SLiM-domain interactions to expand the number of plausible DMIs in
the data. Identified/predicted DMIs are returned, along with an estimated false discovery
rate based on the mean number of random DMIs generated from the data. Whilst not
their primary purpose, SLiM-Enrich metrics can also be used to assess SLiM and/or DMI
prediction strategies when applied to PPI data that is already known to contain DMIs.
SLiM-Enrich is therefore of potential use for both DMI prediction and assessment of PPI
data. SLiM-Enrich has been developed in R and implemented in Shiny to provide easy,
user-friendly operation.

MATERIALS AND METHODS
Algorithm
An overview of the SLiM-Enrich pipeline is shown in Fig. 1. SLiM-Enrich uses (known
or predicted) SLiM occurrences, domain composition, and known SLiM interactions at
the protein or domain level. These are combined to predict SLiM-mediated DMIs within
pairwise PPI data supplied by the user. Input data is combined by matching protein, SLiM
and Domain IDs from the input data, providing a flexible framework for analysis. PPI data
is treated asymmetrically, with specified sets of putative motif- and domain-containing
proteins, known as ‘‘mProteins’’ and ‘‘dProteins’’, respectively. First, SLiM-Enrich identifies
all possible known/predicted DMI links between mProteins and dProteins in the PPI data
(Fig. 1). DMI mapping can be performed using a number of different strategies depending
on the desired balance of quality versus quantity of DMI (Figs. 1, 2). At one extreme,
analysis can be restricted to mProtein–dProtein pairs known to interact via a DMI (Fig. 2,
top left). At the other extreme, mProteins with predicted SLiMs can be linked to any
dProteins containing a domain known to interact with that SLiM (Fig. 2, bottom right).
This set of ‘‘potential DMIs’’ represents the overall pool of possible DMIs given the input
data and mapping strategy.

Next, SLiM-Enrich extracts ‘‘predicted DMIs’’ by identifying the subset of potential
DMIs that are found in the PPI data, e.g., observed PPI pairs where the mProtein is
known or predicted to interact with the dProtein according to the DMI strategy employed.
Finally, SLiM-Enrich estimates how well the PPI data is capturing DMIs by comparing the
observed DMI predictions to a background distribution of expected DMIs when proteins
are randomly assigned interaction partners. For this, the input PPI data is shuffled to
generate 1,000 random PPI datasets where each protein maintains the same number of
interacting partners but the connections are randomly assigned. This is performed by
first reducing PPI data to asymmetrical non-redundant protein pairs and then randomly
shuffling the dProtein column whilst avoiding the introduction of redundant random PPI
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Figure 1 A schematic representation of the main SLiM-Enrich pipeline. SLiM-Enrich takes four in-
put files: 1. PPI data provided by the user as a set of pairwise putative motif-containing proteins (‘‘mPro-
teins’’) and their domain-containing interaction partners (‘‘dProteins’’); 2. a file providing known or pre-
dicted motif occurrences within the mProtein sequences (by default, known ELM instances are used); 3. a
DMI file defining Motif-Domain interactions, relating to the DMI Strategy employed (by default, known
ELM interactions are used); 4. a file that links dProteins to their domain composition (by default, hu-
man Pfam domains from UniprotKB are used). Input data is combined to establish the complete set of
known/predicted ‘‘potential DMI’’ dependent on the DMI strategy selected (see Fig. 2 and text for details):
ELMi-Protein –for highest stringency, the DMI file directly links mProteins to known dProtein DMI part-
ners (motifs and domains input not used); ELMc-Protein –for medium stringency, the DMI file links Mo-
tif classes to known dProtein DMI partners (Domains input not used); ELMc-Domain –for lowest strin-
gency, the DMI file links Motif classes to known interacting domains. Potential DMIs are then mapped on
to the input PPI to identify the ‘‘Predicted DMIs’’ in the real data. PPI data is randomised (shuffled) 1,000
times and re-mapped to potential DMIs to determine the background distribution of predicted DMIs in
the case of random association (see text for details). Finally, the ‘‘Random DMI’’ distribution is compared
to the observed ‘‘Predicted DMIs’’ to determine DMI enrichment in the data. Results are output in the
form of a tables, a histogram of the Random DMI distribution with the observed count and empirical P-
value marked, and an interactive network of the known/predicted DMIs found in the PPI data.

Full-size DOI: 10.7717/peerj.5858/fig-1

pairs. The random PPI datasets are then mapped onto the potential DMIs in the same
fashion as the real data. Enrichment is calculated as an empirical P-value corresponding
to the probability of seeing at least as many DMIs in random PPI data (Fig. 3). A False
Discovery Rate (FDR) for individual DMIs is also estimated as the proportion of the
predicted DMIs explained on average by random associations, using the mean random
DMI distribution capped at the observed value.
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Figure 2 SLiM-Enrich uses known DMI from the ELM database to identify known DMIs or predict
DMIs within the supplied PPI data. (A) In this example, Motif A is known to interact with Domain B.
Motif A has two known occurrences in the data (green circles) and two predicted occurrences (red circles).
Domain B is present in four proteins (squares). ELM has two annotated interactions between proteins
with Motif A and proteins with Domain B (blue). (B) In the simplest and purest strategy, only known
ELM interactions (ELMi - Protein) are used to assess enrichment. For small PPI datasets it might be nec-
essary to increase the number of predicted DMI. This can be done in two ways. ELM: known motif occur-
rences (green circles) can be connected to all proteins known to interact with that ELM class (blue squares,
ELMc - Protein), or connected to all proteins containing a domain that interacts with that ELM class (all
squares, ELMc -Pfam). SLiMProb: to increase the number of DMI further, known ELM occurrences can
be replaced with SLiM predictions (all circles).

Full-size DOI: 10.7717/peerj.5858/fig-2

Requirements and implementation
Inputs
SLiM-Enrich requires a delimited pairwise PPI file as input. By default, known ELM
instances (ELMi) (Gouw et al., 2018) will be used to define the motif composition of
mProteins. This file can be replaced by a SLiM prediction file (generated by e.g., SLiMProb
Edwards & Palopoli, 2015), which has predicted SLiMs for the mProteins in the PPI file.
DMIs can be predicted by one of three strategies (Fig. 2). By default, the DMI file links
ELM classes (ELMc) directly to dProteins using known ELM binding partners (Gouw et al.,
2018). For more stringent analysis, these binding partners can be linked directly to specific
ELM-containing proteins, in which case the DMI file links mProteins and dProteins,
and the motif occurrence file is ignored (Fig. 1). For more relaxed/flexible analysis, the
DMI file will link motifs to binding domains, which are then linked to dProteins via
a domain composition file. By default, SLiM-Enrich uses Pfam domains (Finn et al.,
2016) for reviewed human Uniprot proteins (UniProt Consortium, 2017) and links them
to ELM-binding domains (Gouw et al., 2018). If alternative data sources are used, users
should also provide a file of protein-domain links for the dProteins in the PPI file, and/or
a motif-domain file that defines the known domain-motif interactions. Note that this
can be used to interrogate PPI data for enrichment of any interaction type. For example,
two protein-domain files could be linked through known domain-domain interactions.
Alternatively, the ELMi-Protein DMI strategy enables the enrichment analysis of any set of
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Figure 3 DMI enrichment histogram for SLiM-Enrich example data.Histogram of DMI enrichment in
example data for Adenoviridae proteins and their human interactors (see text for details) from the SLiM-
Enrich app, using the most permissive ELMc-Domain DMI strategy and SLiMProb motif predictions.
Frequency bars indicate the number of randomised PPI datasets returning a given number of predicted
DMIs. The dotted arrow indicates the observed number of predicted DMIs in the real data.

Full-size DOI: 10.7717/peerj.5858/fig-3

PPIs, allowing SLiM-Enrich to examine overlaps between PPI datasets. Default fields for
user files (‘‘mProtein’’, ‘‘dProtein’’, ‘‘Motif’’, ‘‘Domain’’) are show in Fig. 1, and can be set
to custom values in the SLiM-Enrich App.

Example data
SLiM-Enrich comes with example data of Adenoviridae proteins and their human
interactors downloaded from the PHISTO database (2017-07-26) (Durmus Tekir et al.,
2013). ELM (downloaded 2018-07-17) (Dinkel et al., 2016) regular expression matches in
the viral proteins were predicted using SLiMProb v2.5.0 (Edwards & Palopoli, 2015) with
disorder masking. A table of ELM-binding Pfam domains was downloaded from ELM
(2018-07-17) (Dinkel et al., 2016). Pfam domains for human proteins were extracted from
Uniprot (downloaded 2017-03-08) (UniProt Consortium, 2017).

Outputs
The primary output of SLiM-Enrich is the observed number of known/predicted DMIs
compared to the distribution from the randomised PPI data (Fig. 3). SLiM-Enrich also
provides tables of both ‘‘potential DMIs’’ and ‘‘predicted DMIs’’ (Fig. 1, see Algorithm
for details), summary plots of predicted DMI numbers and an interactive DMI network
(Fig. 4). Together, these enable the user to explore the data for proteins, SLiMs and/or
domains that might be biasing results. This can be seen with the example Adenoviridae
analysis, where the Pkinase domain (PF00069) mediates a large proportion of the predicted
DMIs via multiple modification ELMs (Fig. 4), which will inflate the probability of DMIs
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Figure 4 Interactive predicted DMI network for example data. Predicted DMIs for example Adenoviri-
dae proteins and their human interactors, using the most relaxed strategy (predicted SLiMs connected via
domains, see text for details). Several layout options are provided and nodes can be manually positioned.
The protein, domain and motif identifiers used in the network are determined by the user input. Using
default data, these will be UniprotKB, Pfam and ELM identifiers. For this example, UniprotKB identifiers
have been mapped onto HGNC gene symbols and Pfam identifiers onto Pfam domain names. Red square,
motif-containing protein (‘‘mProtein’’); Yellow box, motif; Purple ellipse, domain; Blue circle, domain-
containing protein (‘‘dProtein’’).

Full-size DOI: 10.7717/peerj.5858/fig-4

in the random PPI data. Tables can be downloaded as comma-separated text files. The
summary plots, enrichment histogram and DMI network can be downloaded as PNG files.

Implementation
SLiM-Enrich is a standalone application written entirely in R. It is platform independent
and can be launched locally from any R environment (e.g., RStudio). SLiM-Enrich takes
advantage of the reactive programming feature of Shiny to cache computational steps
to avoid unnecessary computing during an interactive session. The code is open source
and available via a GNU GPL v3 license at: https://github.com/slimsuite/SLiMEnrich.
SLiM-Enrich is also implemented as a Shiny webserver at: http://shiny.slimsuite.unsw.
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edu.au/SLiMEnrich/. Additional details can be found at: https://github.com/slimsuite/
SLiMEnrich/wiki.

Case study: Domain-motif resolved yeast-two-hybrid human
interactome
Pairwise human PPIs were extracted from a high-throughput human Y2H study that
detected ∼14,000 binary interactions (Rolland et al., 2014) and converted into a non-
redundant, symmetrical PPI dataset of 26,166 mProtein–dProtein PPIs (i.e., with each
PPI pair present as P1-P2 and P2–P1), restricted to reviewed Uniprot proteins. Protein
sequences were downloaded from Uniprot (2017-03-01). A list of ELMs and their domain
partners was retrieved from the ELM database (2018-07-17) (Dinkel et al., 2016). ELM
occurrences in the humanproteinswere predicted by SLiMProb v2.5.0 (Edwards & Palopoli,
2015) with disorder masking (IUPred (Dosztanyi et al., 2005), cut-off 0.2 (Edwards, Davey
& Shields, 2007)) to restrict analysis to low stringency predicted disordered regions.
Pfam domains were parsed from Uniprot entries using SLiMBench (Palopoli, Lythgow
& Edwards, 2015). Splice isoforms for all data were mapped onto their parent Uniprot
identifier. SLiM-Enrich was used to map known and predicted DMIs onto the Y2H dataset
using five strategies of decreasing stringency: (1) known ELM PPIs only, (2) known ELM
instances mapped onto proteins known to interact with the ELM class, (3) known ELM
instances mapped onto Pfam domains known to interact with the ELM class, (4) SLiMProb
predictions mapped onto proteins known to interact with the ELM class, (5) SLiMProb
predictions mapped onto Pfam domains known to interact with the ELM class (Fig. 2).

Simulation of poor quality SLiM predictions
SLiM-Enrich is not a DMI prediction tool per se and should not require completely accurate
SLiM occurrence data to identify enrichment indicative of PPI data that captures DMIs. To
investigate the impact of noisy SLiM prediction data, we replaced increasing proportions
(25%, 50%, 75% and 100%) of the known ELM instances (2018-07-17) (Dinkel et al.,
2016) with random occurrences and repeated analysis of the Y2H interactome case study.
This was performed by replacing different proportions of the ELM proteins (i.e., proteins
containing a known ELM) with a protein randomly selected from reviewed humanUniprot
proteins (UniProt Consortium, 2017). For direct comparison, the distribution of normalised
predicted DMIs, D, was calculated as follows:

D=
O−R
R̄

,

where O is the observed predicted DMI count, R is the distribution of random predicted
DMIs, and R̄ is the mean random predicted DMI count.

RESULTS
Case study: Domain-motif resolved yeast-two-hybrid human
interactome
SLiM-Enrich analysis revealed the case study Y2H data to be enriched for DMIs under all
DMI prediction strategies (Fig. 5, Table 1). Restricting analysis to known DMIs identified
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Figure 5 Enrichment statistics and histogram of expected randomDMI counts in human Y2H
case study data using known and predicted ELM instances. Frequency bars indicate the number of
randomised PPI datasets returning a given number of predicted DMIs. The dotted arrow indicates the
observed number of known or predicted DMIs in the Y2H data (see text for details). DMI prediction
strategies match those in Fig. 2 (see text for details): (A) known ELM occurrences connected to interacting
proteins; (B) known ELM occurrences mapped to proteins known to interact with that motif class; (C)
known ELM occurrences mapped to proteins containing a domain known to interact with that motif class;
(D) SLiM predictions mapped to proteins known to interact with that motif class; (E) SLiM predictions
mapped to proteins containing a domain known to interact with that motif class.

Full-size DOI: 10.7717/peerj.5858/fig-5

fourteen in the Y2H data, which represented a more than 100-fold enrichment over the
random expectation (mean 0.122). Including DMIs where a dProtein was known to interact
with the ELM class (Fig. 2, ELMc-Protein), almost doubled the number of predicted DMIs
but with nearer six times more random DMIs on average, reducing the enrichment over
three-fold. Including DMIs where a dProtein contained Pfam domain known to interact
with the ELM class (Fig. 2, ELM) dramatically increased the numbers of both predicted and
random DMIs, with a corresponding drop in enrichment. Using SLiMProb predictions in
place of known ELMs (Fig. 2, SLiMProb) similarly increased both predicted and random
DMIs, decreasing enrichment. In all cases, none of the 1,000 randomised datasets matched
or exceeded the observed number of predicted DMI, making the enrichment strongly
significant (P < 0.001).

Simulation of poor quality SLiM predictions
To directly compare the effects of replacing real ELM-containing proteins with random
human proteins in different proportions (25%, 50%, 75%, 100%), the distribution of
normalised predicted DMI, D, in the Y2H data was compared for each dataset (Fig. 6). D
is the distribution of expected true positive predicted DMIs, normalised to units of mean
random predicted DMIs, i.e.,D= 1 is equivalent to FDR = 50%; enrichment is 1 +meanD.
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Table 1 SLiM-Enrich analysis of Y2H case study using different DMI prediction strategies.

SLiM-Enrich strategy Known:
ELMi-Protein

Known:
ELMc-Protein

Known:
ELMc-Domain

SLiMProb:
ELMc-Protein

SLiMProb:
ELMc-Domain

Potential DMI (NR) 62 164 6,314 39,572 969,380
Predicted DMI (NR) 14b 25 74 204 1,524
Mean Random DMI (3 s.f.) 0.122 0.830 9.76 139 1,310
p-value <0.001 <0.001 <0.001 <0.001 <0.001
Enrichment (3 s.f.) 115 30.1 7.58 1.47 1.16
FDR (4 d.p.) 0.0087 0.0332 0.1319 0.6820 0.8602
Unique mProteinsa 13 22 52 175 768
Unique ELM classesa N/A 16 40 35 128
Unique Pfam domainsa N/A N/A 30 N/A 51
Unique dProteinsa 10 17 53 36 366

Notes.
aUnique counts correspond to Predicted DMI.
bKnown DMI from ELM database.

The more permissive domain-based DMI prediction strategy (Fig. 2, top right) was used, as
the numbers of predicted DMIs for more stringent strategies were very small (Table 1) and
this strategy still showed strong (7.6×) DMI enrichment in the data (Fig. 5). Despite the
decline in enrichment scores with increasing proportions of random motif occurrences,
enrichment remained significant even when 75% of the real data was replaced (Fig. 6).

DISCUSSION
Using PPI data for SLiM discovery faces something of a contradiction. Due to their scale,
data from high throughput PPI detection studies are where the novel interactions are most
likely to be found. However, high stringency filters are often applied to high throughput
methods to increase confidence in individual interactions, with the concomitant concern
that low affinity DMIs will be lost as a consequence. The primary purpose of SLiM-Enrich
is to address this concern by assessing how well a given PPI dataset is capturing DMIs.
Where PPI datasets are large, this assessment can be restricted to a high-quality set of
known DMIs. Where the number of known DMIs in the data becomes prohibitively small,
predicted DMIs can supplement or replace the known DMIs.

A detailed analysis of different PPI data sources is the subject of future study and
beyond the scope of this paper. Here, we present a case study to illustrate the use of
SLiM-Enrich to analyse the DMI enrichment in a single PPI dataset. We have applied
five different DMI identification/prediction strategies (Fig. 2) to a high-throughput Y2H
human PPI study (Rolland et al., 2014) (Table 1, Fig. 5). On face value, the ability of the
Y2H PPI data to capture known DMIs might be considered disappointing. Only 14 of
the 590 known human DMI protein pairs in ELM (2.37%) were found in the 26,166
PPI considered. This is consistent with earlier analyses that have highlighted the rarity of
known SLiM-mediated interactions in high throughput PPI data (Neduva & Russell, 2006).
However, even this modest number reflects a massive enrichment (approx. 115-fold) over
the expected number of known DMIs to occur in the PPI data by chance. Whilst we cannot
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Figure 6 Enrichment analysis of known DMIs in human Y2H case study data with increasing propor-
tions of randommotif instances. SLiM-Enrich results for known ELMs in the human Y2H case study
data mapped using the ELMc-Domain strategy, converted into the normalised number of predicted real
DMIs (see text for details). Higher normalised predicted DMI counts indicate greater DMI enrichment,
with zero marking no enrichment over random. Green is the real data using all known true positive ELM
instances. The other curves (right to left) represent distributions for four randomised datasets where in-
creasing proportions (25%, 50%, 75% and 100%) of ELM proteins were replaced with random human
proteins.

Full-size DOI: 10.7717/peerj.5858/fig-6

rule out unexpected confounding factors, such as additional high affinity interactions
between pairs of proteins that also share a DMI, this implies that the low absolute numbers
are due to the small number of known DMIs rather than the inability of Y2H methods to
detect DMIs. Considered analysis has estimated that the human proteome has in the order
of 100,000 SLiMs involved in DMIs (ignoring post-translational modifications) (Tompa et
al., 2014), which is orders of magnitude greater than the known DMIs in ELM (Gouw et
al., 2018). Overall, SLiM-Enrich results indicate that these data are indeed capturing real
SLiM-mediated interactions and are therefore suitable for de novo SLiM prediction. This,
in turn, increases confidence in previous large scale SLiM predictions (Edwards et al., 2012;
Lieber, Elemento & Tavazoie, 2010; Neduva et al., 2005); these often rely on rediscovery of
known motifs as validation, which could be biased by incorporation of literature-based
high confidence DMIs in the PPI data.

Employing a less stringent DMI identification strategy predictably boosted the numbers
of predicted DMIs and continued to reveal significant enrichment in the Y2H data despite
the possible incorporation of possible false positive SLiM and/or DMI predictions (Table 1,
Fig. 5). As expected, the enrichment decreased as the noisiness of the data increased,
although the enrichment remained highly significant. This was supported by analysis where
real ELM-containing proteins were replacedwith randomhuman proteins to simulate noise
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(Fig. 6). Taken together, these results indicate a degree of robustness of the SLiM-Enrich
approach to the quality of the SLiM data. However, they also highlight a lack of robustness
in the individual DMI predictions. For the purest known DMI analysis (linking known
ELM instances to known ELM-interacting proteins), most randomised datasets did not
return a single DMI. It is therefore highly likely that the 11 additional DMIs discovered by
the ELMc-Protein strategy are real DMIs. The cost is that the low numbers might affect the
accuracy with which themean randomDMI count, and thus enrichment, can be calculated.
Relaxing the strategy to use SLiMProb predictions and/or allow DMI predictions based
on interactions between ELM classes and Pfam domain classes, substantially increased the
numbers of predicted DMIs but dramatically reduced the observed enrichment for both
known and predicted SLiM occurrences. Using predicted SLiMs, it should be noted that
the estimated false positive rate for individual DMI predictions is very high (FDR= 0.86
when linking predicted SLiMs via ELM-binding Pfam domains). This highlights the need
for caution when interpreting naïve large-scale predictions of this nature. As illustrated
for the Adenoviridae-human PPI example data (Fig. 4), random numbers for the Y2H
case study will be inflated by a large over-prediction of kinase domain-mediated DMIs, as
well as other domains with a specificity of interaction not captured at the level of Pfam
definitions. Users may wish to screen out promiscuous domains and/or motifs if low
stringency approaches are required to get sufficient DMI numbers.

Using SLiM-Enrich to assess enrichment of different PPI types
Although the focus of SLiM-Enrich is on DMIs, the approach is flexible and can be
easily adapted to other PPI types. Direct analogues of DMIs can be studied by replacing the
motifs with a different interaction feature, e.g., replacingmotifs with domains to investigate
enrichment of Domain-Domain Interactions (DDIs). More simply, SLiM-Enrich could
be used to study the overlap between two different PPI datasets, accounting for the
connectedness of the proteins involved, by replacing the known ELM interactions with any
source of pairwise PPIs. Although the PPI data for the case study was made symmetrical,
the asymmetrical handling of the PPI data by SLiM-Enrich would even allow intra-dataset
comparisons, such as examining the overlap between PPIs when proteins are baits versus
preys in a Y2H or pulldown experiment.

CONCLUSION
There are many data- and method-specific factors that will determine whether protein–
protein interaction (PPI) data are useful for short linear motif (SLiM) prediction. The
presence of real domain-motif interactions (DMIs) is a baseline requirement that is
generally assumed but rarely tested. SLiM-Enrich is an open source R application that
will identify known or predicted DMIs in PPI data and estimate how well that PPI data
are capturing DMIs compared to randomised PPIs. This estimate is useful for identifying
suitable PPI data for de novo SLiM prediction. SLiM-Enrich statistics also estimate the
confidence in individual DMI predictions, enabling assessment of methods that aim to
improve the specificity of DMI predictions by filtering SLiM predictions and/or PPI data.
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Users can run SLiM-Enrich online (http://shiny.slimsuite.unsw.edu.au/SLiMEnrich/) or
download the code for local use (https://github.com/slimsuite/SLiMEnrich).
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