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Abstract
Aging is typically associated with substantial declines inmotor functioning as well as robust changes in the functional organization
of brain networks. Previous research has investigated the link between these 2 age-varying factors but examinations were
predominantly limited to the functional organization withinmotor-related brain networks. Little is known about the relationship
between age-related behavioral impairments and changes in functional organization at the whole brain (i.e., multiple network)
level. This knowledge gap is surprising given that the decreased segregation of brain networks (i.e., increased internetwork
connectivity) can be considered a hallmark of the aging process. Accordingly, we investigated the association between declines in
motor performance across the adult lifespan (20–75 years) and age-relatedmodulations of functional connectivity within and
between resting state networks. Results indicated that stronger internetwork resting state connectivity observed as a function of
age was significantly related to worsemotor performance. Moreover, performance had a significantly stronger association with the
strength of internetwork as compared with intranetwork connectivity, including connectivity withinmotor networks. These
findings suggest that age-related declines inmotor performancemay be attributed to a breakdown in the functional organization of
large-scale brain networks rather than simply age-related connectivity changes withinmotor-related networks.
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Introduction
A substantial impediment to healthy living in older adults is
the compromised functioning of the motor system (for reviews,

see Seidler et al. 2010; King et al. 2013; Maes et al. 2017). These
age-related impairments in motor behavior may be attributed
to changes at the neural level, including decreases in cortical
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excitability, gray matter atrophy, changes in white matter
microstructure as well as alterations in the functional organiza-
tion of brain networks (Raz and Rodrigue 2006; Seidler et al.
2010; Goh 2011; Tomasi and Volkow 2012; Ferreira and Busatto
2013; Bhandari et al. 2016). These investigations into the neural
underpinnings of age-related declines in motor functioning are
critical for our efforts to minimize these movement difficulties
in an ever-increasing aging society.

The overarching objective of this research was to examine
the relationship between age-related modulations of the func-
tional organization of large-scale brain networks, as assessed
by fMRI resting state connectivity, and age-associated declines
in motor behavior. It is well established that brain activity at
rest in young adults is organized into predominantly segre-
gated functional networks; regions within these different net-
works demonstrate spontaneous yet correlated fluctuations in
activity that are interpreted to be functionally connected
(Biswal et al. 1995; Fox et al. 2005; Damoiseaux et al. 2006; Fox
and Raichle 2007; van den Heuvel and Hulshoff Pol 2010). These
networks are known to change substantially with age, with a
decrease in connectivity within the default mode network
being the most commonly reported finding (Andrews-Hanna
et al. 2007; Damoiseaux et al. 2008; Tomasi and Volkow 2012;
Ferreira and Busatto 2013; Geerligs et al. 2015; Ferreira et al.
2016). Investigations into age-related changes within motor
resting state networks have revealed both increased and
decreased connectivity, heterogeneous results that appear to
be at least partially attributed to the specific brain regions
included as part of the networks of interest (Wu, Zang, Wang,
Long, Hallett, et al. 2007; Wu, Zang, Wang, Long, Li, et al. 2007;
Tomasi and Volkow 2012; Bo et al. 2014; Solesio-Jofre et al.
2014; Song et al. 2014; Geerligs et al. 2015; Seidler et al. 2015).

To examine the link between age-related changes in resting
state connectivity and motor functioning, the majority of previ-
ous research has limited analyses to various motor-related net-
works or seed regions (Wu, Zang, Wang, Long, Hallett, et al.
2007; Wu, Zang, Wang, Long, Li, et al. 2007; Langan et al. 2010;
Fling et al. 2012; Solesio-Jofre et al. 2014; Seidler et al. 2015;
Mary et al. 2016, 2017). For example, age-related increases in
resting state connectivity between interhemispheric dorsal and
ventral premotor cortices were significantly related to worse
bimanual coordination performance (Solesio-Jofre et al. 2014).
Little is known about the relationship between age-related
declines in motor behavior and changes in functional organiza-
tion at the multiple network level, and the connectivity
between functional networks in particular. This knowledge gap
is surprising given that: (1) a hallmark of aging is decreased
segregation of (i.e., increased connectivity between) functional
brain networks during both task performance and at rest
(Antonenko and Flöel 2014; Betzel et al. 2014; Cao et al. 2014;
Chan et al. 2014; Geerligs et al. 2014, 2015; Song et al. 2014; Archer
et al. 2016; Ng et al. 2016; Siman-Tov et al. 2016; Spreng et al.
2016; Ferreira et al. 2016; Grady et al. 2016; Damoiseaux 2017); and
(2) many motor tasks that exhibit age-related declines are not
pure motor tasks per se, but rather depend on multiple brain net-
works that presumably interact to ensure successful task comple-
tion (e.g., regions thought to be involved in feedback processing
or cognitive functioning in addition to motor-related areas) (see,
Heuninckx et al. 2005; Goble et al. 2010, for examples).

In this study, we investigated the association between age-
related modulations of connectivity within and between resting
state brain networks and declines in motor performance across
the healthy adult lifespan (20–75 years). Examinations into rest-
ing state, as opposed to task-related, functional connectivity

offered the advantage of avoiding task-related confounds, such
as age-related differences in motor performance or movement
speed (Ferreira and Busatto 2013). To assess age-related differ-
ences in motor behavior, we used a bimanual coordination task
(BCT) analogous to that employed in our previous research
(Goble et al. 2010; Heitger et al. 2013; Solesio-Jofre et al. 2014;
Beets et al. 2015; Santos Monteiro et al. 2017). It was hypothe-
sized that age-related declines in motor performance would
not only be associated with age-related modulations of within-
motor network connectivity, but also with modulations of connec-
tivity between functional resting state brain networks. Moreover,
given that successful motor performance is dependent on
multiple brain networks, we investigated whether age-related
differences in performance were more strongly associated
with internetwork resting state connectivity than connectivity
within functional networks, including within motor-related
networks.

Materials and Methods
Participants

A total of 106 healthy, right-handed (Oldfield 1971) participants
between the ages of 18 and 80 years were recruited from
Leuven and the surrounding area to serve as participants. To be
eligible for the experimental protocol, subjects had normal or
corrected-to-normal vision, were free of psychoactive (e.g.,
anti-depressant or -anxiety) medications, reported no known
psychological, psychiatric or neurological disorders, and had no
magnetic resonance imaging (MRI) contra-indications. Of these
106 participants, 10 were excluded from analyses: 2 voluntarily
withdrew from the study before completion of the protocol, 1
reported a change in medication/health status in the middle of
the experiment, 2 were excluded for acquisition issues with the
resting state fMRI data, 3 were removed for excessive move-
ment during the resting state MRI acquisition (>2.5mm or
degrees), and 2 subjects were considered statistical outliers
(defined as >2 SD from the average score of participants greater
than 50 years of age) on the Montreal Cognitive Assessment
(MoCA) (Nasreddine et al. 2005). For the majority of analyses,
participants were divided into 4 distinct age groups (20–35,
35–50, 50–65, and 65–75 years). However, age was used as a con-
tinuous variable to examine age-related modulations of resting
state functional connectivity. This analytic choice was made in
order to be consistent with an analogous analysis examining
the association between functional connectivity and motor per-
formance, in which performance on the motor task was input
as a continuous variable. Characteristics for the 96 participants
included in analyses are detailed in Table 1.

Written informed consent was obtained before testing. The
local ethics committee for biomedical research approved all
experimental procedures.

Overview of Experimental Design Procedures

The experimental protocol consisted of 3 sessions. The first
session was used for screening/familiarization purposes, during
which participants were informed about the experiment, com-
pleted screening-related questionnaires and assessments (i.e.,
health history, MoCA, etc.) and executed familiarization blocks
of practice on the BCT while positioned supine in a mock MRI
scanner (see below for BCT details). The subsequent 2 sessions
consisted of MRI scanning and were completed at the University
Hospital of KU Leuven. The first scanning session consisted of a
standard scanning protocol (90min in total), including the
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acquisition of a high-resolution T1-weighted structural image and
functional resting state data (see below for scan acquisition
details). The resting state scan was acquired towards the end of
this 90-min protocol and participants were not asked to complete
any cognitive or motor task for the scanning period preceding this
acquisition sequence, thus minimizing the influence of immediate
experiences on resting state connectivity. During the resting state
scan, the screen visible to the participants was turned to black
and subjects were instructed to keep their eyes open and to not
think of anything in particular. The second scanning session was
completed approximately one week following the first and con-
sisted of 9 runs of the BCT while functional MRI images were
obtained (task-related imaging data not presented in this article).

Bimanual Coordination Task

Task Setup and Procedures
While lying supine either in the mock (Session 1) or real
(Session 3) MRI scanner, participants were asked to complete a
BCT analogous to that employed in our previous research (Sisti
et al. 2011; Solesio-Jofre et al. 2014; Beets et al. 2015). A custom-
ized nonferromagnetic apparatus was positioned above the
participants’ laps. The device contained 2 dials (5 cm diameter)
to be rotated by the 2 hands in order to control the movement
of a cursor. The left and right hands controlled movements
along the vertical and horizontal axes, respectively. When the
left-hand dial was rotated clockwise (CW), the cursor moved
up, whereas the cursor moved down when the left-hand dial
was rotated counterclockwise (CCW). CW and CCW movements
of the right-hand dial resulted in movements to the right and
left, respectively. Angular displacements of the dials were reg-
istered with nonferromagnetic high precision optical shaft
encoders (HP, 2048 pulses per revolution, sampling frequency
of 100Hz), which were fixed to the movement axes of both
dials. This enabled registration of kinematics as well as the dis-
play of online visual feedback. Visual information depicting
task stimuli and feedback were shown on a LCD projector, visi-
ble via a mirror placed in front of the eyes.

The goal of the BCT was to track a visual target presented
on the screen by simultaneously rotating the 2 dials with the 2
hands. Each trial started by depicting a desired behavioral tra-
jectory (blue line), a target dot (white circle) as well as the cur-
sor to be moved by the participants (Fig. 1A). This cursor
representing the participants’ position was automatically
moved to the appropriate starting point (i.e., equivalent loca-
tion as the target dot) prior to each trial. Following a planning
period of 2 s, the target dot moved along the target trajectory at
a constant speed for a duration of 10 s. Participants were
instructed to rotate the dials in order to have the cursor

depicting their movements “match” the moving target as accu-
rately as possible. During execution, online visual feedback of
the participants’ performance was provided via a red cursor,
which depicted current position as well as the positions corre-
sponding to the previous second. After the 10 s execution
period, the screen turned black, regardless of the participants’
location and the next target appeared following an interval of
3 s.

Four different movement trajectories were included in order
to modulate task complexity (Fig. 1B). The first 2 trajectories
required participants to follow a diagonal line on the screen but
differed in terms of the slope of the line and thus the relative
velocities (i.e., frequency ratios) the 2 hands had to rotate in
order to appropriately perform the task. Participants moved the
hands either at a 1:1 or 2:5 velocity ratio. Thus, the 2 hands
needed to rotate at the same velocity for the Line 1:1 condition
(with the direction of movement either from the screen’s
bottom-right to top-left or vice versa; equal number of trials per
block). Conversely, for the Line 2:5 condition, the left hand had
to rotate 2 units for every 5 units the right hand rotated (or vice
versa; equal number of trials per block). The third condition
required the 2 hands to move at a 1:1 frequency ratio, but the
trajectory followed a V- or inverted-V shaped pattern (equal
number of trials per block) in which participants had to change
the direction or angle of their movement (herein referred to as
the condition Angle). Last, participants again moved at a 1:1
frequency ratio, but the trajectory abruptly altered directions in
a zig-zag pattern (herein referred to as condition Abrupt). This
zig-zag pattern was either oriented horizontally (Fig. 1B) or ver-
tically (equal number of trials per block).

Each BCT session contained 8 blocks, with each block consist-
ing of 24 trials (6 per movement trajectory) and lasting approxi-
mately 6min. The 2 different sessions of the BCT were identical
with the following exceptions. First, the initial session was com-
pleted in the mock scanner in order to familiarize and train the
participants to ensure they could perform the task appropriately
during the subsequent experimental session completed in the
real scanner. Accordingly, performance on the initial familiariza-
tion phase was not included in data analyses. Second, between
blocks 4 and 5 for the session completed in the actual MRI scan-
ner, a control/rest block was completed in which participants did
not move their hands but watched a visual presentation depicting
exemplar BCT performance. This run not only allowed partici-
pants to rest, but also served as a control condition for task-based
fMRI analyses (not presented in this article).

Behavioral Analyses
The x and y positions of both the target circle and the partici-
pants’ cursor were sampled at 100Hz and recorded for

Table 1. Participant characteristics

Age group

20–35 years 35–50 years 50–65 years 65–75 years

n 28 23 21 24
Gender 13 F 12 F 8 F 10 F
Mean age ± SD (y) 25.7 ± 4.4 43.2 ± 3.4 57.1 ± 5.0 69.4 ± 2.8
Mean MoCA ± SD 28.3 ± 1.1 28.3 ± 1.4 27.8 ± 1.5 27.3 ± 1.8

Characteristics for the 96 participants included in statistical analyses. Although participants between 18 and 80 years of age were recruited, the age range for those

included was 20.1–74.4 years. Age of the participants was specified as a decimal (in years) and the precise cutoffs for the 4 experimental groups were 20.00–34.99,

35.00–49.99, 50.00–64.99, and ≥65.00 years. For simplicity, the groups are simply referred to by the integer cutoffs shown in the table above. Note that the Montreal

Cognitive Assessment (MoCA) means and SD for the 20–35- and 35–50-year-old groups were computed from 23 and 21 participants, respectively, due to missing data.

4392 | Cerebral Cortex, 2018, Vol. 28, No. 12



subsequent offline processing conducted in Matlab R2016b (The
Mathworks). The primary dependent measure, labeled as
movement accuracy, reflected the percentage of the target line
that was “covered” by the participants’ movements. For each
sample within a trial (i.e., every 10ms), a line with the shortest
distance between the participant’s cursor and the ideal move-
ment trajectory was projected. The projection point on the tar-
get line was marked as covered and then movement accuracy
was quantified as the percentage of the ideal movement trajec-
tory that was covered by the participant. As a consequence of
this computation, if a participant was moving away from the
target line, for example, the line with the shortest distance
between the participant’s cursor and the ideal trajectory would
repeatedly project to the ideal trajectory at the same location
(i.e., covering the same segment of the desired trajectory). This
ultimately would result in a smaller proportion of the desired
trajectory being covered and thus a lower accuracy score.
Analogously, moving too slow or too fast or cutting corners (on
the Angle and Abrupt conditions) would also result in lower
accuracy scores. This particular measure was chosen, as com-
pared with the average Euclidean distance within a trial, as it
better captures performance for the irregular movement trajec-
tories (e.g., Angle and Abrupt) used in this study (see
Supplemental Fig. S1). No trials were labeled as statistical out-
liers for the accuracy dependent measure, defined as scores
greater than 2SD from the mean for that particular individual,
block and movement trajectory. Outlier analyses were com-
pleted separately for each block to account for performance
changes as a function of practice. All behavioral statistical
analyses were conducted in R (Version 3.3.1) with a significance
threshold set to 0.05. Accuracy was analyzed with a 4 (age
group: 20–35, 35–50, 50–65, and 65–75 years) × 4 (trajectory:
Line11, Line25, Angle and Abrupt) × 8 (block) ANOVA, with
block and trajectory as within-subject factors and age group as
the between-subjects factor. Appropriate follow-up compari-
sons were conducted with Holm–Bonferroni (HB) correction for
multiple comparisons.

Brain Imaging

Acquisition Parameters
A Philips Achieva 3.0T MRI system and a 32-channel head coil
were used for image acquisition. Functional resting state data

were acquired with an ascending gradient echo-planar imaging
(EPI) pulse sequence for T2*-weighted images (repetition time =
2500ms; echo time = 30ms; flip angle=90°; 45 transverse slices;
slice thickness = 2.5mm; interslice gap = 0.25mm; voxel size =
2.5 × 2.56 × 2.5mm3; field of view = 200 × 200 × 123.5mm3;
matrix=80 × 78; 162 dynamic scans plus 4 dummy scans dis-
carded at the beginning of the sequence). A 3D high-resolution
T1-weighted structural image was acquired with a
magnetization-prepared rapid-acquisition gradient-echo
(MPRAGE) sequence (TR/TE = 9.6/4.6ms; voxel size = 1 × 1 ×
1.2mm3; field of view = 250 × 250 × 192mm3; 160 coronal
slices).

Preprocessing
Functional volumes were preprocessed using SPM12 (http://www.
fil.ion.ucl.ac.uk/spm/software/spm12/; Welcome Department of
Neuroimaging Neuroscience, London, UK) implemented in Matlab.
Each participant’s functional volumes were realigned to the first
volume of the session using rigid body transformations and
then slice time corrected to the middle slice (reference slice =
22). Functional images were co-registered to the high-resolution
T1-weighted anatomical image using a rigid body transforma-
tion optimized to maximize the normalized mutual information
between the 2 images. The structural image was segmented into
gray matter, white matter, cerebrospinal fluid (CSF), bone, soft
tissue, and background. An average subject-based template was
created using DARTEL in SPM12, and registered to the Montreal
Neurological Institute (MNI) space. All functional and anatomical
images were then normalized to the resulting template.

As a result of the functional realignment preprocessing step
above, head motion in 6 dimensions (i.e., rotations and linear
translations in 3 planes of movement) was quantified for each
subject during the resting state scan. For the participants
included in the analyses, the average ± SD of the maximum
displacements across all volumes and 3 planes of movement
were: 0.56 ± 0.41 and −0.43 ± 0.35mm for linear translations in
the positive and negative directions, respectively, and 0.63° ±
0.58° and −0.50° ± 0.40° for rotations in the positive and nega-
tive directions, respectively. Critically, these movement para-
meters did not differ significantly among the 4 age groups (all
P > 0.3; see Supplemental Table S1 for details).

Defining Regions of Interest
To investigate age- and motor performance-related modula-
tions of functional connectivity within and between established
resting state networks, our analyses were based on the 14 net-
works identified via independent component analysis (ICA) in
an independent sample of participants in our previous research
(Mantini et al. 2013). These networks were labeled as cingulo-
operculum, default mode, dorsal and ventral attention, dorsal
and ventral somatomotor, early auditory, language, lateral and
medial prefrontal, left and right frontoparietal, visual parafo-
veal, and visual peripheral. Using the connectivity maps from
Mantini et al. (2013) and for each of the 14 networks of interest,
we extracted the MNI coordinates of the local (connectivity)
maximum for each cluster of voxels that exhibited significant
within-network connectivity. For each local maximum, a
regions of interest (ROI) with a 6mm radius sphere centered on
the peak voxel was built with the MarsBAR toolbox in Matlab.
In total, 84 seed regions from the 14 networks were extracted
and used in subsequent functional connectivity analyses
(Fig. 2; see Supplemental Table S2 for coordinates and peak Z-
scores of each seed). Extracting seed regions from within these

Figure 1. Bimanual coordination task (BCT). (A) Timeline of an exemplar trial.

Blue line depicts the desired movement trajectory, white circle shows the target

that moves along the trajectory at a constant speed for a 10 s duration and red

cursor provides visual feedback of the participants’ performance. (B) Four differ-

ent movement trajectories (see main text for details).
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resting state networks allowed us to quantify connectivity
among seeds within the same network (i.e., within-network
connectivity) as well as connectivity among seeds across net-
works (i.e., between-network connectivity).

Functional Connectivity Analyses
The analysis pipeline was conducted in Matlab and was similar
to that employed in our previous research (Solesio-Jofre et al.
2014). Specifically, prior to running the connectivity analyses,
additional preprocessing steps were completed to remove vari-
ance from spurious sources. First, to minimize the impact of
motion on the correlations between ROIs, volumes in which the
scan-to-scan displacement exceeded 0.5mm were discarded.

Remaining volumes were high-pass filtered with a cutoff of
0.01Hz. Masks of white matter and CSF were used to quantify
the average signals in these regions. Regression analyses were
performed on the fMRI time-series, including the white matter
and CSF signals as well as the 6-dimensional head motion
realignment parameters, as well as the realignment parameters
squared, their derivatives, and the squared of the derivatives, as
regressors. The resulting residuals were then low-pass filtered
with a cutoff of 0.08Hz. Data filtering served to minimize high-
frequency noise that may be the result of cardiac and respiratory
factors (Fox et al. 2005; Fox and Raichle 2007). Data were spatially
smoothed with a Gaussian kernel of FWHM (6mm).

At the individual level, the time-series across all voxels
within each of the 84 ROIs were averaged and Pearson correla-
tion coefficients among all ROIs were computed. Each correla-
tion coefficient r was converted to z-values using the formula
z = arctanh(r). This formula is commonly referred to as Fishers
r-to-z transformation. To ensure normality, statistical analyses
of the correlation data were performed on these z-values.

Our research questions were focused on connectivity at the
network level, and not the individual seed level. For example,
we were interested in connectivity between cingulo-operculum
and dorsal attention networks and not connectivity between
cingulo-operculum seed 2 and dorsal attention seed 5.
Accordingly, for the results presented here in the main text, we
averaged the Z-transformed connectivity values across the
seeds within and between networks. For instance, the cingulo-
operculum and dorsal attention networks had 5 and 6 seed
regions, respectively. To compute the connectivity between
these 2 networks, we averaged across the 30 seed pairs.
Similarly, to quantify connectivity within the cingulo-
operculum network, we first computed the connectivity
between the 10 unique pairs of seeds (i.e., [5 seeds × (5–1)
seeds]/2) and then averaged across these values. Thus, intra-
network connectivity reflects the averaged connectivity
between the different seeds within the same network. It should
be noted that this is in contrast to a subset of previous research
in which the signal is first averaged across all seeds within a
network and then correlated to itself (as well as other net-
works), effectively producing a within-network, nontrans-
formed correlation value of 1. By averaging the Z-transformed
connectivity values across the seeds within and between net-
works, the pairwise connectivity matrices were reduced from
dimensions of 84 × 84 to 14 × 14, which aided in the visualiza-
tion and interpretation of the data. For completeness, plots
depicting seed-level connectivity (i.e., 84 × 84 matrices) are pro-
vided in Supplemental Figs S2–4.

To assess resting state functional connectivity within each
age group, t-statistics were computed for each of the unique
network pairs and subsequent one-sample t-tests were con-
ducted. To examine how intra- and internetwork connectivity
varied as a function of age or motor performance, single-
subject correlations between network pairs were correlated
with the participants’ age and performance on the Abrupt con-
dition of the BCT, respectively. Tests of statistical significance
were based on comparisons of the correlation coefficients to a
correlation value of 0. Performance on the Abrupt condition
was used to conduct correlational analyses with the functional
connectivity data as this trajectory can be considered the most
complex and thus demonstrated the most robust age-related
differences. (Please note, however, that Supplementary Fig. S6
depicts correlations with performance on the Line 1:1 condition
for comparison purposes.) For all connectivity analyses, statis-
tical probabilities associated with each family of hypothesis

Figure 2. Seed regions from the 14 resting state networks of interest identified

in Mantini et al. (2013) overlaid on the mean structural image from the 96 parti-

cipants included in analyses. Note that slices from 2 different planes were

selected in order to offer a representative depiction of each network and thus

not every single seed is visible in the images shown. See Supplemental Table S2

for MNI coordinates for each seed. Cing Op = cingulo-operculum; DM = default

mode; Dors Att = dorsal attention; Dors Som = dorsal somatomotor; Ear Aud =

early auditory; Lat Prefr = lateral prefrontal; Left FP = left frontoparietal; Med

Prefr = medial prefrontal; Right FP = right frontoparietal; Ven Att = ventral

attention; Ven Som = ventral somatomotor; Vis Para = visual parafoveal; Vis

Peri = visual peripheral.
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tests were considered significant if surviving the false discovery
rate (FDR) method for multiple comparisons. The desired FDR
value was set to 0.05; the critical P-value for each family of
hypothesis tests then varied based on the original uncorrected
P-values. The critical P-value for each family of tests is explic-
itly provided in the Results. For completeness, figures indicate
significance at thresholds of both P(FDR) < 0.05 as well as P(uncor-
rected) < 0.05.

Results
Bimanual Coordination Task

Table 2 contains results from the 4 (age group) × 4 (movement
trajectory) × 8 (block) ANOVA conducted on the dependent vari-
able accuracy. There was a significant age group x block × tra-
jectory interaction (Fig. 3A; P < 0.0001), indicating that the rate
of improvement across blocks of practice differed by age and
movement trajectory. This significant three-way interaction is
decomposed in Supplemental Tables S3 and S4. Since our pri-
mary research questions of interest were not concerned with
practice-dependent improvements, the remaining results pre-
sented in the main text will collapse across the factor block.

Main effects of age group (P < 0.0001) and trajectory (P <
0.0001) were both significant (Fig. 3B). Follow-up comparisons
indicated that BCT accuracy was worse in the older participants
as well as in the more complex movement trajectory conditions
(i.e., Angle and Abrupt). Specifically, t-tests with HB correction
for multiple comparisons (Holm 1979) revealed that all age
groups performed significantly different from one another
except the 35–50 and 50–65 year olds (20–35 vs. 35–50: t = 2.9,
P[HB] = 0.023; 20–35 vs. 50–65: t = 6.9, P[HB] < 0.0001; 20–35 vs.
65–75: t = 11.4; P[HB] < 0.0001; 35–50 vs. 65–75: t = 6.7; P[HB] <
0.0001; 50–65 vs. 65–75: t = 5.83; P[HB] < 0.0001). Paired t-tests
with HB correction following the significant main effect of tra-
jectory indicated that all combinations of movement conditions
were significantly different from one another except for the
Line11 and Line25 trajectories (Line11 vs. Angle: t = 17.3,
P[HB] < 0.0001; Line11 vs. Abrupt: t = 22.9; P[HB] < 0.0001; Line25
vs. Angle: t = 16.3; P[HB] < 0.0001; Line25 vs. Abrupt: t = 23.7;
P[HB] < 0.0001; Angle vs. Abrupt: t = 20.0; P[HB] < 0.0001).

Results from the ANOVA detailed in Table 2 also indicated a
significant age group × trajectory interaction (P < 0.0001), as the
older age groups performed worse in the more complex condi-
tions (i.e., Angle and Abrupt) as compared with the younger age
groups (see Supplemental Tables S3 and S4 for additional
follow-up contrasts). Figure 3C depicts performance for the
most difficult movement trajectory, Abrupt, as a function of
age. As age-related impairments were most pronounced in this
condition, these scores served as the primary motor

performance-related regressor of interest in the connectivity
analyses presented in the subsequent section.

Behavioral results collectively demonstrated substantial
age-related declines in motor performance; moreover, these
impairments increased with task complexity. These findings
are consistent with numerous earlier studies indicating age-
related degradations in motor functioning, including on BCTs
similar to that employed in the current study (Heuninckx et al.
2008; Solesio-Jofre et al. 2014; Serbruyns et al. 2015) (see, Maes
et al. 2017, for review).

Resting State Connectivity

Resting State Connectivity Within Each Age Group
Functional connectivity values for the 20–35-year-old participants
are depicted in Figure 4A in which each square represents the

Table 2. Summary of ANOVA results on BCT performance

Effect df F P-value

Age group 3, 92 47.2 <0.0001
Block 7, 644 119.4 <0.0001
Trajectory 3, 276 683.5 <0.0001
Age group × block 21, 644 1.6 0.044
Age group × trajectory 9, 276 19.4 <0.0001
Block × trajectory 21, 1932 12.7 <0.0001
Age group × block × trajectory 63, 1932 3.1 <0.0001

df = Degrees of freedom. Numbers represent df for the effect of interest (numer-

ator) and the residuals (denominator).

Figure 3. BCT performance. (A) Accuracy as a function of practice block for the 4

age groups and movement trajectories. (B) Accuracy averaged across blocks.

Error bars in (A and B) depict SE. (C) Accuracy for the Abrupt condition plotted

as a function of age. Black and red trajectories depict linear fit and correspond-

ing 95% prediction intervals, respectively.
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t-statistic based on the average of the Z-transformed correla-
tions from the various seeds within (along the diagonal) and
between (off-diagonal) the 14 networks. Activity within each of
the 14 networks was highly and positively correlated, with each
network demonstrating significant connectivity after FDR cor-
rection for multiple comparisons. This also confirms that our
extracted seeds were indeed part of a functionally connected
network in our sample of participants. The significant within-
network connectivity can be contrasted with the relatively
small correlations, and thus few significant pairs, between the
14 networks (off diagonal), indicative of network segregation.
For comparison purposes, (B–D) in Figure 4 depict t-statistics for
the 35–50, 50–65, and 65–75-year-old age groups, respectively.
Intranetwork connectivity was high and significant in all 3
groups. Notably, internetwork connectivity appeared to be
stronger in the older age groups.

Age-Related Modulations of Resting State Connectivity
To examine modulations of intra- and internetwork connectiv-
ity across the healthy adult lifespan, we correlated the partici-
pants’ age with the Z-transformed connectivity values (Fig. 5A;
for completeness, Supplemental Fig. S5 depicts pairwise com-
parisons between each age group). Age-related modulations of
intranetwork connectivity were relatively minimal, as only con-
nectivity within the early auditory network demonstrated a sig-
nificant age-associated modulation (i.e., stronger connectivity
as a function of age) after correction for multiple comparisons.
In contrast, stronger internetwork connectivity was consis-
tently observed with older age; and, over 30% of the network
pairs showed significant positive associations between connec-
tivity and age after FDR correction. To further highlight this
age-related effect, we computed the mean internetwork con-
nectivity across all network pairs—independent of whether the

connectivity between the pair of networks was significantly
correlated with age—for each participant. There was a signifi-
cant and positive relationship between age and mean internet-
work connectivity (r = 0.39; P < 0.001; Fig. 5B), indicative of a
decrease in resting state network segregation as a function of
age.

Motor Performance-Related Modulations of Resting State
Connectivity
To investigate the link between resting state connectivity and
motor performance, we correlated accuracy scores on the
Abrupt condition of our BCT task with the Z-transformed con-
nectivity values (Fig. 6A; but see Supplemental Fig. S6 for corre-
lations between connectivity and performance on the Line11
condition). After correction for multiple comparisons, there
were no significant relationships between connectivity within
any of the 14 networks and motor performance. Conversely,
internetwork connectivity between multiple network pairs was
significantly and negatively related to performance. Indeed, the
negative correlation between movement accuracy and mean
internetwork connectivity computed across all network pairs
was highly significant (r = −0.35; P < 0.001; Fig. 6B), indicating
that decreased segregation of the networks observed in older
adults was associated with worse motor performance.

The results presented above suggest that internetwork, but
not intranetwork, connectivity was significantly related to
motor performance. To further assess this statistically, we
completed a hierarchical regression where intranetwork con-
nectivity from each of the 14 resting state networks were first
input into a regression model in order to explain variance in
performance on the motor task. Importantly, all intranetwork

Figure 4. Resting state connectivity for the 4 age groups. Values represent t-sta-

tistics based on the averaged z-transformed correlations among seeds within

(diagonal) and between (off-diagonal) the 14 networks of interest. Tests of sta-

tistical significance were based on one-sample t-tests corrected for multiple

comparisons with a false discovery rate (FDR) threshold set to 0.05. Corrected

P-value thresholds for the 4 age groups (from youngest to oldest) were 0.0182,

0.0303, 0.0297, and 0.0215. • = P(FDR) < 0.05 (below diagonal); o = P(uncorrected) <

0.05 (above the diagonal).

Figure 5. (A) Age-related modulations of resting state connectivity across the

full sample of 20–75-year-old participants. Values represent correlations

between age and intranetwork (diagonal) and internetwork (off-diagonal) con-

nectivity. Tests of statistical significance were based on comparisons of the cor-

relation coefficients to a correlation of 0 and corrected for multiple

comparisons with a false discovery rate (FDR) threshold set to 0.05. Corrected

P-value threshold was 0.0028. • = P(FDR) < 0.05 (below diagonal); o = P(uncor-

rected) < 0.05 (above the diagonal). (B) Mean internetwork connectivity plotted

as a function of age. Black and red trajectories depict linear fit and correspond-

ing 95% prediction intervals, respectively.
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connectivity measures were kept in the model and were not
added or removed based on a particular selection method (i.e.,
forward/backward). After adjusting for the contributions of con-
nectivity within these 14 networks, including connectivity
within the 2 motor-related resting state networks, we added
internetwork connectivity to the model and the negative rela-
tionship between internetwork connectivity and motor perfor-
mance remained significant (P = 0.047; Fig. 7).

The preceding section demonstrated that internetwork con-
nectivity, even above and beyond the effects of intramotor net-
work connectivity, was significantly associated with motor
performance. It could be argued, however, that the relationship
between motor performance and resting state connectivity
within motor networks was relatively minimal due to the spe-
cific networks investigated (i.e., the particular motor networks
extracted from Mantini et al. (2013) are not critical for the
motor task investigated). To assess this possibility, we con-
ducted a secondary analysis in which we related motor perfor-
mance to resting state connectivity within a network of regions
involved in the execution of the BCT used here. Specifically,
ROIs were extracted from a separate BCT-related fMRI data set
(Beets et al. 2015) and also used as part of resting state connec-
tivity analyses in a previous study (Solesio-Jofre et al. 2014) (see
Supplemental Table S5 and Supplemental Fig. S7 for details on
this network and corresponding analyses). Results were consis-
tent with the primary analysis detailed above. The relationship
between motor performance and connectivity within this
BCT-specific network was minimal (r = −0.14; P = 0.19). More
importantly, after adjusting for the connectivity within this BCT
network and all nonmotor networks from Mantini et al. (2013)

with a similar hierarchical regression as detailed above, the neg-
ative relationship between internetwork connectivity and motor
performance remained significant (P = 0.033). This additional
analysis provides further evidence for a significant link between
internetwork connectivity, even above and beyond the contribu-
tions of connectivity within a motor network known to be involved
in the specific task investigated, and impairments in motor func-
tioning observed as a result of aging.

Discussion
The results from the current study demonstrate that: (1) aging
is associated with impairments in motor performance; and,
these declines are more robust with increases in task complex-
ity; (2) aging is associated with stronger connectivity between
established large-scale resting state networks (i.e., decreased
network segregation); (3) stronger internetwork resting state
connectivity observed as a function of age is related to worse
motor performance; and (4) motor performance has a signifi-
cantly stronger association with the strength of internetwork
connectivity than intranetwork connectivity, including connec-
tivity within motor networks.

Age-Related Modulations of Inter- and Intranetwork
Resting State Connectivity

Brain activity at rest in young adults is organized into predomi-
nantly segregated functional networks, where regions within
these different networks demonstrate spontaneous and corre-
lated fluctuations in activity (Biswal et al. 1995; Fox et al. 2005;
Damoiseaux et al. 2006; Fox and Raichle 2007; van den Heuvel
and Hulshoff Pol 2010). Critically, this organization of predomi-
nantly segregated networks is thought to be critical for efficient
information processing (Bullmore and Sporns 2012; Sporns
2013). Our results revealed a substantial age-related modula-
tion in the organization of these large-scale brain networks;
specifically, stronger internetwork resting state connectivity
was observed with older age. This finding adds to recent stud-
ies that also showed decreased segregation of functional net-
works in older adults (Antonenko and Flöel 2014; Betzel et al.
2014; Cao et al. 2014; Chan et al. 2014; Geerligs et al. 2014, 2015;
Song et al. 2014; Archer et al. 2016; Ng et al. 2016; Siman-Tov
et al. 2016; Spreng et al. 2016; Ferreira et al. 2016; Grady et al.

Figure 6. (A) Motor performance-related (abrupt condition) modulations of rest-

ing state connectivity across the full sample of 20–75-year-old participants.

Values represent correlations between performance and both intranetwork

(diagonal) and internetwork (off-diagonal) connectivity. Negative values indi-

cate increased connectivity was associated with decreased performance (accu-

racy). Tests of statistical significance were based on comparisons of the

correlation coefficients to a correlation of 0 and corrected for multiple compari-

sons with a false discovery rate (FDR) threshold set to 0.05. Corrected p-value

threshold was 0.0011. • = P(FDR) < 0.05 (below diagonal); o = P(uncorrected) <

0.05 (above the diagonal). (B) Accuracy on the abrupt condition plotted as a

function of mean internetwork connectivity. Black and red trajectories depict

linear fit and corresponding 95% prediction intervals, respectively.

Figure 7. Relationship between internetwork connectivity and accuracy on the

abrupt BCT condition remained significant (P = 0.047) after adjusting for the

variance explained by connectivity within each of the 14 resting state networks,

including the 2 motor-related networks. Trajectories depict linear fit and corre-

sponding 95% prediction intervals.
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2016; Damoiseaux 2017). Our results are novel in that this
stronger internetwork connectivity observed as a function of
age was significantly associated with declines in motor perfor-
mance, a finding that will be discussed in more detail in the
subsequent section.

The age-related decrease in network segregation reported in
this study is consistent with the dedifferentiation hypothesis,
which is based on the collection of studies demonstrating that
aging results in decreased functional specialization (i.e., less
selective recruitment) of brain areas during task performance
(Logan et al. 2002; Heuninckx et al. 2005, 2008; Dennis and
Cabeza 2011; Geerligs et al. 2014) (for reviews, see Cabeza 2002;
Goh 2011; Grady 2012; Antonenko and Flöel 2014). For example,
during performance of a hand–foot coordination task, older
adults exhibited greater activation across a diffuse set of areas,
including those typically involved in sensory processing, action
monitoring, and movement inhibition (Heuninckx et al. 2005).
This greater activation was in addition to the recruitment of
common motor-related regions that were also activated in
healthy young adults (Heuninckx et al. 2005). This greater task-
related activation observed in older adults can simply reflect
dedifferentiation of the aging brain or may be indicative of
compensatory mechanisms if it is thought to serve a beneficial
role by minimizing age-related declines in motor performance
(Heuninckx et al. 2008; Goble et al. 2010; Dennis and Cabeza
2011) (see, Reuter-Lorenz 2002; Reuter-Lorenz and Lustig 2005;
Grady 2008, 2012, for reviews). Our data cannot speak to the
compensation versus dedifferentiation issue directly as our
connectivity data was acquired independent of the task.
Nonetheless, our results and those in the available literature
collectively indicate that aging is associated with decreased
specialization of functional networks not only during both task
performance, but also at rest.

The strongest associations between internetwork connectiv-
ity and age appeared to involve the cingulo-operculum, dorsal
and ventral somatomotor, early auditory, and visual peripheral
networks (Fig. 5A). Although there is considerable variability in
the available literature with respect to the precise networks and
seed regions investigated, our results are consistent with those
of Geerligs et al. (2015) who reported age-related increases in con-
nectivity between the visual, cingulo-operculum and somatomo-
tor networks. We are, however, hesitant to put too much
emphasis on any specific pairs of networks, as the age-related
modulations of internetwork connectivity were fairly consistent
across most network pairs. Indeed, connectivity between many
networks was simply slightly below the threshold for statistical
significance after correction for multiple comparisons.

An age-related decrease in connectivity within the default
mode network has been one of the most consistently reported
resting state functional connectivity findings (Andrews-Hanna
et al. 2007; Damoiseaux et al. 2008; Tomasi and Volkow 2012;
Ferreira and Busatto 2013; Solesio-Jofre et al. 2014; Geerligs
et al. 2015; Ferreira et al. 2016). Our results also revealed an
age-related decrease, although the strength of this relationship
was not statistically significant. It is worth noting, however,
that the correlation between connectivity within the default
mode network and age in our study was only marginally less
than in previous research that also used a large cross-sectional
design with a similar age range (e.g., r = −0.15 as compared
with −0.18 in Tomasi and Volkow (2012)). Moreover, when com-
paring our youngest (20–35 years) and oldest (65–75 years) age
groups, there was a trend for a significant difference in connec-
tivity within the DMN (P = 0.07; see Supplemental Fig. S5); thus,
our results are relatively in line with the available literature.

With respect to motor-related networks, stronger connectiv-
ity, albeit nonsignificant, was observed as a function of age
within the dorsal somatomotor network whereas weaker con-
nectivity was observed with older age within the ventral soma-
tomotor network (P-uncorrected < 0.05 but did not survive FDR
correction). This suggests that age-related modulations of con-
nectivity within motor-related networks are dependent on the
specific regions included as part of a motor network and thus
help explain the heterogeneity in the available literature (Wu,
Zang, Wang, Long, Hallett, et al. 2007; Wu, Zang, Wang, Long,
Li, et al. 2007; Tomasi and Volkow 2012; Bo et al. 2014; Solesio-
Jofre et al. 2014; Song et al. 2014; Geerligs et al. 2015; Seidler
et al. 2015).

Association Between Motor Performance and Age-
Related Modulations of Resting State Functional
Connectivity

The primary finding of the current study was that the stronger
connectivity between functional resting state brain networks
observed with age was associated with worse motor perfor-
mance. Moreover, these age-related modulations of internet-
work connectivity that extended to nonmotor networks even
had a stronger association with performance than connectivity
within motor-related networks. These results collectively sug-
gest that the decreased segregation of functional brain net-
works in older adults, even above and beyond changes in
connectivity within motor networks, contribute to the robust
age-related declines in motor performance reported in the
available literature.

A recent investigation examined how resting state connec-
tivity, as assessed by magnetoencephalography (MEG), between
the sensorimotor cortex and the rest of the brain was related to
motor behavior (specifically, sequence learning) in both young
and older adults (Mary et al. 2016). In older individuals, learning
was negatively related to connectivity between sensorimotor
cortex and dorsolateral prefrontal cortex, angular gyrus, ante-
rior cingulate, and the precuneus (i.e., regions linked to the
default mode and dorsal attention networks) (Mary et al. 2016),
suggesting that stronger connectivity between motor and non-
motor networks in older adults hinders the ability to learn a
sequence of finger movements. This previous study focused on
connectivity with a single sensorimotor seed. Our research is
thus the first, to our knowledge, to demonstrate that age-related
modulations of the functional organization of large-scale brain
networks, and even between nonmotor-related networks, are
associated with age-related declines in motor performance.

Similar to the age-related modulations of connectivity dis-
cussed in the preceding section, the associations between
motor performance and internetwork connectivity were fairly
consistent across the various networks. Indeed, the vast major-
ity of network pairs demonstrated a negative relationship
between performance and internetwork connectivity, although
many did not survive correction for multiple comparisons.
Nonetheless, the strongest associations between connectivity
and performance appeared to involve the lateral and medial
resting state prefrontal networks (Fig. 6A). Interestingly, older
adults also exhibit widespread cortical hyperactivation during
task performance, including in prefrontal regions (Mattay et al.
2002; Ward and Frackowiak 2003; Heuninckx et al. 2005, 2008;
Goble et al. 2010). This task-related prefrontal hyperactivation
in older adults, however, was linked to better motor perfor-
mance (Heuninckx et al. 2008), whereas stronger resting state
connectivity between prefrontal regions and other functional
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networks were associated with worse motor performance in
the current study. It is difficult to draw too many conclusions
across these studies given the differences in approach (i.e.,
task-related activity vs. resting state connectivity), but these
results collectively speak to the modulatory role of prefrontal
regions in the motor functioning of older adults.

Surprisingly, there were no significant relationships
between motor performance and connectivity within any of the
14 resting state networks, including the 2 motor-related net-
works. This lack of an effect is in contrast to previous research
in which a relationship between intramotor-network connec-
tivity and motor performance was revealed in older adults
(Fling et al. 2012; Solesio-Jofre et al. 2014; Seidler et al. 2015). For
example, age-related increases in resting state motor network
connectivity, and between interhemispheric dorsal and ventral
premotor cortices in particular, were significantly related to
worse bimanual coordination performance (Solesio-Jofre et al.
2014). These differing results do not appear to be related to the
specific motor networks investigated. We employed a second-
ary analysis with seed regions from a motor network recruited
during performance of a nearly identical BCT and used in ear-
lier resting state connectivity analyses (Solesio-Jofre et al. 2014)
(see Supplementary Fig. S7A and Table S5). These findings indi-
cated that the averaged resting state connectivity within this
BCT-specific network was not related to performance on the
version of the BCT employed in the current research. Moreover,
even after accounting for variance explained by connectivity
within this BCT-specific network, the relationship between
internetwork connectivity and motor performance remained
significant. Thus, and most importantly, our results indicating
that age-related decrements in motor performance have a sig-
nificantly stronger association with internetwork connectivity
than intramotor-network connectivity are consistent across
multiple resting state motor networks.

It has been suggested that the execution of relatively simple
tasks is more strongly related to communication within a sin-
gle relevant network whereas more complex processes are
linked to communication across multiple networks (Cohen and
D’Esposito 2016). Extending this explanation to the current
study, it could be speculated that the association between
internetwork connectivity and motor performance is modu-
lated by task complexity or difficulty. We assessed this possibil-
ity by comparing the associations between internetwork
connectivity and motor performance on the Line11 and Abrupt
BCT conditions (see Supplemental Fig. S6A). There were no
internetwork pairs that demonstrated a significant relationship
between connectivity and performance on the Line11 condi-
tion, conceptualized as the simpler movement trajectory. This
was in contrast to what was observed for the Abrupt task con-
dition (Fig. 6 in the main text). Statistically comparing the rela-
tionships between internetwork connectivity and performance
on the 2 task conditions revealed a trend for a significant differ-
ence (P = 0.06; Supplemental Fig. S6B), indicating that internet-
work connectivity had a marginally stronger association to
performance on the more complex as compared with the sim-
pler bimanual condition. This notion that task complexity mod-
ulates the association between resting state internetwork
connectivity and motor performance, however, certainly war-
rants further attention in future research. It also should be con-
sidered that the Line11 movement trajectory employed in the
current study may not be the best example of a “simpler” motor
task, as the successful completion of this particular condition
still necessitates the execution of a precise coordination pat-
tern between the 2 hands. Thus, future research investigating

this specific question may opt to employ an even simpler motor
task as a reference.

Limitations, Methodological Considerations, and Future
Directions

It is important to acknowledge that our results are based on
correlations among age, behavior and brain connectivity
metrics and thus we are restricted to discussing the associa-
tions among these variables as opposed to inferring causality
of the effects. Moreover, as all 3 of these variables are inter-
related, it is difficult to decipher the precise relationship
between any 2 of the factors independent of the influence of
the third variable (see, Damoiseaux 2017, for more detailed dis-
cussion). A fairly common approach to address this issue is to
relate, for example, behavioral and connectivity measures after
factoring out the influence of age (Chan et al. 2014). Although
additional insights may certainly be gained, the subsequent
interpretations following the output of this approach certainly
have limitations (Lindenberger and Pötter 1998). In the context
of the results of the current study, the correlation between age
and the behavior of interest (i.e., movement accuracy on the
Abrupt condition of the BCT) was equal to −0.77 (Fig. 3C). Thus,
as age already explained nearly 60% of the variance in behavior,
statistically demonstrating a significant relationship between
connectivity and motor performance above and beyond the
influence of age would have been difficult given the inter-
relatedness of all 3 variables. This limitation notwithstanding,
our results do suggest that internetwork functional connectiv-
ity, as opposed to solely connectivity within motor networks,
may be a primary contributor to the age-related declines in
motor performance reported in the available literature.

It is worth explicitly acknowledging that we opted to not
regress out the influence of the global signal in our functional
connectivity analyses (see, Fox et al. 2009; Jo et al. 2013, for a
more detailed discussion on this issue). Although the global
signal regression approach certainly has its utility, it does
impose correlational structure to the data and often induces
negative (i.e., anti-) correlations between some networks. Our
results will then have less between-network anticorrelations
than previous research that employed global signal regression.

It is likely that the decreased segregation of resting state
functional networks reported both in the current study and
elsewhere are simply manifestations of other age-dependent
degenerative processes. For example, alterations in resting
state connectivity may be a byproduct of age-related changes
in the concentration of specific neurochemicals, gray matter
atrophy or alterations in white matter microstructure. Future
research should aim to disentangle the relationships among
the plethora of age-related changes at the neural level and their
influence on motor functioning.

It would also be interesting for future research to examine
the interindividual variability in internetwork functional con-
nectivity. For example, a visual inspection of Figure 5B depicts
7 individuals of 30–45-year-old who exhibited high internet-
work connectivity relative to their age-similar peers.
Interestingly, one of these subjects reported a family history of
dementia and a second subject had a MOCA score that was
more than 2SD below the mean of subjects 30–45 years of age.
There are certainly too few subjects to speculate about the
potential relationship between predisposition to neurodegener-
ative disease and resting state functional connectivity, but this
is a line of research that warrants further attention.
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Conclusions

Our results demonstrated that the stronger connectivity
between functional resting state brain networks observed as a
function of age was significantly associated with declines in
motor performance across the adult lifespan. This relationship
between motor behavior and internetwork connectivity
remained significant even after accounting for the contribu-
tions of connectivity within each of the 14 resting state net-
works that were examined, including 2 motor-related
networks. These findings suggest that age-related impairments
in motor performance may be attributed to degradations in the
functional organization of large-scale brain networks. It would
be advantageous for future research investigating the relation-
ship between age-related declines in motor functioning and
brain connectivity to extend analyses beyond strictly motor-
related networks, as connectivity between networks appears to
have a significantly stronger association with motor behavior.

Supplementary Material
Supplementary data is available at Cerebral Cortex online.

Funding
KU Leuven Special Research Fund (grant C16/15/070 awarded to
S.P.S. and D.M.) as well as from grants from the Research
Foundation—Flanders (FWO; G.0708.14) and the Francqui
Foundation. European Union’s Horizon 2020 research and inno-
vation programme under the Marie Skłodowska-Curie grant
agreement (No. 703490) and a postdoctoral fellowship from the
Research Foundation—Flanders (FWO; No 132635) to B.R.K.
Wellcome Trust (grant 101253/A/13/Z to D.M.).

Notes
Conflict of Interest: None declared.

References
Andrews-Hanna JR, Snyder AZ, Vincent JL, Lustig C, Head D,

Raichle ME, Buckner RL. 2007. Disruption of large-scale brain
systems in advanced aging. Neuron. 56:924–935.

Antonenko D, Flöel A. 2014. Healthy aging by staying selectively
connected: a mini-review. Gerontology. 60:3–9.

Archer JA, Lee A, Qiu A, Chen S-HA. 2016. A comprehensive
analysis of connectivity and aging over the adult life span.
Brain Connect. 6:169–185.

Beets IAM, Gooijers J, Boisgontier MP, Pauwels L, Coxon JP,
Wittenberg G, Swinnen SP. 2015. Reduced neural differentia-
tion between feedback conditions after bimanual coordina-
tion training with and without augmented visual feedback.
Cereb Cortex. 25:1958–1969.

Betzel RF, Byrge L, He Y, Goñi J, Zuo X-N, Sporns O. 2014.
Changes in structural and functional connectivity among
resting-state networks across the human lifespan.
Neuroimage. 102(Pt 2):345–357.

Bhandari A, Radhu N, Farzan F, Mulsant BH, Rajji TK,
Daskalakis ZJ, Blumberger DM. 2016. A meta-analysis of the
effects of aging on motor cortex neurophysiology assessed
by transcranial magnetic stimulation. Clin Neurophysiol.
127:2834–2845.

Biswal B, Yetkin FZ, Haughton VM, Hyde JS. 1995. Functional
connectivity in the motor cortex of resting human brain
using echo-planar MRI. Magn Reson Med. 34:537–541.

Bo J, Lee C-M, Kwak Y, Peltier SJ, Bernard JA, Buschkuehl M,
Jaeggi SM, Wiggins JL, Jonides J, Monk CS, et al. 2014.
Lifespan differences in cortico-striatal resting state connec-
tivity. Brain Connect. 4:166–180.

Bullmore E, Sporns O. 2012. The economy of brain network
organization. Nat Rev Neurosci. 13:336–349.

Cabeza R. 2002. Hemispheric asymmetry reduction in older
adults: the HAROLD model. Psychol Aging. 17:85–100.

Cao M, Wang J-H, Dai Z-J, Cao X-Y, Jiang L-L, Fan F-M, Song
X-W, Xia M-R, Shu N, Dong Q, et al. 2014. Topological organi-
zation of the human brain functional connectome across
the lifespan. Dev Cogn Neurosci. 7:76–93.

Chan MY, Park DC, Savalia NK, Petersen SE, Wig GS. 2014.
Decreased segregation of brain systems across the
healthy adult lifespan. Proc Natl Acad Sci USA. 111:
E4997–E5006.

Cohen JR, D’Esposito M. 2016. The segregation and integration
of distinct brain networks and their relationship to cogni-
tion. J Neurosci. 36:12083–12094.

Damoiseaux JS. 2017. Effects of aging on functional and struc-
tural brain connectivity. Neuroimage, http://dx.doi.org/10.
1016/j.neuroimage.2017.01.077.

Damoiseaux JS, Beckmann CF, Arigita EJS, Barkhof F, Scheltens
P, Stam CJ, Smith SM, Rombouts SARB. 2008. Reduced
resting-state brain activity in the “default network” in nor-
mal aging. Cereb Cortex. 18:1856–1864.

Damoiseaux JS, Rombouts SARB, Barkhof F, Scheltens P, Stam
CJ, Smith SM, Beckmann CF. 2006. Consistent resting-state
networks across healthy subjects. Proc Natl Acad Sci USA.
103:13848–13853.

Dennis NA, Cabeza R. 2011. Age-related dedifferentiation of
learning systems: an fMRI study of implicit and explicit
learning. Neurobiol Aging. 32:2318.e17–e30.

Ferreira LK, Busatto GF. 2013. Resting-state functional connec-
tivity in normal brain aging. Neurosci Biobehav Rev. 37:
384–400.

Ferreira LK, Regina ACB, Kovacevic N, Martin M da GM, Santos
PP, Carneiro Cde G, Kerr DS, Amaro E, McIntosh AR, Busatto
GF. 2016. Aging effects on whole-brain functional connectiv-
ity in adults free of cognitive and psychiatric disorders.
Cereb Cortex. 26:3851–3865.

Fling BW, Kwak Y, Peltier SJ, Seidler RD. 2012. Differential rela-
tionships between transcallosal structural and functional
connectivity in young and older adults. Neurobiol Aging. 33:
2521–2526.

Fox MD, Raichle ME. 2007. Spontaneous fluctuations in brain
activity observed with functional magnetic resonance imag-
ing. Nat Rev Neurosci. 8:700–711.

Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC,
Raichle ME. 2005. The human brain is intrinsically organized
into dynamic, anticorrelated functional networks. Proc Natl
Acad Sci USA. 102:9673–9678.

Fox MD, Zhang D, Snyder AZ, Raichle ME. 2009. The global sig-
nal and observed anticorrelated resting state brain net-
works. J Neurophysiol. 101:3270–3283.

Geerligs L, Maurits NM, Renken RJ, Lorist MM. 2014. Reduced
specificity of functional connectivity in the aging brain dur-
ing task performance. Hum Brain Mapp. 35:319–330.

Geerligs L, Renken RJ, Saliasi E, Maurits NM, Lorist MM. 2015. A
brain-wide study of age-related changes in functional con-
nectivity. Cereb Cortex. 25:1987–1999.

Goble DJ, Coxon JP, Van Impe A, De Vos J, Wenderoth N,
Swinnen SP. 2010. The neural control of bimanual move-
ments in the elderly: brain regions exhibiting age-related

4400 | Cerebral Cortex, 2018, Vol. 28, No. 12

http://dx.doi.org/10.1016/j.neuroimage.2017.01.077
http://dx.doi.org/10.1016/j.neuroimage.2017.01.077


increases in activity, frequency-induced neural modulation,
and task-specific compensatory recruitment. Hum Brain
Mapp. 31:1281–1295.

Goh JOS. 2011. Functional dedifferentiation and altered connec-
tivity in older adults: neural accounts of cognitive aging.
Aging Dis. 2:30–48.

Grady C. 2012. The cognitive neuroscience of ageing. Nat Rev
Neurosci. 13:491–505.

Grady C, Sarraf S, Saverino C, Campbell K. 2016. Age differences
in the functional interactions among the default, frontopar-
ietal control, and dorsal attention networks. Neurobiol
Aging. 41:159–172.

Grady CL. 2008. Cognitive neuroscience of aging. Ann NY Acad
Sci. 1124:127–144.

Heitger MH, Goble DJ, Dhollander T, Dupont P, Caeyenberghs K,
Leemans A, Sunaert S, Swinnen SP. 2013. Bimanual motor
coordination in older adults is associated with increased
functional brain connectivity—a graph-theoretical analysis.
PLoS One. 8:e62133.

Heuninckx S, Wenderoth N, Debaere F, Peeters R, Swinnen SP.
2005. Neural basis of aging: the penetration of cognition into
action control. J Neurosci. 25:6787–6796.

Heuninckx S, Wenderoth N, Swinnen SP. 2008. Systems neuro-
plasticity in the aging brain: recruiting additional neural
resources for successful motor performance in elderly per-
sons. J Neurosci. 28:91–99.

Holm S. 1979. A simple sequentially rejective multiple test pro-
cedure. Scand J Stat. 6:65–70.

Jo HJ, Gotts SJ, Reynolds RC, Bandettini PA, Martin A, Cox RW,
Saad ZS. 2013. Effective preprocessing procedures virtually
eliminate distance-dependent motion artifacts in resting
state fMRI. J Appl Math. 2013:1–9.

King BR, Fogel SM, Albouy G, Doyon J. 2013. Neural correlates of
the age-related changes in motor sequence learning
and motor adaptation in older adults. Front Hum Neurosci.
7:142.

Langan J, Peltier SJ, Bo J, Fling BW, Welsh RC, Seidler RD. 2010.
Functional implications of age differences in motor system
connectivity. Front Syst Neurosci. 4:17.

Lindenberger U, Pötter U. 1998. The complex nature of unique
and shared effects in hierarchical linear regression: implica-
tions for developmental psychology. Psychol Methods. 3:
218–230.

Logan JM, Sanders AL, Snyder AZ, Morris JC, Buckner RL. 2002.
Under-recruitment and nonselective recruitment: dissocia-
ble neural mechanisms associated with aging. Neuron. 33:
827–840.

Maes C, Gooijers J, Orban de Xivry J-J, Swinnen SP, Boisgontier
MP. 2017. Two hands, one brain, and aging. Neurosci
Biobehav Rev. 75:234–256.

Mantini D, Corbetta M, Romani GL, Orban GA, Vanduffel W.
2013. Evolutionarily novel functional networks in the
human brain? J Neurosci. 33:3259–3275.

Mary A, Wens V, Op de Beeck M, Leproult R, De Tiège X,
Peigneux P. 2016. Resting-state functional connectivity is an
age-dependent predictor of motor learning abilities. Cereb
Cortex. 27:4923–4932.

Mary A, Wens V, Op de Beeck M, Leproult R, De Tiège X,
Peigneux P. 2017. Age-related differences in practice-
dependent resting-state functional connectivity related
to motor sequence learning. Hum Brain Mapp.
38:923–937.

Mattay VS, Fera F, Tessitore A, Hariri AR, Das S, Callicott JH,
Weinberger DR. 2002. Neurophysiological correlates of age-

related changes in human motor function. Neurology. 58:
630–635.

Nasreddine ZS, Phillips NA, Bedirian V, Charbonneau S,
Whitehead V, Collin I, Cummings JL, Chertkow H. 2005. The
Montreal Cognitive Assessment, MoCA: a brief screening
tool for mild cognitive impairment. J Am Geriatr Soc. 53:
695–699.

Ng KK, Lo JC, Lim JKW, Chee MWL, Zhou J. 2016. Reduced func-
tional segregation between the default mode network and
the executive control network in healthy older adults: a lon-
gitudinal study. Neuroimage. 133:321–330.

Oldfield RC. 1971. The assessment and analysis of handedness:
the Edinburgh inventory. Neuropsychologia. 9:97–113.

Raz N, Rodrigue KM. 2006. Differential aging of the brain: pat-
terns, cognitive correlates and modifiers. Neurosci Biobehav
Rev. 30:730–748.

Reuter-Lorenz PA. 2002. New visions of the aging mind and
brain. Trends Cogn Sci. 6:394–400.

Reuter-Lorenz PA, Lustig C. 2005. Brain aging: reorganizing dis-
coveries about the aging mind. Curr Opin Neurobiol. 15:
245–251.

Santos Monteiro T, Beets IAM, Boisgontier MP, Gooijers J,
Pauwels L, Chalavi S, King B, Albouy G, Swinnen SP. 2017.
Relative cortico-subcortical shift in brain activity but
preserved training-induced neural modulation in older
adults during bimanual motor learning. Neurobiol Aging.
58:54–67.

Seidler R, Erdeniz B, Koppelmans V, Hirsiger S, Mérillat S,
Jäncke L. 2015. Associations between age, motor function,
and resting state sensorimotor network connectivity in
healthy older adults. Neuroimage. 108:47–59.

Seidler RD, Bernard JA, Burutolu TB, Fling BW, Gordon MT,
Gwin JT, Kwak Y, Lipps DB. 2010. Motor control and aging:
links to age-related brain structural, functional, and bio-
chemical effects. Neurosci Biobehav Rev. 34:721–733.

Serbruyns L, Gooijers J, Caeyenberghs K, Meesen RL, Cuypers K,
Sisti HM, Leemans A, Swinnen SP. 2015. Bimanual motor
deficits in older adults predicted by diffusion tensor imaging
metrics of corpus callosum subregions. Brain Struct Funct.
220:273–290.

Siman-Tov T, Bosak N, Sprecher E, Paz R, Eran A, Aharon-Peretz
J, Kahn I. 2016. Early age-related functional connectivity
decline in high-order cognitive networks. Front Aging
Neurosci. 8:330.

Sisti HM, Geurts M, Clerckx R, Gooijers J, Coxon JP, Heitger MH,
Caeyenberghs K, Beets IAM, Serbruyns L, Swinnen SP. 2011.
Testing multiple coordination constraints with a novel
bimanual visuomotor task. PLoS One. 6:e23619.

Solesio-Jofre E, Serbruyns L, Woolley DG, Mantini D, Beets IAM,
Swinnen SP. 2014. Aging effects on the resting state motor
network and interlimb coordination. Hum Brain Mapp. 35:
3945–3961.

Song J, Birn RM, Boly M, Meier TB, Nair VA, Meyerand ME,
Prabhakaran V. 2014. Age-related reorganizational changes
in modularity and functional connectivity of human brain
networks. Brain Connect. 4:662–676.

Sporns O. 2013. Network attributes for segregation and integra-
tion in the human brain. Curr Opin Neurobiol. 23:162–171.

Spreng RN, Stevens WD, Viviano JD, Schacter DL. 2016.
Attenuated anticorrelation between the default and dorsal
attention networks with aging: evidence from task and rest.
Neurobiol Aging. 45:149–160.

Tomasi D, Volkow ND. 2012. Aging and functional brain net-
works. Mol Psychiatry. 17(471):549–558.

Aging, Network Segregation and Motor Performance King et al. | 4401



van den Heuvel MP, Hulshoff Pol HE. 2010. Exploring the brain
network: a review on resting-state fMRI functional connec-
tivity. Eur Neuropsychopharmacol. 20:519–534.

Ward NS, Frackowiak RSJ. 2003. Age-related changes in the
neural correlates of motor performance. Brain. 126:
873–888.

Wu T, Zang Y, Wang L, Long X, Hallett M, Chen Y, Li K, Chan P.
2007. Aging influence on functional connectivity of the motor
network in the resting state. Neurosci Lett. 422:164–168.

Wu T, Zang Y, Wang L, Long X, Li K, Chan P. 2007. Normal aging
decreases regional homogeneity of the motor areas in the
resting state. Neurosci Lett. 423:189–193.

4402 | Cerebral Cortex, 2018, Vol. 28, No. 12


	Age-Related Declines in Motor Performance are Associated With Decreased Segregation of Large-Scale Resting State Brain Networks
	Introduction
	Materials and Methods
	Participants
	Overview of Experimental Design Procedures
	Bimanual Coordination Task
	Task Setup and Procedures
	Behavioral Analyses

	Brain Imaging
	Acquisition Parameters
	Preprocessing
	Defining Regions of Interest
	Functional Connectivity Analyses


	Results
	Bimanual Coordination Task
	Resting State Connectivity
	Resting State Connectivity Within Each Age Group
	Age-Related Modulations of Resting State Connectivity
	Motor Performance-Related Modulations of Resting State Connectivity


	Discussion
	Age-Related Modulations of Inter- and Intranetwork Resting State Connectivity
	Association Between Motor Performance and Age-Related Modulations of Resting State Functional Connectivity
	Limitations, Methodological Considerations, and Future Directions
	Conclusions

	Supplementary Material
	Funding
	Notes
	References


