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Abstract
Convolutional neural network (CNN) driven by image recognition has been shown to be able to explain cortical responses to
static pictures at ventral-stream areas. Here, we further showed that such CNN could reliably predict and decode functional
magnetic resonance imaging data from humans watching natural movies, despite its lack of any mechanism to account for
temporal dynamics or feedback processing. Using separate data, encoding and decoding models were developed and
evaluated for describing the bi-directional relationships between the CNN and the brain. Through the encoding models, the
CNN-predicted areas covered not only the ventral stream, but also the dorsal stream, albeit to a lesser degree; single-voxel
response was visualized as the specific pixel pattern that drove the response, revealing the distinct representation of
individual cortical location; cortical activation was synthesized from natural images with high-throughput to map category
representation, contrast, and selectivity. Through the decoding models, fMRI signals were directly decoded to estimate the
feature representations in both visual and semantic spaces, for direct visual reconstruction and semantic categorization,
respectively. These results corroborate, generalize, and extend previous findings, and highlight the value of using deep
learning, as an all-in-one model of the visual cortex, to understand and decode natural vision.
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Introduction
For centuries, philosophers and scientists have been trying to
speculate, observe, understand, and decipher the workings of
the brain that enables humans to perceive and explore visual
surroundings. Here, we ask how the brain represents dynamic
visual information from the outside world, and whether brain
activity can be directly decoded to reconstruct and categorize
what a person is seeing. These questions, concerning neural
encoding and decoding (Naselaris et al. 2011), have been mostly
addressed with static or artificial stimuli (Kamitani and Tong
2005; Haynes and Rees 2006). Such strategies are, however, too
narrowly focused to reveal the computation underlying natural

vision. What is needed is an alternative strategy that embraces
the complexity of vision to uncover and decode the visual
representations of distributed cortical activity.

Despite its diversity and complexity, the visual world is
composed of a large number of visual features (Zeiler and
Fergus 2014; LeCun et al. 2015; Russ and Leopold 2015). These
features span many levels of abstraction, such as orientation
and color in the low level, shapes and textures in the middle
levels, and objects and actions in the high level. To date, deep
learning provides the most comprehensive computational
models to encode and extract hierarchically organized features
from arbitrary natural pictures or videos (LeCun et al. 2015).
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Computer-vision systems based on such models have emulated
or even surpassed human performance in image recognition
and segmentation (Krizhevsky et al. 2012; He et al. 2015;
Russakovsky et al. 2015). In particular, deep convolutional neu-
ral networks (CNNs) are built and trained with similar organiza-
tional and coding principles as the feedforward visual-cortical
network (DiCarlo et al. 2012; Yamins and DiCarlo 2016). Recent
studies have shown that the CNN could partially explain the
brain’s responses to (Yamins et al. 2014; Güçlü and van Gerven
2015a; Eickenberg et al. 2016) and representations of (Khaligh-
Razavi and Kriegeskorte 2014; Cichy et al. 2016) natural picture
stimuli. However, it remains unclear whether and to what
extent the CNN may explain and decode brain responses to
natural video stimuli. Although dynamic natural vision
involves feedforward, recurrent, and feedback connections
(Callaway 2004), the CNN only models feedforward processing
and operates on instantaneous input, without any account for
recurrent or feedback network interactions (Bastos et al. 2012;
Polack and Contreras 2012).

To address these questions, we acquired 11.5 h of fMRI data
from each of 3 human subjects watching 972 different video
clips, including diverse scenes and actions. This dataset was
independent of, and had a larger sample size and broader cov-
erage than, those in prior studies (Khaligh-Razavi and
Kriegeskorte 2014; Yamins et al. 2014; Güçlü and van Gerven
2015a; Eickenberg et al. 2016; Güçlü and van Gerven 2015a;
Cichy et al. 2016). This allowed us to confirm, generalize, and
extend the use of the CNN in predicting and decoding cortical
activity along both ventral and dorsal streams in a dynamic
viewing condition. Specifically, we trained and tested encoding
and decoding models, with distinct data, for describing the
relationships between the brain and the CNN, implemented by
(Krizhevsky et al. 2012). With the CNN, the encoding models

were used to predict and visualize fMRI responses at individual
cortical voxels given the movie stimuli; the decoding models
were used to reconstruct and categorize the visual stimuli
based on fMRI activity, as shown in Figure 1. The major findings
are as follows:

1. a CNN driven for image recognition explained significant
variance of fMRI responses to complex movie stimuli for
nearly the entire visual cortex including its ventral and dor-
sal streams, albeit to a lesser degree for the dorsal stream;

2. the CNN-based voxel-wise encoding models visualized dif-
ferent single-voxel representations, and revealed category
representation and selectivity;

3. the CNN supported direct visual reconstruction of natural
movies, highlighting foreground objects with blurry details
and missing colors;

4. the CNN also supported direct semantic categorization, uti-
lizing the semantic space embedded in the CNN.

Materials and Methods
Subjects and Experiments

Three healthy volunteers (female, age: 22–25; normal vision)
participated in the study, with informed written consent
obtained from every subject according to the research protocol
approved by the Institutional Review Board at Purdue
University. Each subject was instructed to watch a series of nat-
ural color video clips (20.3° × 20.3°) while fixating at a central
fixation cross (0.8° × 0.8°). In total, 374 video clips (continuous
with a frame rate of 30 frames per second) were included in a
2.4-h training movie, randomly split into 18 8-min segments;
598 different video clips were included in a 40-min testing
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Figure 1. Neural encoding and decoding through a deep-learning model. When a person is seeing a film (a), information is processed through a cascade of cortical

areas (b), generating fMRI activity patterns (c). A deep CNN is used here to model cortical visual processing (d). This model transforms every movie frame into multiple

layers of features, ranging from orientations and colors in the visual space (the first layer) to object categories in the semantic space (the eighth layer). For encoding,

this network serves to model the nonlinear relationship between the movie stimuli and the response at each cortical location. For decoding, cortical responses are

combined across locations to estimate the feature outputs from the first and seventh layer. The former is deconvolved to reconstruct every movie frame, and the lat-

ter is classified into semantic categories.
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movie, randomly split into 5 8-min segments. The video clips
in the testing movie were different from those in the training
movie. All video clips were chosen from Videoblocks (https://
www.videoblocks.com) and YouTube (https://www.youtube.
com) to be diverse yet representative of real-life visual experi-
ences. For example, individual video clips showed people in
action, moving animals, nature scenes, outdoor or indoor
scenes, etc. Each subject watched the training movie twice and
the testing movie 10 times through experiments in different
days. Each experiment included multiple sessions of 8min and
24 s long. During each session, an 8-min single movie segment
was presented; before the movie presentation, the first movie
frame was displayed as a static picture for 12 s; after the movie,
the last movie frame was also displayed as a static picture for
12 s. The order of the movie segments was randomized and
counter-balanced. Using Psychophysics Toolbox 3 (http://
psychtoolbox.org), the visual stimuli were delivered through a
goggle system (NordicNeuroLab NNL Visual System) with 800 ×
600 display resolution.

Data Acquisition and Preprocessing

T1 and T2-weighted MRI and fMRI data were acquired in a 3
tesla MRI system (Signa HDx, General Electric Healthcare,
Milwaukee) with a 16-channel receive-only phase-array surface
coil (NOVA Medical, Wilmington). The fMRI data were acquired
at 3.5mm isotropic spatial resolution and 2 s temporal resolu-
tion by using a single-shot, gradient-recalled echo-planar imag-
ing sequence (38 interleaved axial slices with 3.5mm thickness
and 3.5 × 3.5mm2 in-plane resolution, TR= 2000ms, TE= 35ms,
flip angle = 78°, field of view = 22 × 22 cm2). The fMRI data were
preprocessed and then transformed onto the individual sub-
jects’ cortical surfaces, which were co-registered across sub-
jects onto a cortical surface template based on their patterns of
myelin density and cortical folding. The preprocessing and reg-
istration were accomplished with high accuracy by using the
processing pipeline for the Human Connectome Project
(Glasser et al. 2013). When training and testing the encoding
and decoding models (as described later), the cortical fMRI sig-
nals were averaged over multiple repetitions: 2 repetitions for
the training movie, and 10 repetitions for the testing movie.
The 2 repetitions of the training movie allowed us to evaluate
intra-subject reproducibility in the fMRI signal as a way to map
the regions “activated” by natural movie stimuli (see “Mapping
cortical activations with natural movie stimuli”). The 10 repeti-
tions of the testing movie allowed us to obtain the movie-
evoked responses with high signal to noise ratios (SNR), as
spontaneous activity or noise unrelated to visual stimuli were
effectively removed by averaging over this relatively large num-
ber of repetitions. The 10 repetitions of the testing movie also
allowed us to estimate the upper bound (or “noise ceiling”), by
which an encoding model could predict the fMRI signal during
the testing movie. Although more repetitions of the training
movie would also help to increase the SNR of the training data,
it was not done because the training movie was too long to
repeat by the same times as the testing movie.

Convolutional Neural Network

We used a deep CNN (a specific implementation referred as the
“AlexNet”) to extract hierarchical visual features from the
movie stimuli. The model had been pre-trained to achieve the
best-performing object recognition in Large Scale Visual
Recognition Challenge 2012 (Krizhevsky et al. 2012). Briefly, this

CNN included 8 layers of computational units stacked into a
hierarchical architecture: the first 5 were convolutional layers,
and the last 3 layers were fully connected for image-object clas-
sification (Supplementary Fig. 1). The image input was fed into
the first layer; the output from one layer served as the input to
its next layer. Each convolutional layer contained a large num-
ber of units and a set of filters (or kernels) that extracted filtered
outputs from all locations from its input through a rectified lin-
ear function. Layer 1 through 5 consisted of 96, 256, 384, 384,
and 256 kernels, respectively. Max-pooling was implemented
between layer 1 and layer 2, between layer 2 and layer 3, and
between layer 5 and layer 6. For classification, layer 6 and 7
were fully connected networks; layer 8 used a softmax function
to output a vector of probabilities, by which an input image
was classified into individual categories. The numbers of units
in layer 6 to 8 were 4096, 4096, and 1000, respectively.

Note that the second highest layer in the CNN (i.e., the sev-
enth layer) effectively defined a semantic space to support the
categorization at the output layer. In other words, the semantic
information about the input image was represented by a (4096-
dimensional) vector in this semantic space. In the original
AlexNet, this semantic space was used to classify ~1.3 million
natural pictures into 1 000 fine-grained categories (Krizhevsky
et al. 2012). Thus, it was generalizable and inclusive enough to
also represent the semantics in our training and testing
movies, and to support more coarsely defined categorization.
Indeed, new classifiers could be built for image classification
into new categories based on the generic representations in
this same semantic space, as shown elsewhere for transfer
learning (Razavian et al. 2014).

Many of the 1000 categories in the original AlexNet were not
readily applicable to our training or testing movies. Thus, we
reduced the number of categories to 15 for mapping categorical
representations and decoding object categories from fMRI. The
new categories were coarser and labeled as “indoor, outdoor,
people, face, bird, insect, water-animal, land-animal, flower,
fruit, natural scene, car, airplane, ship, and exercise”. These
categories covered the common content in both the training
and testing movies. With the redefined output layer, we
trained a new softmax classifier for the CNN (i.e., between
the seventh layer and the output layer), but kept all lower
layers unchanged. We used ~20 500 human-labeled images to
train the classifier while testing it with a different set of
~3500 labeled images. The training and testing images were
all randomly and evenly sampled from the aforementioned
15 categories in ImageNet, followed by visual inspection to
replace mis-labeled images.

In the softmax classifier (a multinomial logistic regression
model), the input was the semantic representation, y, from the
seventh layer in the CNN, and the output was the normalized
probabilities, q, by which the image was classified into individ-
ual categories. The softmax classifier was trained by using the
mini-batch gradient descend to minimize the Kullback–Leibler
(KL) divergence from the predicted probability, q, to the ground
truth, p, in which the element corresponding to the labeled cat-
egory was set to 1 and others were 0s. The KL divergence indi-
cated the amount of information lost when the predicted
probability, q, was used to approximate p. The predicted proba-
bility was expressed as = ( + )

∑ ( + )
q y b

y b
exp W
exp W

, parameterized with W

and b. The objective function that was minimized for training

the classifier was expressed as below:

( || ) = ( ) − ( ) = −⟨ ⟩ + ⟨ ⟩ ( )D p q H p q H p p q p p, , log , log , 1KL
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where ( )H p was the entropy of p, and ( )H p q, was the cross-
entropy of p and q, and 〈⋅〉 stands for inner product. The objec-
tive function was minimized with L2-norm regularization
whose parameter was determined by cross-validation. About
3075 validation images (15% of the training images) were uni-
formly and randomly selected from each of the 15 categories.
When training the model, the batch size was 128 samples per
batch, the learning rate was initially 10−3 reduced by 10−6 every
iteration. After training with 100 epochs, the classifier achieved
a top-1 error of 13.16% with the images in the testing set.

Once trained, the CNN could be used for feature extraction
and image recognition by a simple feedforward pass of an input
image. Specifically, passing a natural image into the CNN
resulted in an activation value at each unit. Passing every
frame of a movie resulted in an activation time series from
each unit, representing the fluctuating representation of a spe-
cific feature in the movie. Within a single layer, the units that
shared the same kernel collectively output a feature map given
every movie frame. Herein we refer to the output from each
layer as the output of the rectified linear function before max-
pooling (if any).

Deconvolutional Neural Network (De-CNN)

While the CNN implemented a series of cascaded “bottom-up”
transformations that extracted nonlinear features from an input
image, we also used the deconvolutional neural network (De-
CNN) to approximately reverse the operations in the CNN, for a
series of “top-down” projections as described in detail elsewhere
(Zeiler and Fergus 2014). Specifically, the outputs of 1 or multiple
units could be unpooled, rectified, and filtered onto its lower
layer, until reaching the input pixel space. The unpooling step
was only applied to the layers that implemented max-pooling in
the CNN. Since the max-pooling was non-invertible, the unpool-
ing was an approximation while the locations of the maxima
within each pooling region were recorded and used as a set of
switch variables. Rectification was performed as point-wise rec-
tified linear thresholding by setting the negative units to 0. The
filtering step was done by applying the transposed version of the
kernels in the CNN to the rectified activations from the immedi-
ate higher layer, to approximate the inversion of the bottom-up
filtering. In the De-CNN, rectification and filtering were indepen-
dent of the input, whereas the unpooling step was dependent on
the input. Through the De-CNN, the feature representations at a
specific layer could yield a reconstruction of the input image
(Zeiler and Fergus 2014). This was utilized for reconstructing the
visual input based on the first-layer feature representations esti-
mated from fMRI data (see details of “Reconstructing natural
movie stimuli” in “Materials and Methods”). Such reconstruction
is unbiased by the input image, since the De-CNN did not per-
form unpooling from the first layer to the pixel space.

Mapping Cortical Activations with Natural Movie
Stimuli

Each segment of the training movie was presented twice to
each subject. This allowed us to map cortical locations acti-
vated by natural movie stimuli, by computing the intra-subject
reproducibility in voxel time series (Hasson et al. 2004; Lu et al.
2016). For each voxel and each segment of the training movie,
the intra-subject reproducibility was computed as the correla-
tion of the fMRI signal when the subject watched the same
movie segment for the first time and for the second time. After
converting the correlation coefficients to z scores by using the

Fisher’s z-transformation, the voxel-wise z scores were aver-
aged across all 18 segments of the training movie. Statistical
significance was evaluated by using 1-sample t-test (P< 0.01,
DOF= 17, Bonferroni correction for the number of cortical vox-
els), revealing the cortical regions activated by the training
movie. Then, the intra-subject reproducibility maps were aver-
aged across the 3 subjects. The averaged activation map was
used to create a cortical mask that covered all significantly acti-
vated locations. To be more generalizable to other subjects or
stimuli, we slightly expanded the mask. The final mask con-
tained 10 214 voxels in the visual cortex, approximately 17.2%
of the whole cortical surface.

Bivariate Analysis to Relate CNN Units to Brain Voxels

We compared the outputs of CNN units to the fMRI signals at
cortical voxels during the training movie, by evaluating the cor-
relation between every unit and every voxel. Before this bivari-
ate correlation analysis, the single unit activity in the CNN was
log-transformed and convolved with a canonical hemodynamic
response function (HRF) with the positive peak at 4 s. Such pre-
processing was to account for the difference in distribution,
timing, and sampling between the unit activity and the fMRI
signal. The unit activity was non-negative and sparse; after log-
transformation (i.e., ( + )log y 0.01 where y indicated the unit
activity), it followed a distribution similar to that of the fMRI
signal. The HRF accounted for the temporal delay and smooth-
ing due to neurovascular coupling. Here, we preferred a pre-
defined HRF to a model estimated from the fMRI data itself.
While the latter was data-driven and used in previous studies
(Nishimoto et al. 2011; Güçlü and van Gerven 2015b), it might
cause overfitting. A pre-defined HRF was suited for more conser-
vative estimation of the bivariate (unit-to-voxel) relationships.
Lastly, the HRF-convolved unit activity was down-sampled to
match the sampling rate of fMRI. With such preprocessing, the
bivariate correlation analysis was used to map the retinotopic,
hierarchical, and categorical representations during natural
movie stimuli, as described subsequently.

Retinotopic Mapping
In the first layer of the CNN, individual units extracted features
(e.g., orientation-specific edge) from different local (11-by-11
pixels) patches in the input image. We computed the correla-
tion between the fMRI signal at each cortical location and the
activation time series of every unit in the first layer of the CNN
during the training movie. For a given cortical location, such
correlations formed a 3-D array: 2 dimensions corresponding to
the horizontal and vertical coordinates in the visual field, and
the third dimension corresponding to 96 different local features
(see Fig. 7c). As such, this array represented the simultaneous
tuning of the fMRI response at each voxel by retinotopy, orien-
tation, color, contrast, spatial frequency, etc. We reduced the 3-
D correlation array into a 2-D correlation matrix by taking the
maximal correlation across different visual features. As such,
the resulting correlation matrix depended only on retinotopy,
and revealed the population receptive field (pRF) of the given
voxel. The pRF center was determined as the centroid of the
top 20 locations with the highest correlation values, and its
polar angle and eccentricity were further measured with
respect to the central fixation point. Repeating this procedure
for every cortical location gave rise to the putative retinotopic
representation of the visual cortex. We compared this retinoto-
pic representation obtained with natural visual stimuli to the
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visual-field maps obtained with the standard retinotopic map-
ping as previously reported elsewhere (Abdollahi et al. 2014).

Hierarchical Mapping
The feedforward visual processing passes through multiple
cascaded stages in both the CNN and the visual cortex. In line
with previous studies (Khaligh-Razavi and Kriegeskorte 2014;
Yamins et al. 2014; Güçlü and van Gerven 2015a, b; Cichy et al.
2016; Kubilius et al. 2016; Eickenberg et al. 2016; Horikawa and
Kamitani 2017), we explored the correspondence between indi-
vidual layers in the CNN and individual cortical regions under-
lying different stages of visual processing. For this purpose, we
computed the correlations between the fMRI signal at each cor-
tical location and the activation time series from each layer in
the CNN, and extracted the maximal correlation. We inter-
preted this maximal correlation as a measure of how well a
cortical location corresponded to a layer in the CNN. For each
cortical location, we identified the best corresponding layer and
assigned its layer index to this location; the assigned layer
index indicated the processing stage this location belonged to.
The cortical distribution of the layer-index assignment pro-
vided a map of the feedforward hierarchical organization of the
visual system.

Mapping Representations of Object Categories
To explore the correspondence between the high-level visual
areas and the object categories encoded by the output layer of
the CNN, we examined the cortical fMRI correlates to the 15
categories output from the CNN. Here, we initially focused on
the “face” because face recognition was known to involve spe-
cific visual areas, such as the fusiform face area (FFA)
(Kanwisher et al. 1997; Johnson 2005). We computed the corre-
lation between the activation time series of the face-labeled
unit (the unit labeled as “face” in the output layer of the CNN)
and the fMRI signal at every cortical location, in response to
each segment of the training movie. The correlation was then
averaged across segments and subjects. The significance of the
average correlation was assessed using a block permutation
test (Adolf et al. 2014) in consideration of the auto-correlation
in the fMRI signal. Specifically, the time series was divided into
50-s blocks of adjacent 25 volumes (TR= 2 s). The block size was
chosen to be long enough to account for the auto-correlation of
fMRI and to ensure a sufficient number of permutations to gen-
erate the null distribution. During each permutation step, the
“face” time series underwent a random shift (i.e., removing a
random number of samples from the beginning and adding
them to the end) and then the time-shifted signal was divided
into blocks, and permuted by blocks. For a total of 100 000 times
of permutations, the correlations between the fMRI signal and
the permuted “face” time series was calculated. This procedure
resulted in a realistic null distribution, against which the P
value of the correlation (without permutation) was calculated
with Bonferroni correction by the number of voxels. The signifi-
cantly correlated voxels (P< 0.01) were displayed to reveal corti-
cal regions responsible for the visual processing of human
faces. The same strategy was also applied to the mapping of
other categories.

Voxel-wise Encoding Models

Furthermore, we attempted to establish the CNN-based predic-
tive models of the fMRI response to natural movie stimuli. Such
models were defined separately for each voxel, namely voxel-
wise encoding models (Naselaris et al. 2011), through which the

voxel response was predicted from a linear combination of the
feature representations of the input movie. Conceptually simi-
lar encoding models were previously explored with low-level
visual features (Kay et al. 2008; Nishimoto et al. 2011) or high-
level semantic features (Huth et al. 2012, 2016a), and more
recently with hierarchical features extracted by the CNN from
static pictures (Güçlü and van Gerven 2015a; Eickenberg et al.
2016). Here, we extended these prior studies to focus on natural
movie stimuli while using principal component analysis (PCA)
to reduce the huge dimension of the feature space attained
with the CNN.

Specifically, PCA was applied to the feature representations
obtained from each layer of the CNN given the training movie.
Principal components were retained to keep 99% of the vari-
ance while spanning a much lower-dimensional feature space,
in which the representations followed a similar distribution as
did the fMRI signal. This dimension reduction mitigated the
potential risk of overfitting with limited training data. In the
reduced feature space, the feature time series were readily
comparable with the fMRI signal without additional nonlinear
(log) transformation.

Mathematically, let Yl
o be the output from all units in layer l

of the CNN; it is an m-by-p matrix (m is the number of video
frames in the training movie, and p is the number of units). The
time series extracted by each unit was standardized (i.e., remove
the mean and normalize the variance). Let Bl be the principal
basis of Yl

o; it is a p-by-q matrix (q is the number of components).
Converting the feature representations from the unit-wise space
to the component-wise space is expressed as below:

= ( )Y Y B , 2n
l l l

o

where Yn
l is the transformed feature representations in the

dimension-reduced feature space spanned by unitary columns
in the matrix, Bl. The transpose of Bl also defined the transfor-
mation back to the original space.

Following the dimension reduction, the feature time series, Yn
l ,

were convolved with a HRF, and then down-sampled to match
the sampling rate of fMRI. Hereafter, Yl stands for the feature time
series for layer l after convolution and down-sampling. These fea-
ture time series were used to predict the fMRI signal at each voxel
through a linear regression model, elaborated as below.

Given a voxel v, the voxel response xv was modeled as a lin-
ear combination of the feature time series, Yl, from the l-th
layer in the CNN, as expressed in Eq. (3):

= + + ε ( )x Y w b , 3v
l

v
l

v
l

where wv
l is a q-by-1 vector of the regression coefficients; bv

l is
the bias term; ε is the error unexplained by the model. Least-
squares estimation with L2-norm regularization, as Eq. (4), was
used to estimate the regression coefficients based on the data
during the training movie:

λ( ) = − − + ( )f w x Y w b w . 4v
l

v
l

v
l

v
l

v
l

2

2

2

2

Here, the L2 regularization was used to prevent the model
from overfitting limited training data. The regularization
parameter λ and the layer index l were both optimized through
a 9-fold cross-validation. Briefly, the training data were equally
split into 9 subsets: 8 for the model estimation, 1 for the model
validation. The validation was repeated 9 times such that each
subset was used once for validation. The parameters (λ, l) were
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chosen to maximize the cross-validation accuracy. With the
optimized parameters, we refitted the model using the entire
training samples to yield the final estimation of the voxel-wise
encoding model. The final encoding model set up a computa-
tional pathway from the visual input to the evoked fMRI
response at each voxel via its most predictive layer in the CNN.

After training the encoding model, we tested the model’s
accuracy in predicting the fMRI response to all 5 segments of
the testing movie, for which the model was not trained. For
each voxel, the prediction accuracy was measured as the corre-
lation between the measured fMRI response and the response
predicted by the voxel-specific encoding model, averaged
across the segments of the testing movie. The significance of
the correlation was assessed using a block permutation test
(Adolf et al. 2014), while considering the auto-correlation in the
fMRI signal, similarly as the significance test for the unit-to-
voxel correlation (see “Mapping representations of object cate-
gories” in “Materials and Methods”). Briefly, the predicted fMRI
signal was randomly block-permuted in time for 100 000 times
to generate an empirical null distribution, against which the
prediction accuracy was evaluated for significance (P < 0.001,
Bonferroni correction by the number of voxels). The prediction
accuracy was also evaluated for regions of interest (ROIs)
defined with multi-modal cortical parcellation (Glasser et al.
2016). For the ROI analysis, the voxel-wise prediction accuracy
was averaged within each ROI. The prediction accuracy was
evaluated for each subject, and then compared and averaged
across subjects.

The prediction accuracy was compared with an upper bound
by which the fMRI signal was explainable by the visual stimuli,
given the presence of noise or ongoing activity unrelated to the
stimuli. This upper bound, defining the explainable variance for
each voxel, depended on the signal to noise ratio of the evoked
fMRI response. It was measured voxel by voxel based on the
fMRI signals observed during repeated presentations of the test-
ing movie. Specifically, 10 repetitions of the testing movie were
divided by half. This 2-half partition defined an (ideal) control
model: the signal averaged within the first half was used to pre-
dict the signal averaged within the second half. Their correla-
tion, as the upper bound of the prediction accuracy, was
compared with the prediction accuracy obtained with the voxel-
wise encoding model in predicting the same testing data. The
difference between their prediction accuracies (z score) was
assessed by paired t-test (P< 0.01) across all possible 2-half parti-
tions and all testing movie segments. For those significant vox-
els, we then calculated the percentage of the explainable
variance that was not explained by the encoding model.
Specifically, let Vc be the potentially explainable variance; let Ve

be the variance explained by the encoding model; so, ( − )V V V/c e c

measures the degree by which the encoding falls short in
explaining the stimulus-evoked response (Wu et al. 2006).

Predicting Cortical Responses to Images and Categories

After testing their ability to predict cortical responses to unseen
stimuli, we further used the encoding models to predict voxel-
wise cortical responses to arbitrary pictures. Specifically, 15 000
images were uniformly and randomly sampled from 15 catego-
ries in ImageNet (i.e., “face, people, exercise, bird, land-animal,
water-animal, insect, flower, fruit, car, airplane, ship, natural
scene, outdoor, indoor”). None of these sampled images were
used to train the CNN, or included in the training or testing
movies. For each sampled image, the response at each voxel
was predicted by using the voxel-specific encoding model. The

voxel’s responses to individual images formed a response pro-
file, indicative of its selectivity to single images.

To quantify how a voxel selectively responded to images
from a given category (e.g., face), the voxel’s response profile
was sorted in a descending order of its response to every image.
Since each category contained 1000 exemplars, the percentage
of the top-1000 images belonging to 1 category was calculated
as an index of the voxel’s categorical selectivity. This selectivity
index was tested for significance using a binomial test against
a null hypothesis that the top-1 000 images were uniformly ran-
dom across individual categories. This analysis was tested spe-
cifically for voxels in the fusiform face area (FFA).

For each voxel, its categorical representation was obtained
by averaging single-image responses within categories. The
representational difference between inanimate versus animate
categories was assessed, with former including “flower, fruit,
car, airplane, ship, natural scene, outdoor, indoor”, and the lat-
ter including “face, people, exercise, bird, land-animal, water-
animal, insect”. The significance of this difference was assessed
with 2-sample t-test with Bonferroni correction by the number
of voxels.

Visualizing Single-voxel Representations

The voxel-wise encoding models set up a computational path
to relate any visual input to the evoked fMRI response at each
voxel. It inspired and allowed us to reveal which part of the
visual input specifically accounted for the response at each
voxel, or to visualize the voxel’s representation of the input.
Note that the visualization was targeted to each voxel, as
opposed to a layer or unit in the CNN, as in (Güçlü and van
Gerven 2015a). This distinction was important because voxels
with activity predictable by the same layer in the CNN, may
bear highly or entirely different representations.

Let us denote the visual input as I. The response xv at a vox-
el v was modeled as = ( )x IEv v (Ev is the voxel’s encoding
model). Given the visual input I, the voxel’s visualized repre-
sentation was an optimal gradient pattern in the pixel space
that reflected the pixel-wise influence in driving the voxel’s
response. This optimization included 2 steps, combining the
visualization methods based on masking (Zhou et al. 2014; Li
2016) and gradient (Baehrens et al. 2010; Hansen et al. 2011;
Simonyan et al. 2013; Springenberg et al. 2014).

Firstly, the algorithm searched for an optimal binary mask,
Mo, such that the masked visual input gave rise to the maximal
response at the target voxel, as Eq. (5):

= { ( ∘ )} ( )M I Marg max E , 5o M v

where the mask was a 2-D matrix with the same width and
height as the visual input I, and ∘ stands for the Hadamard
product, meaning that the same masking was applied to the
red, green, and blue channels, respectively. Since the encoding
model was highly nonlinear and not convex, random optimiza-
tion (Matyas 1965) was used. A binary continuous mask (i.e.,
the pixel weights were either 1 or 0) was randomly and itera-
tively generated. For each iteration, a random pixel pattern was
generated with each pixel’s intensity sampled from a normal
distribution; this random pattern was spatially smoothed with
a Gaussian spatial-smoothing kernel (3 times of the kernel size
of first layer CNN units); the smoothed pattern was thresholded
by setting one-fourth pixels to 1 and others 0. Then, the model-
predicted response was computed given the masked input. The
iteration was stopped when the maximal model-predicted
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response (over all iterations) converged or reached 100 itera-
tions. The optimal mask was the one with the maximal
response across iterations.

After the mask was optimized, the input from the masked
region, = ∘I I Mo o, was supplied to the voxel-wise encoding
model. The gradient of the model’s output was computed with
respect to the intensity at every pixel in the masked input, as
expressed by Eq. (6). This gradient pattern described the rela-
tive influence of every pixel in driving the voxel response. Only
positive gradients, which indicated the amount of influence in
increasing the voxel response, were back-propagated and kept,
as in (Springenberg et al. 2014):

( ) = ∇ ( )| ( )=I IG E . 6v o v I Io

For the visualization to be more robust, the above 2 steps
were repeated 100 times. The weighted average of the visuali-
zations across all repeats was obtained with the weight propor-
tional to the response given the masked input for each repeat
(indexed with i), as Eq. (7). Consequently, the averaged gradient
pattern was taken as the visualized representation of the visual
input at the given voxel:

∑( ) = ( ) ( ) ( )
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I I IG
1
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v
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o v
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o
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100

This visualization method was applied to the fMRI signals
during 1 segment of the testing movie. To explore and compare
the visualized representations at different cortical locations,
example voxels were chosen from several cortical regions
across different levels, including V2, V4, MT, LO, FFA, and PPA.
Within each of these regions, we chose the voxel with the high-
est average prediction accuracy during the other 4 segments of
the testing movie. The single-voxel representations were visu-
alized only at time points where peak responses occurred at 1
or multiple of the selected voxels.

Reconstructing Natural Movie Stimuli

Opposite to voxel-wise encoding models that related visual
input to fMRI signals, decoding models transformed fMRI sig-
nals to visual and semantic representations. The former was
used to reconstruct the visual input, and the latter was used to
uncover its semantics.

For the visual reconstruction, multivariate linear regression
models were defined to take as input the fMRI signals from all
voxels in the visual cortex, and to output the representation of
every feature encoded by the first layer in the CNN. As such,
the decoding models were feature-wise and multivariate. For
each feature, the decoding model had multiple inputs and mul-
tiple outputs (i.e., representations of the given feature from all
spatial locations in the visual input), and the times of fMRI
acquisition defined the samples for the model’s input and out-
put. Equation (8) describes the decoding model for each of 96
different visual features:

= + ε ( )Y XW . 8

Here, X stands for the observed fMRI signals within the
visual cortex. It is an m-by-(k+1) matrix, where m is the number
of time points, k is the number of voxels; the last column of X
is a constant vector with all elements equal to 1. Y stands for
the log-transformed time-varying feature map. It is an m-by-p
matrix, where m is the number of time points, and p is the

number of units that encode the same local image feature (i.e.,
the convolutional kernel). W stands for the unknown weights,
by which the fMRI signals are combined across voxels to predict
the feature map. It is an (k+1)-by-p matrix with the last row
being the bias component. ε is the error term.

To estimate the model, we optimized W to minimize the
objective function below:

λ( ) = − + ( )f Y XW W W , 92
2

1
1

where the first term is the sum of squares of the errors; the sec-
ond term is the L1 regularization on W except for the bias com-
ponent; λ is the hyper-parameter balancing these 2 terms.
Here, L1 regularization was used rather than L2 regularization,
since the former favored sparsity as each visual feature in the
first CNN layer was expected to be coded by a small set of vox-
els in the visual cortex (Olshausen and Field 1997; Kay et al.
2008).

The model estimation was based on the data collected with
the training movie. λ was determined by 20-fold cross-valida-
tion, similar to the procedures used for training the encoding
models. For training, we used stochastic gradient descent opti-
mization with the batch size of 100 samples, that is, only 100
fMRI volumes were utilized in each iteration of training. To
address the overfitting problem, dropout technique (Srivastava
et al. 2014) was used by randomly dropping 30% of voxels in
every iteration, that is, setting the dropped voxels to zeros.
Dropout regularization was used to mitigate the co-linearity
among voxels and counteract L1 regularization to avoid over-
sparse weights. For the cross-validation, we evaluated for each
of the 96 features, the validation accuracy defined as the corre-
lation between the fMRI-estimated feature map and the CNN-
extracted feature map. After sorting the individual features in a
descending order of the validation accuracy, we identified those
features with relatively low cross-validation accuracy (r < 0.24),
and excluded them when reconstructing the testing movie.

To test the trained decoding model, we applied it to the
fMRI signals observed during 1 of the testing movies, according
to Eq. (8) without the error term. To evaluate the performance
of the decoding model, the fMRI-estimated feature maps were
correlated with those extracted from the CNN given the testing
movie. The correlation coefficient, averaged across different
features, was used as a measure of the accuracy for visual
reconstruction. To test the statistical significance of the recon-
struction accuracy, a block permutation test was performed.
Briefly, the estimated feature maps were randomly block-
permuted in time (Adolf et al. 2014) for 100 000 times to gener-
ate an empirical null distribution, against which the estimation
accuracy was evaluated for significance (P< 0.01), similar to the
aforementioned statistical test for the voxel-wise encoding
model.

To further reconstruct the testing movie from the fMRI-
estimated feature maps, the feature maps were individually
converted to the input pixel space using the De-CNN, and then
were summed to generate the reconstruction of each movie
frame. It is worth noting that the De-CNN did not perform
unpooling from the first layer to the pixel space; so, the recon-
struction was unbiased by the input, making the model gener-
alizable for reconstruction of any unknown visual input. As a
proof of concept, the visual inputs could be successfully recon-
structed through De-CNN given the accurate (noiseless) feature
maps (Supplementary Fig. S13).
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Semantic Categorization

In addition to visual reconstruction, the fMRI measurements
were also decoded to deduce the semantics of each movie frame
at the fMRI sampling times. The decoding model for semantic
categorization included 2 steps: 1) converting the fMRI signals to
the semantic representation of the visual input in a generaliz-
able semantic space, 2) converting the estimated semantic
representation to the probabilities by which the visual input
belonged to pre-defined and human-labeled categories.

In the first step, the semantic space was spanned by the out-
puts from the seventh CNN layer, which directly supported the
image classification at the output layer. This semantic space
was generalizable to not only novel images, but also novel cate-
gories which the CNN was not trained for (Razavian et al. 2014).
As defined in Eq. (10), the decoding model used the fMRI signals
to estimate the semantic representation, denoted as Ys (m-by-q
matrix, where q is the dimension of the dimension-reduced
semantic space (see Eq. (2) for PCA-based dimension reduction)
and m is the number of time points):

= + ε ( )Y XW , 10s s

where X stands for the observed fMRI signals within the visual
cortex, and Ws was the regression coefficients, and ε was the
error term. To train this decoding model, we used the data dur-
ing the training movie and applied L2 regularization. The fMRI-
estimated representations in the dimension-reduced semantic
space was then transformed back to the original space. The
regularization parameter and q were determined by 9-fold
cross-validation based on the correlation between estimated
representation and the ground truth.

In the second step, the semantic representation estimated
in the first step was converted to a vector of normalized proba-
bilities over categories. This step utilized the softmax classifier
established when retraining the CNN for image classification
into 15 labeled categories (see “Convolutional Neural Network”
in “Materials and Methods”).

After estimating the decoding model with the training
movie, we applied it to the data during 1 of the testing movies.
It resulted in the decoded categorization probability for individ-
ual frames in the testing movie sampled every 2 s. The top-5
categories with the highest probabilities were identified, and
their textual labels were displayed as the semantic descriptions
of the reconstructed testing movie.

To evaluate the categorization accuracy, we used top-1
through top-3 prediction accuracies. Specifically, for any given
movie frame, we ranked the object categories in a descending
order of the fMRI-estimated probabilities. If the true category
was the top-1 of the ranked categories, it was considered to be
top-1 accurate. If the true category was in the top-2 of the
ranked categories, it was considered to be top-2 accurate, so on
and so forth. The percentage of the frames that were top-1/top-2/
top-3 accurate was calculated to quantify the overall categoriza-
tion accuracy, for which the significance was evaluated by a bino-
mial test against the null hypothesis that the categorization
accuracy was equivalent to the chance level given random
guesses. Note that the ground-truth categories for the testing
movie was manually labeled by human observers, instead of the
CNN’s categorization of the testing movie.

Cross-subject Encoding and Decoding

To explore the feasibility of establishing encoding and decoding
models generalizable to different subjects, we first evaluated

the inter-subject reproducibility of the fMRI voxel response to
the same movie stimuli. For each segment of the training
movie, we calculated for each voxel the correlation of the fMRI
signals between different subjects. The voxel-wise correlation
coefficients were z-transformed and then averaged across all
segments of the training movie. We assessed the significance
of the reproducibility against zeros by using 1-sample t-test
with the degree of freedom as the total number of movie seg-
ments minus 1 (DOF= 17, Bonferroni correction for the number
of voxels, and P< 0.01).

For inter-subject encoding, we used the encoding models
trained with data from one subject to predict another subject’s
cortical fMRI responses to the testing movie. The accuracy of
inter-subject encoding was evaluated in the same way as done
for intra-subject encoding (i.e., training and testing encoding
models with data from the same subject). For inter-subject
decoding, we used the decoding models trained with one sub-
ject’s data to decode another subject’s fMRI activity for recon-
structing and categorizing the testing movie. The performance
of inter-subject decoding was evaluated in the same way as for
intra-subject decoding (i.e., training and testing decoding mod-
els with data from the same subject).

Results
Functional Alignment Between CNN and Visual Cortex

For exploring and modeling the relationships between the CNN
and the brain, we used 374 video clips to constitute a training
movie, presented twice to each subject for fMRI acquisition.
From the training movie, the CNN-extracted visual features
through hundreds of thousands of units, which were organized
into 8 layers to form a trainable bottom-up network architecture
(Supplementary Fig. 1). That is, the output of 1 layer was the
input to its next layer. After the CNN was trained for image cate-
gorization (Krizhevsky et al. 2012), each unit encoded a particu-
lar feature through its weighted connections to its lower layer,
and its output reported the representation of the encoded fea-
ture in the input image. The first layer extracted local features
(e.g., orientation, color, contrast) from the input image; the sec-
ond through seventh layers extracted features with increasing
nonlinearity, complexity, and abstraction; the highest layer
reported the categorization probabilities (Krizhevsky et al. 2012;
LeCun et al. 2015; Yamins and DiCarlo 2016). See “Convolutional
Neural Network” in “Materials and Methods” for details.

The hierarchical architecture and computation in the CNN
appeared similar to the feedforward processing in the visual
cortex (Yamins and DiCarlo 2016). This motivated us to ask
whether individual cortical locations were functionally similar
to different units in the CNN given the training movie as the
common input to both the brain and the CNN. To address this
question, we first mapped the cortical activation with natural
vision by evaluating the intra-subject reproducibility of fMRI
activity when the subjects watched the training movie for the
first versus second time (Hasson et al. 2004; Lu et al. 2016). The
resulting cortical activation was widespread over the entire
visual cortex (Fig. 2a) for all subjects (Supplementary Fig. 2).
Then, we examined the relationship between the fMRI signal at
every activated location and the output time series of every
unit in the CNN. The latter indicated the time-varying repre-
sentation of a particular feature in every frame of the training
movie. The feature time series from each unit was log-
transformed and convolved with the HRF, and then its correla-
tion to each voxel’s fMRI time series was calculated.
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Figure 2. Functional alignment between the visual cortex and the CNN during natural vision (a) Cortical activation. The maps show the cross correlations between

the fMRI signals obtained during 2 repetitions of the identical movie stimuli. (b) “Retinotopic mapping”. Cortical representations of the polar angle (left) and eccentric-

ity (right), quantified for the receptive-field center of every cortical location, are shown on the flattened cortical surfaces. The bottom insets show the receptive fields

of 2 example locations from V1 (right) and V3 (left). The V1/V2/V3 borders defined from conventional retinotopic mapping are overlaid for comparison. (c)

“Hierarchical mapping”. The map shows the index to the CNN layer most correlated with every cortical location. For 3 example locations, their correlations with dif-

ferent CNN layers are displayed in the bottom plots. (d) “Co-activation of FFA in the brain and the ‘Face’ unit in the CNN”. The maps on the right show the correlations

between cortical activity and the output time series of the “Face” unit in the eighth layer of CNN. On the left, the fMRI signal at a single voxel within the FFA is shown

in comparison with the activation time series of the “Face” unit. Movie frames are displayed at 5 peaks co-occurring in both time series for 1 segment of the training

movie. The selected voxel was chosen since it had the highest correlation with the “face” unit for other segments of the training movie, different from the one shown

in this panel. (e) “Cortical mapping of other 4 categories”. The maps show the correlation between the cortical activity and the outputs of the eighth-layer units

labeled as “indoor objects”, “land animals”, “car”, “bird”. See Supplementary Figs 2, 3, and 4 for related results from individual subjects.
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This bivariate correlation analysis was initially restricted to
the first layer in the CNN. Since the first-layer units filtered the
image patches with a fixed size at a variable location, their corre-
lations with a voxel’s fMRI signal revealed its population recep-
tive field (pRF) (see “Retinotopic mapping” in “Materials and
Methods”). The bottom insets in Figure 2b show the putative pRF
of 2 example locations corresponding to peripheral and central
visual fields. The retinotopic property was characterized by the
polar angle and eccentricity of the center of every voxel’s pRF
(Supplementary Fig. 3a), and mapped on the cortical surface
(Fig. 2b). The resulting retinotopic representations were consis-
tent across subjects (Supplementary Fig. 3), and similar to the
maps obtained with standard retinotopic mapping (Wandell
et al. 2007; Abdollahi et al. 2014). The retinotopic organization
reported here appeared more reasonable than the results
obtained with a similar analysis approach but with natural pic-
ture stimuli (Eickenberg et al. 2016), suggesting an advantage of
using movie stimuli for retinotopic mapping than using static
pictures. Beyond retinotopy, we did not observe any orientation-
selective representations (i.e., orientation columns), most likely
due to the low spatial resolution of the fMRI data.

Extending the above bivariate analysis beyond the first
layer of the CNN, different cortical regions were found to be
preferentially correlated with distinct layers in the CNN
(Fig. 2c). The lower to higher level features encoded by the first
through eighth layers in the CNN were gradually mapped
onto areas from the striate to extrastriate cortex along both
ventral and dorsal streams (Fig. 2c), consistently across sub-
jects (Supplementary Fig. 4). These results agreed with find-
ings from previous studies obtained with different analysis
methods and static picture stimuli (Güçlü and van Gerven
2015a,b; Cichy et al. 2016; Khaligh-Razavi et al. 2016; Eickenberg
et al. 2016). We extended these findings to further show that
the CNN could map the hierarchical stages of feedforward pro-
cessing underlying dynamic natural vision, with a rather sim-
ple and effective analysis method.

Furthermore, an investigation of the categorical features
encoded in the CNN revealed a close relationship with the
known properties of some high-order visual areas. For example,
a unit labeled as “face” in the output layer of the CNN was sig-
nificantly correlated with multiple cortical areas (Fig. 2d, right),
including the fusiform face area (FFA), the occipital face area
(OFA), and the face-selective area in the posterior superior tem-
poral sulcus (pSTS-FA), all of which have been shown to con-
tribute to face processing (Bernstein and Yovel 2015). Such
correlations were also relatively stronger on the right hemi-
sphere than on the left hemisphere, in line with the right hemi-
spheric dominance observed in many face-specific functional
localizer experiments (Rossion et al. 2012). In addition, the fMRI
response at the FFA and the output of the “face” unit both
showed notable peaks coinciding with movie frames that
included human faces (Fig. 2d, left). These results exemplify the
utility of mapping distributed neural-network representations
of object categories automatically detected by the CNN. In this
sense, it is more convenient than doing so by manually labeling
movie frames, as in prior studies (Huth et al. 2012; Russ and
Leopold 2015). Similar strategies were also used to reveal the
network representations of “indoor scenes”, “land animals”,
“car”, and “bird” (Fig. 2e).

Taken together, the above results suggest that the hierarchi-
cal layers in the CNN implement similar computational princi-
ples as cascaded visual areas along the brain’s visual pathways.
The CNN and the visual cortex not only share similar represen-
tations of some low-level visual features (e.g., retinotopy) and

high-level semantic features (e.g., face), but also share similarly
hierarchical representations of multiple intermediate levels of
progressively abstract visual information (Fig. 2).

Neural Encoding

Given the functional alignment between the human visual cor-
tex and the CNN as demonstrated above and previously by
others (Güçlü and van Gerven 2015a; Cichy et al. 2016;
Eickenberg et al. 2016), we further asked whether the CNN could
be used as a predictive model of the response at any cortical
location given any natural visual input. In other words, we
attempted to establish a voxel-wise encoding model (Kay et al.
2008; Naselaris et al. 2011) by which the fMRI response at each
voxel was predicted from the output of the CNN. Specifically, for
any given voxel, we optimized a linear regression model to com-
bine the outputs of the units from a single layer in CNN to best
predict the fMRI response during the training movie. We identi-
fied and used the principal components of the CNN outputs as
the regressors to explain the fMRI voxel signal. Given the train-
ing movie, the output from each CNN layer could be largely
explained by much fewer components. For the first through
eighth layers, 99% of the variance in the outputs from 290 400,
186 624, 64 896, 64 896, 43 264, 4096, 4096, 1000 units could be
explained by 10 189, 10 074, 9901, 10 155, 10 695, 3103, 2804, 241
components, respectively. Despite dramatic dimension reduc-
tion especially for the lower layers, information loss was negligi-
ble (1%), and the reduced feature dimension largely mitigated
overfitting when training the voxel-wise encoding model.

After training a separate encoding model for every voxel, we
used the models to predict the fMRI responses to 5 8-min test-
ing movies. These testing movies included different video clips
from those in the training movie, and thus unseen by the
encoding models to ensure unbiased model evaluation. The
prediction accuracy (r), measured as the correlation between
the predicted and measured fMRI responses, was evaluated for
every voxel. As shown in Figure 3a, the encoding models could
predict cortical responses with reasonably high accuracies for
nearly the entire visual cortex, much beyond the spatial extent
predictable with low-level visual features (Nishimoto et al.
2011) or high-level semantic features (Huth et al. 2012) alone.
The model-predictable cortical areas shown in this study also
covered a broader extent than was shown in prior studies using
similar CNN-based feature models (Güçlü and van Gerven
2015a; Eickenberg et al. 2016). The predictable areas even
extended beyond the ventral visual stream, onto the dorsal
visual stream, as well as areas in parietal, temporal, and frontal
cortices (Fig. 3a). These results suggest that object representa-
tions also exist in the dorsal visual stream, in line with prior
studies (de Haan and Cowey 2011; Freud et al. 2016).

Regions of interest (ROI) were selected as example areas in
various levels of visual hierarchy: V1, V2, V3, V4, lateral occipi-
tal (LO), middle temporal (MT), fusiform face area (FFA), para-
hippocampal place area (PPA), lateral intraparietal (LIP),
temporo-parietal junction (TPJ), premotor eye field (PEF), and
frontal eye field (FEF). The prediction accuracy, averaged within
each ROI, was similar across subjects, and ranged from 0.4 to
0.6 across the ROIs within the visual cortex and from 0.25 to 0.3
outside the visual cortex (Fig. 3b). These results suggest that
the internal representations of the CNN explain cortical repre-
sentations of low, middle, and high-level visual features to sim-
ilar degrees. Different layers in the CNN contributed
differentially to the prediction at each ROI (Fig. 3c). Also see
Figure 6a for the comparison between the predicted and
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measured fMRI time series during the testing movie at individ-
ual voxels.

Although the CNN-based encoding models predicted par-
tially but significantly the widespread fMRI responses during
natural movie viewing, we further asked where and to what
extent the models failed to fully predict the movie-evoked
responses. Also note that the fMRI measurements contained
noise and reflected in part spontaneous activity unrelated to
the movie stimuli. In the presence of the noise, we defined a

control model, in which the fMRI signal averaged over 5 repe-
titions of the testing movie was used to predict the fMRI signal
averaged over the other 5 repetitions of the same movie. This
control model served to define the explainable variance for
the encoding model, or the ideal prediction accuracy (Fig. 4a),
against which the prediction accuracy of the encoding models
(Fig. 4b) was compared. Relative to the explainable variance,
the CNN model tended to be more predictive of ventral visual
areas (Fig. 4c), which presumably sub-served the similar goal
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Figure 3. Cortical predictability given voxel-wise encoding models. (a) Accuracy of voxel-wise encoding models in predicting the cortical responses to novel natural

movie stimuli, which is quantified as the Pearson correlation between the measured and the model-predicted responses during the testing movie. (b) Prediction accu-

racy within regions of interest (ROIs) for 3 subjects. For each ROI, the prediction accuracy is summarized as the mean ± std correlation for all voxels within the ROI. (c)

Prediction accuracy for different ROIs by different CNN layers. For each ROI, the prediction accuracy was averaged across voxels within the ROI, and across subjects.

The curves represent the mean, and the error bars stand for the standard error.
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of object recognition as did the CNN (Yamins and DiCarlo
2016). In contrast, the CNN model still fell relatively short in
predicting the responses along the dorsal pathway (Fig. 4c),
likely because the CNN did not explicitly extract temporal fea-
tures that are important for visual action (Hasson et al. 2004).

Cortical Representations of Single-pictures or Categories

The voxel-wise encoding models provided a fully computable
pathway through which any arbitrary picture could be trans-
formed to the stimulus-evoked fMRI response at any voxel in the
visual cortex. As initially explored before (Eickenberg et al. 2016),
we conducted a high-throughput “virtual-fMRI” experiment with
15 000 images randomly and evenly sampled from 15 categories
in ImageNet (Deng et al. 2009; Russakovsky et al. 2015). These
images were taken individually as input to the encoding model
to predict their corresponding cortical fMRI responses. As a
result, each voxel was assigned with a predicted response to
every picture, and its response profile across individual pictures
reported the voxel’s functional representation (Mur et al. 2012).
For an initial proof of concept, we selected a single voxel that

showed the highest prediction accuracy within FFA—an area for
face recognition (Kanwisher et al. 1997; Bernstein and Yovel 2015;
Rossion et al. 2012). This voxel’s response profile, sorted by the
response level, showed strong face selectivity (Fig. 5a). The top-
1000 pictures that generated the strongest responses at this voxel
were mostly human faces (94.0%, 93.9%, and 91.9%) (Fig. 5b). Such
a response profile was not only limited to the selected voxel, but
shared across a network including multiple areas from both
hemispheres, for example, FFA, OFA, and pSTS-FA (Fig. 5c). It
demonstrates the utility of the CNN-based encoding models for
analyzing the categorical representations in voxel, regional, and
network levels. Extending from this example, we further com-
pared the categorical representation of every voxel, and gener-
ated a contrast map for the differential representations of
animate versus inanimate categories (Fig. 5d). We found that the
lateral and inferior temporal cortex (including FFA) was relatively
more selective to animate categories, whereas the parahippo-
campal cortex was more selective to inanimate categories
(Fig. 5d), in line with previous findings (Kriegeskorte et al. 2008;
Naselaris et al. 2012). Supplementary Figure S5 shows the compa-
rable results from the other 2 subjects.

V3
V2

V1

V3
V2V1

PPA

FFA

MTLO

V4

V4

V3A

TPJ

STS

PF

LIP

FEF

V4

V4

V3A

PPA

FFA

LOMT

TPJ

LIP

FEF

PEF

PEF

80%

0%

u
n
e
x
p
la

in
e
d
 v

a
ri
a
n
c
e

 p <0.01

V3
V2

V1

V3
V2V1

PPA

FFA

MTLO

V4

V4

V3A

TPJ

STS

PF

LI P

FEF

V4

V4

V3A

PPA

FFA

LOMT

TPJ

LIP

FEF

PEF

PEF

V3
V2

V1

V3
V2V1

PPA

FFA

MTLO

V4

V4

V3A

TPJ

STS

PF

LIP

FEF

V4

V4

V3A

PPA

FFA

LOMT

TPJ

LIP

FEF

PEF

PEF

prediction accuracy of the ideal control model(a)

prediction accuracy of the encoding model(b)

percentage of the unexplained variance (Vc - Ve)/Vc(c)

0

0.8

a
c
c
u

ra
c
y
 (

r)

0

0.8

a
c
c
u
ra

c
y
 (

r)
Figure 4. Explained variance of the encoding models. (a) Prediction accuracy of the ideal control model (average across subjects). It defines the potentially explainable

variance in the fMRI signal. (b) Prediction accuracy of the CNN-based encoding models (average across subjects). (c) The percentage of the explainable variance that is

not explained by the encoding model. Vc denotes the potentially explainable variance and Ve denotes the variance explained by the encoding model. Note that this

result was based on movie-evoked responses averaged over 5 repetitions of the testing movie, while the other 5 repetitions were used to define the ideally explainable
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Visualizing Single-voxel Representations Given Natural
Visual Input

Not only could the voxel-wise encoding models predict how a
voxel responded to different pictures or categories, such mod-
els were also expected to reveal how different voxels extract
and process different visual information from the same visual
input. To this end, we developed a method to visualize for each
single voxel its representation given a known visual input. The
method was to identify a pixel pattern from the visual input
that accounted for the voxel response through the encoding
model, revealing the voxel’s representation of the input.

To visualize single-voxel representations, we selected 6 vox-
els from V2, V4, LO, MT, FFA, and PPA (as shown in Fig. 6a, left)
as example cortical locations at different levels of visual hierar-
chy. For these voxels, the voxel-wise encoding models could
well predict their individual responses to the testing movie
(Fig. 6a, right). At 20 time points when peak responses were
observed at 1 or multiple of these voxels, the visualized

representations shed light on their different functions (Fig. 6). It
was readily notable that the visual representations of the V2
voxel were generally confined to a fixed part of the visual field,
and showed pixel patterns with local details; the V4 voxel
mostly extracted and processed information about foreground
objects rather than from the background; the MT voxel selec-
tively responded to the part of the movie frames that implied
motion or action; the LO voxel represented either body parts or
facial features; the FFA voxel responded selectively to human
and animal faces, whereas the PPA voxel revealed representa-
tions of background, scenes, or houses. These visualizations
offered intuitive illustration of different visual functions at dif-
ferent cortical locations, extending beyond their putative
receptive-field size and location.

Neural Decoding

While the CNN-based encoding models described the visual
representations of individual voxels, it is the distributed
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Figure 5. Cortical representations of single-pictures or categories. (a) The model-predicted response profile at a selected voxel in FFA given 15 000 natural pictures from

15 categories, where the selected voxel had the highest prediction accuracy when the encoding model was evaluated using the testing movie. The voxel’s responses are

sorted in descending order. (b) The top-1 000 pictures that generate the greatest responses at this FFA voxel. (c) Correlation of the response profile at this “seed” voxel

with those at other voxels (P< 0.001, Bonferroni correction). (d) The contrast between animate versus inanimate pictures in the model-predicted responses (2-sample

t-test, P< 0.001, Bonferroni correction). (e) The categorical responses at 2 example voxels. These 2 voxels show the highest animate and inanimate responses, respec-

tively. The colors correspond to the categories in (a). The results are from Subject JY, see Supplementary Fig. 5 for related results from other subjects.
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patterns of cortical activity that gave rise to realistic visual and
semantic experiences. To account for distributed neural coding,
we sought to build a set of decoding models that combine indi-
vidual voxel responses in a way to reconstruct the visual input
to the eyes (visual reconstruction), and to deduce the visual
percept in the mind (semantic categorization). Unlike previous
studies (Haxby et al. 2001; Carlson et al. 2002; Thirion et al.
2006; Kay et al. 2008; Nishimoto et al. 2011), our strategy for
decoding was to establish a computational path to directly
transform fMRI activity patterns onto individual movie frames
and their semantics captured at the fMRI sampling times.

For visual reconstruction, we defined and trained a set of
multivariate linear regression models to combine the fMRI sig-
nals across cortical voxels (not confined to V1, but all in
Supplementary S2e) in an optimal way to match every feature
map in the first CNN layer during the training movie. Such fea-
ture maps resulted from extracting various local features from
every frame of the training movie (Fig. 7a). By 20-fold cross-vali-
dation within the training data, the models tended to give more
reliable estimates for 45 (out of 96) feature maps (Fig. 7b), mostly
related to features for detecting orientations and edges, whereas
the estimates were less reliable for most color features (Fig. 7c).
In the testing phase, the trained models were used to convert
distributed cortical responses generated by the testing movie to
the estimated feature maps for the first-layer features. The
reconstructed feature maps were found to be correlated with the
actual feature maps directly extracted by the CNN (r= 0.30 ±
0.04). By using the De-CNN, every estimated feature map was
transformed back to the pixel space, where they were combined
to reconstruct the individual frames of the testing movie. Figure 8
shows some examples of the movie frames reconstructed from
fMRI versus those actually presented. The reconstruction clearly
captured the location, shape, and motion of salient objects,
despite missing color. Perceptually less salient objects and the
background were poorly reproduced in the reconstructed
images. Such predominance of foreground objects is likely attri-
buted to the effects of visual salience and attention on fMRI
activity (Desimone and Duncan 1995; Itti and Koch 2001). Thus,
the decoding in this study does not simply invert retinotopy
(Thirion et al. 2006) to reconstruct the original image, but tends
to reconstruct the image parts relevant to visual perception.
Miyawaki et al. previously used a similar computational strategy
for direct reconstruction of simple pixel patterns, for example,
letters and shapes, with binary-valued local image bases
(Miyawaki et al. 2008). In contrast to the method in that study,
the decoding method in this study utilized data-driven and bio-
logically relevant visual features to better account for natural
image statistics (Olshausen and Field 1997; Hyvarien et al. 2009).
In addition, the decoding models, when trained and tested with
natural movie stimuli, represented an apparently better account
of cortical activity underlying natural vision, than the model
trained with random images and tested for small-sized artificial
stimuli (Miyawaki et al. 2008).

To identify object categories from fMRI activity, we optimized
a decoding model to estimate the category that each movie
frame belonged to. Briefly, the decoding model included 2 parts:
1) a multivariate linear regression model that used the fMRI sig-
nals to estimate the semantic representation in the seventh (i.e.,
the second-highest) CNN layer, 2) the built-in transformation
from the seventh to the eighth (or output) layer in the CNN, to
estimate the categorization probabilities from the decoded
semantic representation. The first part of the model was trained
with the fMRI data during the training movie; the second part
was established by retraining the CNN for image classification

into 15 categories. After training, we evaluated the decoding per-
formance with the testing movie. Figure 9 shows the top-5
decoded categories, ordered by their descending probabilities, in
comparison with the true categories shown in red. On average,
the top-1/top-2/top-3 accuracies were about 48%/65%/72%, sig-
nificantly better than the chance levels (6.9%/14.4%/22.3%)
(Table 1). These results confirm that cortical fMRI activity con-
tained rich categorical representations, as previously shown
elsewhere (Huth et al. 2012, 2016a, 2016b). Along with visual
reconstruction, direct categorization yielded textual descriptions
of visual percepts. As an example, a flying bird seen by a subject
was not only reconstructed as a bird-like image, but also
described as a word “bird” (see the first frame in Figs 8 and 9).

Cross-subject Encoding and Decoding

Different subjects’ cortical activity during the same training
movie were generally similar, showing significant inter-subject
reproducibility of the fMRI signal (P< 0.01, t-test, Bonferroni cor-
rection) for 82% of the locations within visual cortex (Fig. 10a).
This lent support to the feasibility of neural encoding and decod-
ing across different subjects—predicting and decoding one sub-
ject’s fMRI activity with the encoding/decoding models trained
with data from another subject. Indeed, it was found that the
encoding models could predict cortical fMRI responses across
subjects with still significant, yet reduced, prediction accuracies
for most of the visual cortex (Fig. 10b). For decoding, low-level
feature representations (through the first layer in the CNN) could
be estimated by inter-subject decoding, yielding reasonable
accuracies only slightly lower than those obtained by training
and testing the decoding models with data from the same sub-
ject (Fig. 10c). The semantic categorization by inter-subject
decoding yielded top-1 through top-3 accuracies as 24.9%, 40.0%,
and 51.8%, significantly higher than the chance levels (6.9%,
14.4%, and 22.3%), although lower than those for intra-subject
decoding (47.7%, 65.4%, 71.8%) (Fig. 10d and Table 1). Together,
these results provide evidence for the feasibility of establishing
neural encoding and decoding models for a general population,
while setting up the baseline for potentially examining the dis-
rupted coding mechanism in pathological conditions.

Discussion
This study extends a growing body of literature in using deep-
learning models for understanding and modeling cortical repre-
sentations of natural vision (Khaligh-Razavi and Kriegeskorte
2014; Yamins et al. 2014; Güçlü and van Gerven 2015a, b; Cichy
et al. 2016; Kubilius et al. 2016; Eickenberg et al. 2016; Horikawa
and Kamitani 2017). In particular, it generalizes the use of CNN
to explain and decode widespread fMRI responses to naturalis-
tic movie stimuli, extending the previous findings obtained
with static picture stimuli. This finding lends support to the
notion that cortical activity underlying dynamic natural vision
is largely shaped by hierarchical feedforward processing driven
towards object recognition, not only for the ventral stream, but
also for the dorsal stream, albeit to a lesser degree. It sheds
light on the object representations along the dorsal stream.

Despite its lack of recurrent or feedback connections, the
CNN enables a fully computable predictive model of cortical
representations of any natural visual input. The voxel-wise
encoding model enables the visualization of single-voxel
representation, to reveal the distinct functions of individual
cortical locations during natural vision. It further creates a
high-throughput computational workbench for synthesizing
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cortical responses to natural pictures, to enable cortical map-
ping of category representation and selectivity without running
fMRI experiments. In addition, the CNN also enables direct
decoding of cortical fMRI activity to estimate the feature repre-
sentations in both visual and semantic spaces, for real-time

visual reconstruction and semantic categorization of natural
movie stimuli. In summary, the CNN-based encoding and
decoding models, trained with hours of fMRI data during movie
viewing, establish a computational account of feedforward corti-
cal activity throughout the entire visual cortex and across all
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levels of processing. Subsequently, we elaborate the implications
from methodology, neuroscience, and artificial intelligence
perspectives.

CNN Predicts Nonlinear Cortical Responses Throughout
the Visual Hierarchy

The brain segregates and integrates visual input through cas-
caded stages of processing. The relationship between the visual
input and the neural response bears a variety of nonlinearity
and complexity (Yamins and DiCarlo 2016). It is thus impossible
to hand-craft a general class of models to describe the neural
code for every location, especially for those involved in the
mid-level processing. The CNN accounts for natural image sta-
tistics with a hierarchy of nonlinear feature models learned
from millions of labeled images. The feature representations of
any image or video can be automatically extracted by the CNN,
progressively ranging from the visual to semantic space. Such
feature models offer a more convenient and comprehensive set

of predictors to explain the evoked fMRI responses, than are
manually defined (Huth et al. 2012; Russ and Leopold 2015). For
each voxel, the encoding model selects a subset from the fea-
ture bank to best match the voxel response with a linear pro-
jection. This affords the flexibility to optimally model the
nonlinear stimulus-response relationship to maximize the
response predictability for each voxel.

In this study, the model-predictable voxels cover nearly the
entire visual cortex (Fig. 3a), much beyond the early visual
areas predictable with Gabor or motion filters (Daugman 1985;
Kay et al. 2008; Nishimoto et al. 2011), or with manually defined
categorical features (Huth et al. 2012; Russ and Leopold 2015). It
is also broader than the incomplete ventral stream previously
predicted by similar models trained with limited static pictures
(Güçlü and van Gerven 2015a; Horikawa and Kamitani 2017;
Eickenberg et al. 2016). The difference is likely attributed to the
larger sample size of our training data, conveniently afforded
by video stimuli rather than picture stimuli. The PCA-based
feature-dimension reduction also contributes to more robust

Figure 8. Reconstruction of a dynamic visual experience. For each row, the top shows the example movie frames seen by 1 subject; the bottom shows the reconstruc-

tion of those frames based on the subject’s cortical fMRI responses to the movie. See Movie 1 for the reconstructed movie.
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and efficient model training. However, the encoding models
only account for a fraction of the explainable variance (Fig. 4),
and hardly explain the most lateral portion of early visual areas
(Fig. 3a). This area tends to have a lower SNR, showing lower
intra-subject reproducibility (Fig. 2a) or explainable variance
(Fig. 4a). The same issue also appears in other studies (Hasson
et al. 2004; Güçlü and van Gerven 2015a), whereas the precise
reason remains unclear.

Both the brain’s ventral stream and the CNN are presumably
driven by the same goal of object recognition (Yamins and
DiCarlo 2016). Hence, it is not surprising that the CNN is able to

explain a significant amount of cortical activity along the ven-
tral stream, in line with prior studies (Khaligh-Razavi and
Kriegeskorte 2014; Yamins et al. 2014; Güçlü and van Gerven
2015a; Eickenberg et al. 2016). It further confirms the para-
mount role of feedforward processing in object recognition and
categorization (Serre et al. 2007).

What is perhaps surprising is that the CNN also predicts
dorsal-stream activity. The ventral-dorsal segregation is a clas-
sical principle of visual processing: the ventral stream is for
perception (“what”), and the dorsal stream is for action
(“where”) (Goodale and Milner 1992). As such, the CNN aligns

Figure 9. Semantic categorization of natural movie stimuli. For each movie frame, the top-5 categories determined from cortical fMRI activity are shown in the order

of descending probabilities from the top to the bottom. The probability is also color coded in the gray scale with the darker gray indicative of higher probability. For

comparison, the true category labeled by a human observer is shown in red. Here, we present the middle frame of every continuous video clip in the testing movie

that could be labeled as one of the pre-defined categories. See Movie 1 for all other frames.
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with the former but not the latter. However, dorsal and ventral
areas are inter-connected, allowing cross-talk between the
pathways (Schenk and McIntosh 2010). The dichotomy of visual
streams is debatable (de Haan and Cowey 2011). Object repre-
sentations exist in both ventral and dorsal streams with likely
dissociable roles in visual perception (Freud et al. 2016). Our
study supports this notion. The hierarchical features extracted
by the CNN are also mapped onto the dorsal stream, showing a
representational gradient of complexity, as does the ventral
stream (Güçlü and van Gerven 2015a). Nevertheless, the CNN
accounts for a higher portion of the explainable variance for
the ventral stream than for the dorsal stream (Fig. 4). We spec-
ulate that motion and attention sensitive areas in the dorsal
stream require more than feedforward perceptual representa-
tions, while involving recurrent and feedback connections
(Kafaligonul et al. 2015) that are absent in the CNN. In this
regard, we would like to clarify that the CNN in the context of
this paper is driven by image recognition and extracts spatial
features, in contrast to 3-D convolutional network trained to
extract spatiotemporal features for action recognition (Tran
et al. 2015), which was another plausible model for the dorsal-
stream activity (Güçlü and van Gerven 2015b).

Visualization of Single-voxel Representation Reveals
Functional Specialization

An important contribution of this study is the method for visu-
alizing single-voxel representation. It reveals the specific pixel
pattern from the visual input that gives rise to the response at
the voxel of interest. The method is similar to those for visual-
izing the representations of individual units in the CNN
(Springenberg et al. 2014; Zeiler and Fergus 2014). Extending
from CNN units to brain voxels, it is perhaps helpful to view
the encoding models as an extension of the CNN, where units
are linearly projected onto voxels through voxel-wise encoding
models. By this extension, the pixel pattern is optimized to
maximize the model prediction of the voxel response, revealing
the voxel’s representation of the given visual input, using a
combination of masking (Zhou et al. 2014; Li 2016) and gradient
(Baehrens et al. 2010; Simonyan et al. 2013; Springenberg et al.
2014) based methods. Here, visualization is tailored to each
voxel, instead of each unit or layer in the CNN, setting it apart
from prior studies (Simonyan et al. 2013; Springenberg et al.
2014; Zeiler and Fergus 2014; Güçlü and van Gerven 2015a).

Utilizing this visualization method, one may reveal the dis-
tinct representations of the same visual input at different corti-
cal locations. As exemplified in Figure 6, visualization uncovers
the increasingly complex and category-selective representa-
tions for locations running downstream along the visual path-
ways. It offers intuitive insights into the distinct functions of
different locations, for example, the complementary represen-
tations at FFA and PPA. Although we focus on the methodology,
our initial results merit future studies for more systematic
characterization of the representational differences among
voxels in various spatial scales. The visualization method is
also applicable to single or multi-unit activity, to help under-
stand the localized responses of neurons or neuronal ensem-
bles (Yamins et al. 2014).

High-throughput Computational Workbench
for Studying Natural Vision

The CNN-based encoding models, trained with a large and
diverse set of natural movie stimuli, can be generalized to other
novel visual stimuli. Given this generalizability, one may use
the trained encoding models to predict and analyze cortical
responses to a large number of natural pictures or videos,
much beyond what is practically doable with fMRI scans. As
such, the encoding models constitute a high-throughput
computational workbench for studying the neural representa-
tions of natural vision. As shown here and elsewhere
(Eickenberg et al. 2016), this workbench is immediately usable
for mapping categorical representation, contrast, and selectiv-
ity, to yield novel hypotheses for further experimental investi-
gations. Open-access software platform is much desirable to
further leverage this potential.

Direct Visual Reconstruction of a Natural Movie

For decoding cortical activity, the CNN enables direct reconstruc-
tion of natural movies. It does not require any comparison
between the observed activity pattern and those generated by or
predicted from candidate pictures. This sets our method apart
from multivariate pattern analysis (Kamitani and Tong 2005;
Haynes and Rees 2006; Norman et al. 2006) and encoding-model-
based decoding (Kay et al. 2008; Naselaris et al. 2009; Nishimoto
et al. 2011). In particular, Nishimoto et al. (2011) published the
first, and to date the only, attempt to reconstruct natural movies.

Table 1 Three sub-tables show the top-1, top-2, and top-3 accuracies of categorizing individual movie frames by using decoders trained with
data from the same (intra-subject) or different (inter-subject) subject. Each row shows the categorization accuracy with the decoder trained
with a specific subject’s training data; each column shows the categorization accuracy with a specific subject’s testing data and different sub-
jects’ decoders. The accuracy was quantified as the percentage by which individual movie frames were successfully categorized as one of the
top-1, top-2, or top-3 categories. The accuracy was also quantified as a fraction number (shown next to the percentage number): the number
of correctly categorized frames over the total number of frames that could be labeled by the 15 categories (N= 214 for 1 8-min testing movie)

Decoding accuracy for the semantic descriptions of a novel movie

Train/test Subject 1 Subject 2 Subject 3

Top-1 subject 1 42.52% (91/214) 24.30% (52/214) 23.83% (51/214)
subject 2 20.09% (43/214) 50.47% (108/214) 22.90% (49/214)
subject 3 24.77% (53/214) 33.64% (72/214) 50.00% (107/214)

Top-2 subject 1 59.81% (128/214) 41.12% (88/214) 43.93% (94/214)
subject 2 35.51% (76/214) 70.09% (150/214) 35.98% (77/214)
subject 3 41.12% (88/214) 42.06% (90/214) 66.36% (142/214)

Top-3 subject 1 67.76% (145/214) 55.14% (118/214) 53.27% (114/214)
subject 2 48.13% (103/214) 74.77% (160/214) 50.93% (109/214)
subject 3 50.93% (109/214) 52.34% (112/214) 72.90% (156/214)
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They used a “try-and-error” strategy: searching a huge prior set
of videos for the most likely stimuli that would match the mea-
sured cortical activity through model prediction by the encoding
models. Arguably, this strategy is difficult to scale up because it

is impossible for any prior set to be fully inclusive. The identifica-
tion or reconstruction accuracy is dependent on and biased by
the samples in the prior set. The need for a large prior set is also
computationally expensive, limiting the decoding efficiency.
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visual reconstruction by intra-subject (blue) vs. inter-subject (red) decoding for 1 testing movie. The y-axis indicates the spatial cross correlation between the fMRI-

estimated and CNN-extracted feature maps for the first layer in the CNN. The x-axis shows multiple pairs of subjects (JY, XL, and XF). The first subject indicates the sub-

ject from whom the decoder was trained; the second subject indicates the subject for whom the decoder was tested. (d) Accuracy of categorization by intra-subject (blue)
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the mean; the dashed lines are chance levels. (*P< 10−4, **P< 10−10, ***P< 10−50). See Movie 2 for the reconstructed movie on the basis of inter-subject decoding.
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A prior study (Miyawaki et al. 2008) tried to avoid these lim-
itations. In that study, the fMRI signals were used to estimate
the contrast of local image bases, which in turn were combined
to directly reconstruct small, simple, and binary images. While
the method is not constrained or biased by any image prior,
binary image bases are not suitable for describing natural
image statistics even in the lowest level (Olshausen and Field
1997; Hyvarien et al. 2009). Also note that the decoding models
in that study were trained with a small set of random images,
and tested with simple letters and shapes. However, realistic
visual input is complex and dynamic, and natural vision
involves salience and attention (Desimone and Duncan 1995;
Itti and Koch 2001). Such complexity is unlikely captured by
random and binary pixel patterns (Lu et al. 2016). The overall
strategy, as described in Miyawaki et al. (2008), is not readily
usable to decode dynamic natural visual experiences.

Our decoding method does not require any prior set of can-
didate images, setting itself apart from the encoding-model-
based decoding (Nishimoto et al. 2011). It also uses features
learned from natural images, different from the method in
(Miyawaki et al. 2008). The latter is important because the fea-
tures in the CNN are biologically relevant (Yamins and DiCarlo
2016) and capture information useful for perception (LeCun
et al. 2015). In particular, the first layer includes features of ori-
entation, contrast, edge, and color, forming a more informative
basis set than binary image bases (Miyawaki et al. 2008).

In this study, visual reconstruction was only based on the
fMRI-decoded first-layer features. Although the feature repre-
sentations from other layers could also be estimated with com-
parable accuracies (Supplementary Fig. 8), combining the
estimated features from all layers did not improve visual recon-
struction. Multiple reasons are conceivable. Higher layers con-
tain more abstract information and contribute less to the
specific pixel patterning (Mahendran and Vedaldi 2015). The
De-CNN reverses the CNN with approximation, especially at
the unpooling step (Springenberg et al. 2014; Zeiler and Fergus
2014). As a result, the decoding errors cascade down the CNN,
causing accumulated errors in the reconstructed pixels.

In this study, the fMRI-decoded visual reconstruction
emphasized foreground and suppressed background (Fig. 8).
This intriguing finding is likely attributable to the effects from
both bottom-up salience (Itti and Koch 2001) and top-down
attention (Desimone and Duncan 1995). The CNN captures
visual salience (Simonyan et al. 2013; Canziani and Culurciello
2015), but has no mechanism for top-down attention. It thus
helps to dissociate the salience versus attention effects. To
explore the effects from salience but not attention, we applied
the decoding model to the fMRI signals predicted by the voxel-
wise encoding models. As in Supplementary Figure 9, the
resulting visual reconstruction also highlighted the foreground
objects. It suggests that visual salience is captured by the CNN
and indeed contributes to the foreground selectivity. However,
decoding of the measured fMRI signals revealed even more
focal emphases on foreground objects (Supplementary Fig. 9).
Therefore, in addition to bottom-up salience, there are other
selection mechanisms, likely top-down attention (Desimone
and Duncan 1995) that shape the fMRI responses during movie
viewing.

Direct Decoding of Semantic Representations and
Categorization

This study also demonstrates the value of using the CNN to
directly decode and categorize semantic representations. The

CNN contains a semantic space in its second highest layer. It
provides the embeddings to support object recognition in the
output layer with either finely or coarsely defined categories,
and is even transferrable to other vision tasks (Razavian et al.
2014). Hence, it represents a generalizable semantic space,
emerging progressively from the visual features in the lower
levels. The decoding model allows us to directly estimate the
representation in this semantic space for arbitrary natural sti-
muli. The decoded semantic representation is generalizable
and transferable, and independent of the definition of catego-
ries, unlike the categorical decoding method recently reported
elsewhere (Huth et al. 2016b).

In addition, the semantic space in the CNN can be readily
converted to human-defined categorical labels, by training a
classifier to match the semantic representation to the label. It
effectively translates a vector representation to a word, and
allows the textual interpretation of brain activity. The classifier
can be trained without redefining the semantic space, by only
retraining the CNN’s output layer with labeled images. So, the
classifier is separate from the decoding model. This offers inter-
esting extensions of the current decoding capabilities. One may
utilize the ever-expanding labeled images to set up various
interpretations of the semantic representations decoded from
brain activity.

Methodological Considerations

The bivariate (voxel-to-unit) correlation analysis is a simple
way to explore the correspondence between the brain and the
CNN. It does not require data-demanding training for any
encoding model, and thus applicable to data with limited
length. Despite its simplicity, the correlation analysis is effec-
tive for mapping multiple organizational patterns in cortical
representations during natural vision, including the cortical
retinotopy (Fig. 2b), hierarchy (Fig. 2c), and category representa-
tion (Fig. 2d and e). As such, this analysis, along with the
natural-vision paradigm, is a good strategy for multi-purpose
functional mapping, arguably more preferable than conven-
tional localizer or mapping paradigms. However, the bivariate
analysis has 2 major limitations. A one-to-one correspondence
between brain voxels and CNN units, is not strictly plausible;
the correlation does not account for the computation at a voxel
or region. Both limitations are addressable with the CNN-based
voxel-wise encoding models, if sufficient training data are
available.

The demand for large training data limits the practical util-
ity of the CNN-based encoding models for the individual-
subject analysis. It is not always realistic to acquire hours of
data, just for model training. Thus, it remains challenging to
expand the analysis from a few subjects to a large number of
subjects, as required for typical imaging studies. One way to
address this practical limitation is to train models with suffi-
cient data from 1 or few subjects, and extrapolate the trained
models to other subjects. Results in this study support this fea-
sibility. The encoding and decoding models could be trans-
ferred across subjects, yielding reduced yet still significant
prediction and decoding accuracy. These results are consistent
with previous findings that cortical responses to naturalistic
stimuli are highly consistent across subjects (Hasson et al.
2004; Russ and Leopold 2015; Lu et al. 2016). They also confirm
that anatomical registration succeeds at matching up function-
ally similar areas. However, further improvement in inter-
subject encoding and decoding is still desirable. It requires
future methodological development to improve the anatomical
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and/or functional alignment, in order to account for individual
differences and support group-level analysis.

When training the encoding and decoding models, regulari-
zation is necessary for mitigating model overfitting. In this
study, we prefer L2 to L1 regularization in training the voxel-
wise encoding model. L1 regularization was too computation-
ally demanding to be realistic for training and cross-validating
an encoding model for each and every voxel in the brain (59 412
voxels), with a large feature space despite dimension reduction.
In contrast, we prefer L1 to L2 regularization in training the
decoding models, because the former resulted in a better
decoding performance than the latter (Supplementary Fig. 12a),
with more yet affordable computational expense.

When training the encoding models, the training efficiency and
robustness were improved given the PCA-based dimension reduc-
tion. After the dimension reduction, the feature representations
effectively redistributed to a similar statistical distribution as the
fMRI signal, avoiding the need for log-transformation without
compromising the model-prediction performance (Supplementary
Fig. 12b). Furthermore, we used a canonical HRF to account for
neurovascular coupling at every voxel. This may or may not be
ideal, given the potential variation in HRF across locations.
However, a fixed HRF model is a conservative model-fitting strat-
egy, such that the model-prediction performance reflects the
appropriateness of the feature models. In an exploratory investi-
gation, we also took the HRF peak latency as a hyper-parameter
when training and cross-validating the encoding models. The
voxel-wise latency with optimal cross-validation performance
was on average around 4 s (Supplementary Fig. 12c), consistent
with the latency in the fixed HRF model.

Future Directions

The CNN still falls short for modeling and explaining visual-
cortical activity during dynamic natural vision (Fig. 4). Future
studies should be directed towards models that include not
only feedforward, but also feedback (Kafaligonul et al. 2015)
and recurrent (Polack and Contreras 2012) connections. A
model that best matches to the brain is expected to reflect the
brain’s architectures and principles. The human visual cortex
may use a deeper hierarchy, than the 8-layer CNN in this study,
spanning >20 visual areas (Wandell et al. 2007), and thus it may
be better explained by deeper CNNs (Simonyan and Ziserman
2014; He et al. 2015). Complementary to CNN, recurrent neural
networks (Donahue et al. 2015; Srivastava et al. 2015) account
for temporal structure in videos, learning spatiotemporal repre-
sentations more effectively than CNNs that take multiple video
frames as input (Tran et al. 2015). Feedback connections may
be added to further reflect the brain’s predictive coding (Rao
and Ballard 1999), or attention selection (Stollenga et al. 2014).
Other plausible models are generative in nature (Dayan et al.
1995; Kingma and Welling 2013), in line with the free-energy
theory—a likely principle of the brain (Friston and Kiebel 2009;
Friston 2010). Such models are worth exploring, individually or
in combination, to better explain brain activity during natural
vision. Matching network models to the brain, may lead to bet-
ter systems for artificial intelligence (AI) (Yamins et al. 2014;
Fong et al. 2017).

It is desirable to evaluate and compare different models in
explaining the brain’s responses to natural visual stimuli, as
initially explored elsewhere (Khaligh-Razavi and Kriegeskorte
2014; Yamins et al. 2014). Objective model comparison requires
efforts in making available large open data and open source,
along with standardized performance measures, ideally in an

open-competition format. Data in different studies are with dif-
ferent types (static vs. dynamic) of stimuli, of different length
and quality, with different voxel size and signal to noise ratios
(SNR), and from different subjects. Hence, one must be cautious
in comparing the quantities of model performance across stud-
ies, and carefully exercise statistical significance tests. In par-
ticular, model comparison with the correlation-based measures
of the prediction accuracy should account for the difference in
the number of samples (or the degree of freedom) and the SNR,
and be evaluated against the explainable variance in the voxel
level (Wu et al. 2006). Per-area summary statistics, although
quantitative, may not be ideal, given the variation within each
area and the variation of areal definitions between studies and
between subjects.

Future studies will benefit from data acquired with more
natural images or videos. A more diverse set of natural visual
stimuli is expected to further improve the reliability and gener-
alizability of the encoding and decoding models, providing a
common source for researchers to evaluate and compare AI
models. A general strategy may entail presenting different sti-
muli to different subjects and then combining the models
across subjects, or across labs.

What would also be desirable is the use of neural imaging or
recording with higher resolution and sensitivity. For example,
the visual reconstruction based on the decoded fMRI activity
was blurry and did not contain visual details in texture and
color (Fig. 8). This limitation is expected to limit the ability for
resolving cluttered scenes. Such information is coded in spatio-
temporal activity patterns that are difficult to resolve or distin-
guish with fMRI at the present resolution. While the decoding
models utilized all the voxels in the visual cortex, the visual
reconstruction received relatively more contributions from
lower visual areas. Voxels in color-specialized areas (e.g., V4)
did not lead to more reliable visual reconstruction in this study,
whereas another study has shown the initial promise of decod-
ing colors (Hsieh and Tse 2010).

The deep-learning-enabled brain decoding described here as
a means to recreate dynamic visual experience has significant
potential for reading and reconstructing other sensory or cogni-
tive experiences as well. Since deep-learning models are
already available for speech recognitions (Hinton et al. 2012)
and language processing (Collobert and Weston 2008), decoding
of brain measures in response to natural hearing, speech, and
language are realistically attainable goals (Huth et al. 2016a).
Likewise, since sensory imageries memories and dreams
involve neural substrates that overlap with those for real sen-
sation (Kosslyn et al. 1997; Horikawa et al. 2013), it is foresee-
able that deep-learning models would also be potentially
successful in decoding the internal images of the human mind
(Horikawa and Kamitani 2017).

Open Data

The data and source codes related to this study are online avail-
able in https://engineering.purdue.edu/libi/lab/Resource.html.

Conclusion
A deep CNN, trained with supervised learning for image recogni-
tion, forms a fully-observable model of the brain’s feed-forward
neural computation in vision. The CNN explains significant vari-
ance of cortical activity in humans watching natural videos. It pre-
dicts and visualize cortical representations nearly across all levels
of visual processing. It also supports direct decoding of cortical
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activity to reconstruct and categorize dynamic visual experiences.
Hence, deep neural networks, including CNN and its future varia-
tions, are expected to embody a rich set of computational princi-
ples to account for natural vision in humans and animals.

Supplementary Material
Supplementary data are available at Cerebral Cortex online.
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