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Abstract

Gene regulatory networks underlie biological function and cellular physiology. Alternative 

splicing (AS) is a fundamental step in gene regulatory networks and plays a key role in 

development and disease. In addition to the identification of aberrant AS events, an increasing 

number of studies are focusing on molecular determinants of AS, including genetic and epigenetic 

regulators. We review here recent efforts to identify various deregulated AS events as well as their 

molecular determinants that alter biological functions, and discuss clinical features of AS and their 

druggable potential.
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Widespread Alternative Splicing in Gene Regulation

The advent of high-throughput sequencing technologies has paved the way for genome-wide 

analyses. Recent analysis from Encyclopedia of DNA Elements (ENCODE) discovered 

more than 60,000 genes [1, 2], including protein-coding genes, long and small noncoding 

RNAs. However, the number of protein-coding genes (approximately 20,000) is surprisingly 

low given the complexity of the proteome. Alternative splicing (AS) provides a versatile 

mechanism to generate widespread structural transcript variation and proteome diversity [3]. 

Strikingly, recent data suggests that transcripts from up to 95% of multi-exon genes undergo 

some degree of alternative splicing [4, 5]. In addition to contributing to the regulation of 

gene expression, alternative splicing also alters protein sequences with subsequent effects on 

protein function.

Given the importance of the splicing process in gene regulation, it is not surprising that RNA 

splicing is often disrupted in cancer [6–8]. An increasing number of studies have 

investigated the critical roles of alternative splicing in cancer, resulting in the demonstration 

of thousands of perturbed splicing events (Figure 1). Cancer-specific alternative splicing 

events in candidate genes or splicing factors had been shown to contribute to disease 

progression [9–11]; however, dysregulation of splicing patterns on a transcriptome-wide 

scale had been less well-studied until recently. Analogous to other biological processes, such 

as transcription and translation, alternative splicing is also regulated by both cis- and trans-

acting elements [12]. This process forms an intricate splicing regulatory network that 

consists of a number of RNA regulatory sequences, RNA–protein complexes, splicing 

factors, as well as epigenetic regulators (including DNA methylation, histone modification 

and long noncoding RNAs). Integration of systems genetics with splicing regulatory 

networks will be crucial to uncover the underlying role of RNA splicing in the initiation and 

progression of cancer and to elucidate the potential of RNA splicing as a target for 

personalized medicine. Thus, we first briefly address the alternative splicing process in 

various types of cancer pathways, describe the potential regulators of alternative splicing, 

and review computational and experimental methods available to identify global changes in 

RNA splicing in cancer as well as the methods that aim to discover modulators of alternative 

splicing. Finally, we discuss the clinical utility of alternative splicing and the potential for 

exploiting alternative splicing as therapeutic target.

Aberrant Splice-ome Networks with Functional Consequences

Splice-ome networks and signal transduction in the cell

Signal transduction in the cell is a highly orchestrated and regulated process. In the last few 

years it has become more clear that the efficacy and specificity of signal transduction in a 

cell is, at heart, a problem of molecular recognition and interaction in complex networks [13, 

14]. Splicing is an important post-transcriptional component of gene regulatory networks 

(splice-ome). Many gene products mediate their function only when interacting with other 

genes in the context of networks and not in isolation [14, 15]. Indeed, widespread protein 

interaction rewiring has been observed in splice-ome networks [16, 17], revealing the plastic 

nature of alternative splicing and the necessity to precisely control it inside the cell [14]. In 

distinct cell types (with varying genotypes), precise signal transduction including the 
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splicing process controls cell decision for adaptive phenotypic output. When this process 

goes awry, it would give rise to various disease types, such as cancer.

Alternative splicing and human cancer

Many signaling pathways are modulated, at least in part, by alternative splicing in the cell 

[18, 19]. In cancer, it is likely that alternative splicing contributes to various hallmarks 

implicated in cancer development and progression (Figure 2). In particular, apoptosis, 

proliferation and metastasis are affected by alternative splicing in a large number of genes. 

For instance, alternative splicing in several genes (such as CD44 [20, 21], RAC1 [22] and 

FGFR2 [23]) are implicated in the regulation of more than one cancer hallmark. Apoptosis 

(programmed cell death) is critical to cellular homeostasis, however, cancer cells become 

insensitive to apoptotic signals through a number of mechanisms. Splicing-induced isoforms 

of several proteins can have opposing functions in regulating apoptosis [24]. In the case of 

the death receptor gene FAS, an isoform including exon 6 produces membrane-bound Fas 

and promotes apoptosis. In contrast, skipping of exon 6 produces a soluble protein that 

inhibits apoptosis [25, 26]. CASP9 serves as another example for which alternative splicing 

regulates cell apoptosis. An isoform (CASP9a) that includes a four-exon cassette results in 

the production of a pro-apoptotic protein while exclusion of the four-exon cassette 

(CASP9b) generates an anti-apoptotic protein [27]. Many other apoptosis-associated genes 

are subjected to alternative splicing regulation, such as CASP8 [28], MDM2 [29] and 

BCL2L1 [30]. These observations emphasize the prevalence of splicing dysregulation in cell 

apoptosis. Thus, manipulation of splicing favoring apoptotic isoforms of these genes could 

provide a novel therapeutic strategy.

In addition to resistance to cell death, alternative splicing plays an indispensable role in 

invasion and metastasis. An important example of this is CD44 (Figure 2), which undergoes 

extensive aberrant splicing. CD44 variants (CD44v) that contain one or more of variable 

exons have been detected in multiple cancer types. Exclusion of the variable exons produces 

the standard CD44 isoform (CD44s). Splicing of CD44 is dynamically regulated during 

epithelial–mesenchymal transition (EMT) [31]. The CD44v is predominant in epithelial cells 

while there is a gradual loss of this isoform and gain of the expression of CD44s isoform in 

cells that have undergone EMT [31]. CD44 isoform switching is required for cells to 

undergo EMT in breast cancer [32]. Moreover, CD44v promotes cell growth by activating 

Ras/MAPK signaling [33]. By contrast, CD44s which is devoid of variable exons mediates 

cell contact inhibition [34].

Moreover, recent efforts have shed new light on RNA splicing linking emerging cancer 

hallmarks, such as inflammation and avoiding immune detection. A compelling body of 

evidence suggests that inflammation and immune system dysregulation play critical roles in 

tumor progression [35, 36]. Different types of infiltrating immune cells can either support or 

inhibit tumor progression. Importantly, different splice isoforms are expressed in distinct 

immune cell types. For instance, the balance between alternative splice variants varies 

during virus-induced lymphomagenesis. Telomerase upregulation, critical for cell 

immortalization and oncogenesis, depends at least partly upon alternative splicing and 

requires an increase in active constitutively spliced isoform levels in lymphoma-derived T-

Li et al. Page 3

Trends Biochem Sci. Author manuscript; available in PMC 2019 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



cells [37]. The CD19 antigen, often expressed on many B-cell acute lymphoblastic 

leukemias (B-ALL), can be recognized by chimeric antigen receptor-armed T cells (CART). 

However, exon 2 skipping of CD19, which allows expression of the N-terminally truncated 

variant, fails to trigger CART-mediated killing of cancer cells [38].

Functional consequence of aberrant splicing

Alternative splicing often accompanies disease progression, and seems to play a functional 

role in causing disease. Could aberrant splicing exhibit a functional consequence and result 

in disease, or is it merely a byproduct during the disease process? Accumulating evidence 

has demonstrated a seemly causal role of aberrant splicing in cellular malignancy. For 

instance, knock-down of the exon 6-containing isoform of the gene DBF4B, which encodes 

a kinase with a role in DNA replication and proliferation, dramatically reduces 

tumorigenesis in colon both in vitro and in vivo [39]. In another study, upregulation of 

alternatively spliced isoform in the gene PACE4, encoding a member of the proprotein 

convertase family, leads to a dramatic increase in the progrowth differentiation factor 

GDF15 in prostate cancer [40]. Likewise, it was demonstrated that alternative splicing of 

NUMB, encoding an endocytic adaptor protein, could control cell proliferation in lung 

cancer using xenograft tumor models [41]. Furthermore, alternative spliced isoforms can 

modulate cellular functions by serving as a competitor with its common splice isoform. For 

instance, an aberrant splice isoform of PRMT1, encoding a protein arginine 

methyltransferase, modulates its kinase activity by competing for substrates, resulting in 

cellular malignancy [42]. Collectively, these data reflect the functional roles of aberrant 

splicing in eliciting disease progression.

Alternative splicing of non-coding genes and regulatory elements

While most studies have focused on AS of protein-coding genes, AS can also occur in 

noncoding RNAs. Long noncoding RNAs (lncRNAs) are a newly identified type of 

noncoding RNAs longer than 200nt that lack protein coding capacity [43]. It has been shown 

that >25% of lncRNA genes in human show evidence of AS with different functional 

outcomes [44]. AS events in lncRNAs are also observed in several cancer types. For 

example, AS of WT1-AS1 has been found in acute myeloid leukemia [45]. XIST encodes a 

lncRNA which plays a role in X-chromosome inactivation. It has two major splicing variants 

and evidence has shown that the short splicing isoform is sufficient to induce X-

chromosome inactivation [46]. Indeed, a large fraction of the human genome including 

repetitive elements (RE) [47] is transcribed [48], and undergoes AS [49]. It has been shown 

that the AS of RE could generate functional isoforms that might have implications for 

genome instability in cancer [49]. In fact, at the global level, Deveson et al. have shown that 

noncoding exons are universally alternatively spliced by targeted single-molecule and short-

read RNA-Seq [50].

Taken together, the studies discussed in this section demonstrate functional consequences of 

aberrant RNA splicing in regulating the phenotypic output at the cellular or organismal level. 

Understanding the mechanisms of alternative splicing will undoubtedly advance our 

knowledge of the processes underlying signal transduction rewiring and disease progression, 

and potentially facilitate biomarker discovery for clinical prevention or therapeutics.
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Genetic and Epigenetic Regulation of Splice-ome Neworks

Given the complexity of gene expression regulation, it is not surprising that splicing is 

intricately modulated by multiple cis- and trans-regulatory elements. With the development 

of high-throughput sequencing technologies, both genetic and epigenetic regulators of 

alternative splicing have been identified (Figure 3).

Genetic variants

Whole-genome and whole-exome sequencing projects have identified thousands of somatic 

variants in patients stricken by various diseases including cancer [51]. Deregulation of AS 

during tumorigenesis is likely subject to regulation by somatic mutations that influence 

cancer risks by affecting the function of coding or noncoding genes [52, 53]. To determine 

the mutational impact, studies have been performed to assess their association with 

expression levels of specific genomic loci (expression quantitative trait loci, or eQTLs) [54], 

as well as the extent of alternative splicing (splicing QTLs) [55]. Mutations could modulate 

RNA splicing in cis or in trans across cancer types (Figure 3), and multiple ways in which 

mutations affect splicing fidelity have been observed [56, 57]. For instance, certain 

mutations in splicing factors such as SRSF2 and the hnRNP complexes may lead to genome-

wide alterations in splicing [17, 58]. These mutations either enhance or impair the binding of 

splicing factors or mediators, thus resulting in the inclusion or skipping of exons in multiple 

genes [56, 59]. Moreover, mutations could introduce stop codons that target the transcript for 

degradation. Previous work on many cancer-related genes, including BRCA1 [60], CFTR, 

GH1 and ATM, demonstrate that mutations can induce aberrant splicing in complex 

diseases. The tumor suppressor gene BRCA1 is involved in DNA damage repair, and 

individuals with BRCA1 mutations exhibit high risk of breast cancer and ovarian cancer. For 

instance, a G/T mutation in exon 18 of BRCA1 results in exon skipping, by eliminating the 

first domain at the C-terminus, rendering the protein non-functional [61]. This example 

illustrates that genetic variants can alter RNA splicing patterns and affect the function of 

genes. However, genome-wide elucidation of genetic variants that mediate splicing 

perturbations in disease remains a challenging task.

Antisense RNAs

Recent reports have demonstrated aberrant splicing patterns could correlate with the 

expression of endogenous antisense mRNAs. Antisense RNAs are potential regulators of 

alternative splicing, transcriptional initiation and termination [62]. For example, antisense-

correlated splicing is shown for the MSH6 gene, which is involved in DNA-mismatch repair. 

The splicing of two exons of MSH6 is significantly correlated with the expression of the 

antisense gene, FBXO11, at the same genomic locus [62]. These results demonstrate the 

ability of antisense RNAs to alter splice site selection and illustrate a powerful means to 

regulate cell fate in cancer. Moreover, these splicing events occur in a cancer subtype-

specific manner [63], indicating antisense RNAs are likely an important component in the 

regulation of subtype-specific alternative splicing and tumorigenesis. A variety of 

mechanisms have been uncovered to explain the effects of antisense RNAs, such as direct 

interference of RNA Polymerase II binding, sterically blocking splice sites and thus 

redirecting the spliceosome to unhindered splice sites [64].
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Splicing Factors and RNA Binding Proteins

In addition to cis-acting elements, trans-acting regulators can also affect RNA splicing in 

cancer. Splicing factors and RNA binding proteins are key trans-regulators of alternative 

splicing (Figure 3). For example, an exon skipping event in the target RNA MST1R is 

mediated by the splicing factors SRSF1 [65] or HNRNPA2B1 [66] in cancer. These trans-
regulators can be altered by genomic mutations, which generally impair RNA-binding 

regulatory sites, thus affecting the splicing of multiple target oncogenes or tumor 

suppressors. For instance, mutations in trans-regulators SF3B1 and U2AF35 likely result in 

RNA splicing deregulation in various cancer types [67, 68]. trans-regulators could also be 

subject to transcriptional and post-transcriptional regulation, as well as epigenetic changes in 

cancer. Recently, systematic analysis has revealed widespread alternations in thousands of 

RNA binding proteins in cancer, including mutations, copy number variation and gene 

expression changes [69]. Together, these results collectively suggest that aberrant splicing 

changes contributing to the pathophysiology of cancer can be triggered by a complex 

network of cis- and trans-regulatory elements.

Transcription Factors

Comprehensive knowledge of the factors that regulate alternative splicing networks is 

critical for understanding splicing deregulation in disease. Transcription factors (TFs) 

emerge in recent years as a new class of alternative splicing regulators [70]. TBX5 has been 

established as a TF involved in development and disease [71]. TBX5 plays functional roles 

in regulating the AS process by forming a complex with the splicing factor SC35 [72]. 

Another TF named ZNF638 has also been shown to interact with splicing regulators and 

impact alternative splicing [73]. Recent studies have revealed on a global scale the 

mechanism of TFs in regulating AS. SPAR-seq (Systematic Parallel Analysis of endogenous 

RNA regulation coupled to barcode Sequencing) is a flexible screening platform able to 

probe more than 1,000 trans-acting factors for their impact on endogenous splicing events 

[74]. Based on this system, hundreds of TFs have been found to positively or negatively 

control AS events, and they regulate AS networks by directly binding RNA sequences which 

are adjacent to target exons. Furthermore, these TFs can modulate the expression of other 

splicing factors that regulate the same target exons. Last but not least, the coupling nature of 

transcription and splicing indicates that the changes in TF functions may influence splicing 

regulation. Together, these findings highlight that transcription factors represent a new layer 

of mediators that influence alternative splicing events with key functional roles in cancer.

DNA Methylation

DNA methylation is an epigenetic modification that plays an important role in regulating 

transcription [75]. However, epigenetic modifications also appear to regulate alternative 

splicing directly [76]. Alternatively spliced exons show lower levels of DNA methylation 

than constitutively spliced exons [77]. Three known factors (including CTCF, MeCP2 and 

HP1) can transmit information from DNA methylation levels to regulators of alternative 

splicing (Figure 3). CTCF and MeCP2 affect alternative splicing by modulating RNA 

Polymerase II (Pol II) elongation whereas HP1 recruits splicing factors from methylated 

DNAs to the mRNAs [77, 78]. As an example, alternative splicing of CD45 is regulated by 

Li et al. Page 6

Trends Biochem Sci. Author manuscript; available in PMC 2019 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



DNA methylation [79]. CTCF can bind to exon 5 of CD45, which serves to slow elongation 

by Pol II. This binding increases the inclusion of exon 5. However, DNA methylation can 

inhibit CTCF binding, enabling Pol II to traverse pre-mRNA more rapidly. Thus, DNA 

methylation can result in exon 5 exclusion.

Histone Modification

Histone modification represents another key epigenetic modification that serves as an 

important regulator of gene transcription. A number of studies have shown that local histone 

modifications (such as H3K36me3, H3K9me3 and acetylation), can specifically influence 

the inclusion or exclusion of alternative exons [80]. It was demonstrated that the 

chromosomal regions of CD44 variable exons are highly enriched in H3K9me3 signals [81]. 

The enriched histone modification signals are recognized by HP1, which reduces Pol II-

mediated elongation rates and facilitates inclusion of variable exons. Thus, the presence of 

H3K9me3 histone marks correlates with increased inclusion of variable exons. In addition, 

H3K9me2 was found to be associated with inclusion of alternative exons in Fibronectin 

(FN1), which plays an important role in cell adhesion, migration and differentiation [82]. 

HP1 can also recognize the H3K9me2 marks and slow down Pol II elongation, resulting in 

inclusion of exons. These data suggest that local histone modification marks can perturb the 

rate of Pol II progression leading to alternative splicing that could potentially contribute to 

the etiology of cancer [83].

Long Noncoding RNA

Recent studies have also suggested the critical roles of lncRNAs in the control of alternative 

splicing (Figure 3). In the past decade, applications of next-generation sequencing 

technologies to a number of cancer transcriptomes have revealed thousands of lncRNAs. 

Although only a small fraction of lncRNAs have been functionally characterized, several 

have been shown to have key roles in proliferation, migration or genomic stability [84, 85]. 

For instance, the expression levels of the lncRNA MALAT1 are often decreased in non-

small cell lung cancer. In normal conditions, MALAT1 is associated with splicing factors 

and blocks the recruitment of these proteins to pre-mRNA. However, when MALAT1 is 

depleted, the levels of free splicing factor proteins are then increased, resulting in perturbed 

splicing pattern [86]. Furthermore, lncRNAs can modulate local histone modifications by 

directing chromatin complexes to DNA. Thus, it is valuable to determine whether lncRNAs 

can also influence alternative splicing by modulating chromatin modifications. Indeed, 

another evolutionarily conserved lncRNA, generated from within the FGFR2 locus [87], 

promotes epithelial-specific alternative splicing of FGFR2. This lncRNA mediates 

recruitment of Polycomb-group protein and histone demethylase KDM2a to impair binding 

of a repressive chromatin complex. Together, these examples uncover a new function of 

lncRNAs in splicing modulation in cancer.

RNA editing

RNA editing, which alters the sequences of RNAs, also contributes to an additional 

regulatory layer of alternative splicing [88]. A-to-I RNA editing (deamination of adenosine 

to inosine) is the main form of RNA editing in mammals, which occurs in regions of double-
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stranded RNA (dsRNA). Adenosine deaminases acting on RNAs (ADARs) are the RNA-

editing enzymes involved in the hydrolytic deamination of A-to-I editing [89]. RNA editing 

in intronic sequences has been shown to influence alternative splicing of flanking exons. For 

example, RNA editing can result in elevated expression of signal transducer and activator of 

transcription 3 (STAT3), specifically the alternatively spliced STAT3β. Silencing ADAR1 
causes a decrease in STAT3 editing and the decreased expression of STAT3β [90]. In 

addition to protein-coding genes, RNA editing can occur in noncoding genes, such as 

lncRNAs and microRNAs (miRNAs) [91, 92]. However, how RNA editing events regulate 

alternative splicing across cancer types still remains largely unknown.

RNA modification

In addition to DNA methylation, extensive modifications of mRNAs have been identified, 

such as N6-methyladenosine (m6A) [93]. RNA modifications play a role in regulating 

alternative splicing and gene expression, and perturbations of RNA modifications are 

associated with various types of cancer [94]. It has been shown that m6A influences the 

RNA-structure-dependent accessibility of RNA binding motifs to affect RNA-protein 

interactions. For instance, m6A can alter the local structure in mRNAs and lncRNAs to 

facilitate binding of the ribonucleoprotein HNRNPC, thus affecting the abundance as well as 

alternative splicing of target RNAs [95]. Moreover, it was shown that the m6A demethylase 

FTO binds preferentially to pre-mRNAs in intronic regions, in the proximity of alternatively 

spliced exons [96]. The function of m6A modification is also mediated by proteins capable 

of recognizing m6A, such as YTHDC1. These proteins have been reported to affect 

alternative splicing patterns but the underlying mechanisms remain unclear [97]. These 

representative examples illustrate how alternative splicing is regulated through m6A 

dependent RNA structural remodeling, providing a new direction for investigating the 

regulatory roles of alternative splicing in cancer.

Computational Identification of Alternative Splicing and Regulators in 

Splice-ome

Although aberrant splicing is thought to play critical roles in disease signaling networks, a 

comprehensive overview in disease is not currently available. To address the challenge for 

genome-wide study of alternative splicing, several splice-sensitive platforms have been 

developed (Box 1 and Figure-4). The development of RNA sequencing (RNA-seq) has 

facilitated the discovery of splicing isoforms, allowing researchers to directly study the 

spectrum and expression of isoforms and their relative changes in cancer. Recently, the third-

generation DNA sequencers, such as Oxford Nanopore Technologies [98], have led to long-

read mRNA sequencing. These technologies allow to detect isoform structures at a high 

resolution, and therefore have successfully identified many novel AS events [99].

However, the advantages of these sequencing technologies cannot be realized without 

efficient and reliable bioinformatics processing. A number of computational tools have been 

proposed to identify alternative splicing events as well as genetic and epigenetic regulators 

of these processes (Table 1, Key Table). First, to map RNA sequencing data to reference 

human genomes, many bioinformatics packages are available for this task, including BWA 
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[100], Bowtie [101] and SOAP [102]. Moreover, some methods have been developed for 

mapping sequencing reads to isoforms, such as TopHat [103] and SpliceMap [104]. After 

assignment of the reads to their possible gene of origin, the next step is quantification of 

alternative splicing events and isoforms. These methods either use annotation or de novo 

reconstruction of transcripts, such as Cufflinks [105] and iReckon [106]. Most of these 

methods can estimate the majority of alternative splicing types, while some methods focus 

on specific alternative splicing events, such as EBchangePoint [107] focusing on alternative 

3’ and 5’ splicing sites.

For the study of disease transcriptomes, the basic task is to find genes or isoforms that are 

differentially expressed in disease. The importance of studying alternative splicing 

alterations has been demonstrated by the observation that in many cancers changes in 

splicing isoforms predominate while the total expression levels of the parental genes do not 

vary. Thus, an increasing number of methods are being proposed to provide an isoform or 

event view of differential splicing or expression in cancer (Table 1). For instance, MISO 

takes an exon-centric strategy to detect differentially regulated exons or isoforms by 

comparison of estimated splicing levels [108]. In addition, some models are specifically 

designed for case-control matched pairs in clinical RNA-seq datasets, such as rMATS [109]. 

Alternative transcription start site is a major mechanism for diversity of human 

transcriptome. Qin et al. have developed a computational pipeline SEASTAR to identify first 

exons from RNA-seq data alone [110]. Alternative first exon usage is then quantified and 

compared across multiple samples. In addition, SUPPA2 was proposed to identify AS by 

taking biological variability into account [111]. All of these computational methods have 

shown promising performance, and have provided powerful approaches for quantitatively 

studying differential alternative splicing in human disease.

However, the functions of most AS events in disease are still not known. It remains 

challenging to address the question of which splicing events may be causal to disease, and 

which are secondary. In cancer, for example, it could be informative to perform analysis of 

cancer stem cells versus tumor mass cells derived from these stem cells. Identifying 

molecular determinants and mechanisms that perturb alternative splicing is fundamental for 

the development of disease-specific biomarkers for prognosis and therapy. In contrast to 

identification of perturbed alternative splicing events in disease, a number of computational 

methods have been proposed to identify the determinants of alternative splicing events. 

SNPlice is proposed for identifying cis-acting, splicemodulating variants from RNA-seq data 

[112]. In addition, Jung et al. used paired DNA sequencing and RNA-seq data across a 

number of cases to show the roles of somatic mutations in disrupting splicing in cancer 

[113]. Moreover, SPANR is developed to identify genetic splicing determinants in diseases. 

Several methods have also been developed to identify the splicing QTLs, such as 

sQTLseekeR [114] and GLiMMPS [115]. To systematically integrate different types of 

omics data, recent computational algorithms [69, 116] are devised for genome-wide 

identification of molecular determinants of AS. For instance, DrAS-Net employs a network-

based approach to identify mutations at large scale that likely influence AS across cancer 

types [116]. SPAR-seq (Systematic Parallel Analysis of endogenous RNA regulation 

coupled to barcode Sequencing) is proposed to reveal global AS regulatory patterns by 

barcoded next-generation sequencing [74].
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Systematic analyses have been performed to reveal the association between gene expression, 

DNA methylation, copy number variation and microRNA expression with cancer patient 

clinical features, such as survival [117]. In contrast, despite the importance of alternative 

splicing, limited efforts have been made to associate aberrant splicing to clinical features. A 

significant decrease in the overall survival of patients is observed in hyper-spliced tumors in 

medulloblastoma [63]. Prognostic alternative mRNA splicing signatures have been identified 

in non-small cell lung cancer [118]. In addition, a statistical method named SURVIV 

(Survival analysis of mRNA Isoform Variation) [119], is designed for identifying isoform 

variations that are associated with survival. By analysis of multiple cancer datasets, it is 

demonstrated that alternative splicing-based predictors consistently outperform gene 

expression-based survival predictors. A recent genomewide analysis of AS across cancer 

types further supports that AS network perturbations correlate with patient survival in 

general [116]. Integration of clinical and gene expression information with alternative 

splicing analysis leads to optimal predictions. These results collectively demonstrate 

potential functional significance of alternative isoform variation in disease.

Concluding Remarks

It is clear that functions of gene products are dynamically regulated by alternative splicing. 

Deregulation of alternative splicing influences many aspects of pathophysiology in human 

disease. Identification of alternative splicing deregulation in disease may generate signatures 

that could guide diagnostics and lead to the discovery of novel therapeutic targets. However, 

our current knowledge on the function and regulation of splice-ome network alterations in 

disease is only at its infancy.

Our understanding of alterative splicing alterations is limited to a handful of genes that are 

well studied. In cancer, for instance, systematic approaches aided by high-throughput 

sequencing are needed to map the AS landscape across various types of cancer. With 

increasing availability of high-quality cancer transcriptomes, it is anticipated that a large 

number of AS alterations would be identified and quantified. However, despite accumulating 

evidence of cancer associated AS events, the molecular determinants contributing to cancer-

related splicing changes remain unknown in most cases. To systematically understand the 

determinants that lead to splicing deregulation, it will be important to integrate multiple 

omics datasets, such as (a) whole-genome sequencing data to identify somatic mutations that 

contribute to splicing alterations; (b) assess the copy number variation, and gene expression 

profiles to explore the alterations of splicing regulators or RNA binding proteins; and (c) 

combine large-scale epigenetic datasets to identify epigenetic regulators of splicing.

In the cell, there is often a mixture of protein isoforms generated from alterative splicing of 

the same gene, producing both “canonical” and “non-canonical”/”aberrant” splice products. 

Therefore, the ratio among this isoforms can vary, depending on if AS events are full 

(constitutive) or partial (minor). For instance, genomic mutations in RNA-binding proteins 

(RBPs) or in splice sites of the RNAs can result in alternative splicing, removing the 

canonical products [116]; while the expression levels of RBPs or RNA targets may have a 

relatively minor effect on alternative splicing. Different isoforms can exhibit distinct 

functional differences, and especially for genes that encode oligomeric complexes, the 

Li et al. Page 10

Trends Biochem Sci. Author manuscript; available in PMC 2019 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



balance of splicing isoforms can play an important regulatory role. For instance, PRMT1, 

encoding a protein arginine methyltransferase, could produce an isoform PRMT1v2 in breast 

cancer. Overexpression of this isoform could promote cell survival and invasion [120]. 

Another isoform of PRMT1 that lacks exons 8 and 9 can not form catalytically active 

oligomers with the other endogenous PRMT1 isoforms, leading to oncogenesis [42].

Moreover, genes do not act in isolation but rather interact with each other in the context of 

splice-ome networks (such as RBP-RNA interactions) during cell signaling. Molecular 

networks provide an informative platform to investigate properties of cellular systems [14, 

121]. Network-based approaches have been successfully applied to identifying cancer genes 

[122, 123]. Combining large-scale molecular interaction networks (protein-DNA, protein-

RNA, and protein-protein) may provide novel insights into the splice-ome deregulation in 

disease. To accommodate integrative analyses, the development of robust computational 

methods and modeling approaches in combination with the stateof-art ‘omics’ techniques is 

key to understanding the nature of alternative splicing and unveiling their contribution to 

disease development, progression, and therapeutic resistance.

Taken together, different genetic or epigenetic regulators may contribute to the deregulation 

of alternative splicing in human disease. With a better understanding of splicing associated 

networks in disease, we may be able to gain insight into complex genotype-phenotype 

relationships at different molecular regulatory levels, and exploit personalized isoform-based 

therapeutics and biomarkers.
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Glossary

Alternative splicing
a process by which exons or portions of exons or noncoding regions within an mRNA 

transcript are differentially joined or skipped, resulting in multiple protein isoforms encoded 

by a gene.

DNA methylation
a process by which methyl groups are added to the DNA molecule, which changes the 

activity of a DNA segment without changing the sequence

Histone modification
a covalent post-translational modification to histone proteins which includes methylation, 

phosphorylation, acetylation, ubiquitylation, and sumoylation

Long noncoding RNAs
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RNAs of >200bp nucleotides in length that lack protein coding potential

Cancer hallmarks
A set of biological processes acquired during the multistep development of human tumors

Genome wide association studies
an examination of a genome-wide set of genetic variants in different individuals to explore 

whether any variant is associated with a trait

eQTLs
DNA sequence variants that influence the expression level of one or more genes

Splicing QTLs
DNA sequence variants that influence the alternative splicing level of one or more genes
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Box 1.

Experimental Technologies for Studying Alternative Splicing.

Expressed Sequence Tag Libraries

Expressed sequence tags or ESTs are short sub-sequences of cDNA sequences, which are 

derived from fully processed mRNA. ESTs provide a broad sample of mRNA diversity 

and can be analyzed computationally [1]. ESTs or cDNA sequences are aligned to 

genomic sequences using bioinformatics programs that explore conserved splice site 

consensus sequences flanking the gaps formed by intron sequences between the aligned 

exons.

Microarrays

Tiled Genomic Arrays.

Genome tiling arrays use a set of overlapping probes to map transcribed regions to a very 

high resolution [2]. Previously non-annotated genes, exons and splicing events can be 

incorporated and interrogated, providing a comprehensive coverage. This method does 

not need for prior knowledge of exon coordinates, thus allowing de novo discovery of 

alternative splicing. The disadvantage of this platform is that it requires a significant 

expense and possess a challenge for computational analysis. Exon Arrays. Exon arrays 

can detect gene expression and alternative exon usage simultaneously. The resolution is 

increased with multiple exon centric probes within each annotated and predicted exon. 

This technology permits a comprehensive and unbiased transcriptome coverage [3, 4]. 

This platform does not contain splice-junction probes and permit discovery of novel 

alternative splicing variations.

Splice Junction Arrays.

This platform contains annotated exon-exon junction probes exclusive to individual 

isoforms and have been used to measure predetermined set of alternative splicing events 

[5, 6]. However, junction arrays cannot establish if two alternative splicing events are in 

the same or different transcripts and cross-hybridization may also generate false 

positives.

Next Generation Sequencing Technology

The recent development of the deep sequencing technologies has opened a new frontier 

for analyses of entire transcriptomes. RNA-sequencing (RNA-Seq) provides a more 

accurate measurement of transcript levels and their isoforms without a priori knowledge 

of genome [7, 8]. In this technology, cDNA fragment libraries with adaptors attached to 

one or both ends are obtained from a pool of RNA. High-throughput sequencing is 

performed to obtain short sequences from one end (single-end) or both ends (pair-end) 

from each RNA molecule. The acquired sequencing reads are aligned to a reference 

genome or gathered de novo without the reference genome sequence to get a genome-

wide transcription map. This technology allows the detection of novel splice variants and 

genome-wide splice junctions.

Outstanding Questions Box
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What are the mechanisms by which splice-ome networks are regulated and exploited by 

cancer cells?

Can aberrant splicing cause cancer? Or is splicing merely a secondary effect caused by 

defects in gene expression, epigenetic factors or chromatin structures?

How to integrate multi-omics datasets to determine molecular regulators of alternative 

splicing events in cancer?

To what extent and how do splice-ome networks contribute to phenotypic heterogeneity 

across cancer patient populations?
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Highlights

• Alternative splicing has contributed to widespread structural transcript 

variation and proteome diversity.

• Studies in various diseases showed that alternative splicing plays critical roles 

in different aspects of etiology, suggesting that alternative splice isoforms 

could potentially serve as therapeutic targets.

• Various types of genetic and epigenetic regulators of alternative splicing have 

been revealed.

• Combination of computational and experimental approaches is instrumental 

in identifying alternative splicing events as well as potential regulators.
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Figure-1. Widespread alternative splicing events across cancer types.
The number of perturbed alternative splicing events in 18 cancer types from the TCGA 

project. The Percentage Splicing Index (PSI) values for each alternative splicing event were 

compared between normal and cancer samples by Wilcox’s rank sum test. Alternative 

splicing events with FDR less than 0.01 were identified as perturbed. BLCA, bladder 

urothelial carcinoma; BRCA, breast invasive carcinoma; CHOL, cholangiocarcinoma; 

COAD, colon adenocarcinoma; ESCA, esophageal carcinoma; GBM, glioblastoma 

multiforme; HNSC, head and neck squamous carcinoma; KICH, kidney chromophobe; 

KIRC, kidney renal clear cell carcinoma; KIRP, kidney renal papillary cell carcinoma; 

LIHC, liver hepatocellular carcinoma; LUAD, lung adenocarcinoma; LUSC, lung squamous 

cell carcinoma; PRAD, prostate adenocarcinoma; READ, rectum adenocarcinoma; STAD, 

stomach adenocarcinoma; THCA, thyroid carcinoma; UCEC, uterine corpus endometrial 

carcinoma.
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Figure-2. Alternative splicing regulation implicated in cancer hallmarks.
Alternative splicing events related to ten cancer hallmarks are shown. Several examples are 

highlighted in circles.
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Figure-3. Genetic and epigenetic determinants of alternative splicing.
The upper panels show the genetic regulators of alternative splicing events, including genetic 

variants, antisense RNAs, splicing factors and RNA binding proteins, and transcription 

factors. The bottom panels show the epigenetic regulators including DNA methylation, 

histone modification, long noncoding RNAs, RNA editing and RNA methylation.
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Figure-4. 
Experimental platforms for characterizing alternative splicing events.
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Table 1.

Computational methods to identification of alternative splicing events or differential events in multiple 

conditions.

Methods Description Link ref

Cufflinks Assembles transcripts, estimates 
abundances, and tests for differential 
expression.

http://cole-trapnell-lab.github.io/cufflinks/ [1]

iReckon A method for simultaneous determination 
of the isoforms and estimation of their 
abundances.

http://compbio.cs.toronto.edu/ireckon [2]

NMFP A non-negative matrix factorization based 
method for identifying isoforms

http://www.stat.ucla.edu/~jingyi.li/packages/NMFP.zip [3]

SplicePie Classification of RNA-Seq reads based on 
three major stages of splicing

https://github.com/pulyakhina/splicing_analysis_pipeline [4]

EBChangePoint An empirical Bayes change-point model to 
identify alternative 3’ and 5’ splicing sites

http://ebchangepoint.sourceforge.net/ [5]

MISO A probabilistic framework that quantitates 
the expression of alternatively spliced 
genes and identifies differentially regulated 
isoforms.

http://genes.mit.edu/burgelab/miso [6]

DEXSeq Uses generalized linear models to test for 
differential usage of exons and hence of 
isoforms.

http://www-huber.embl.de/pub/DEXSeq/ [7]

MATS A Bayesian framework for flexible 
detection of differential alternative splicing.

http://rnaseq-mats.sourceforge.net/ [8]

SpliceSeq A resource for analysis and visualization of 
RNA- Seq data on alternative splicing.

http://bioinformatics.mdanderson.org/main/SpliceSeq:Overview [9]

ALEXA-Seq Analyze massively parallel RNA sequence 
data to catalog transcripts and assess 
differential and alternative expression of 
known and predicted mRNA isoforms.

http://www.alexaplatform.org/alexa_seq/ [10]

JuncBASE A series of scripts that calculate exon 
exclusion and inclusion counts to splicing 
events and to identify statistically 
significant affected splicing events.

http://compbio.berkeley.edu/proj/juncbase/ [11]

DiffSplice An ab initio method for the detection and 
visualization of differential alternative 
transcription.

http://www.netlab.uky.edu/p/bioinfo/DiffSplice [12]

rDiff A parametric test using known isoform 
annotations to detect isoform changes and a 
nonparametric test to detect differential 
read coverages.

http://bioweb.me/rdiff [13]

SplAdder Identification, quantification and testing of 
alternative splicing events.

http://bioweb.me/spladder [14]

jSplice De novo extraction of alternative splicing 
events from RNAsequencing data with high 
accuracy, reliability, and speed

http://www.mhs.biol.ethz.ch/research/krek/jsplice [15]

diffsplicing Model the expression levels in three 
different settings: overall gene expression 
level, absolute transcript expression level 
and relative transcript expression level

https://github.com/PROBIC/diffsplicing [16]

JunctionSeq Detection and visualization of differential 
splicing

http://hartleys.github.io/JunctionSeq/ [17]

SigFuge single gene clustering of RNA- seq reveals 
differential isoform usage

http://www.bioconductor.org/packages/devel/bioc/html/SigFuge.html [18]
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Methods Description Link ref

rMATS Robust and flexible detection of differential 
alternative splicing from replicate RNA- 
Seq data

http://rnaseq-mats.sourceforge.net/ [19]

SNPlice A computational approach for identifying 
cis-acting, splice-modulating variants from 
RNAseq data.

https://code.google.com/p/snplice/ [20]

Jung et al. Identified somatic exonic SNVs that 
disrupt splicing

Not provided the scripts. [21]

SPANR A machine-learning technique that scores 
how strongly genetic variants affect RNA 
splicing

http://tools.genes.toronto.edu/ [22]

sQTLseekeR A distance-based approach to identify the 
splicing QTLs

https://github.com/jmonlong/sQTLseekeR [23]

GLiMMPS A robust statistical method for detecting 
splicing QTLs from RNA-seq data

http://www.mimg.ucla.edu/faculty/xing/glimmps [24]

SPAR-seq A multiplexed and quantitative platform 
coupled to a sequencing output that is 
capable of linking trans-acting factors to 
endogenous gene regulation events of 
interest

https://github.com/vastgroup/vast-tools [25]

DrAS-Net A network-based method to identify the 
mutations that mediated the alternative 
splicing dysregulation in cancer

http://www.bio-bigdata.com/dras_net/index.jsp [26]
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