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Abstract

The genetic basis of chronic traumatic encephalopathy (CTE) is poorly understood. Variation in transmembrane
protein 106B (TMEM106B) has been associated with enhanced neuroinflammation during aging and with TDP-43-
related neurodegenerative disease, and rs3173615, a missense coding SNP in TMEM106B, has been implicated as a
functional variant in these processes. Neuroinflammation and TDP-43 pathology are prominent features in CTE.
The purpose of this study was to determine whether genetic variation in TMEM106B is associated with CTE risk,
pathological features, and ante-mortem dementia. Eighty-six deceased male athletes with a history of participation in
American football, informant-reported Caucasian, and a positive postmortem diagnosis of CTE without comorbid
neurodegenerative disease were genotyped for rs3173615. The minor allele frequency (MAF = 0.42) in participants
with CTE did not differ from previously reported neurologically normal controls (MAF = 0.43). However, in a case-only
analysis among CTE cases, the minor allele was associated with reduced phosphorylated tau (ptau) pathology in the
dorsolateral frontal cortex (DLFC) (AT8 density, odds ratio [OR] of increasing one quartile = 0.42, 95% confidence interval [CI]
0.22–0.79, p= 0.008), reduced neuroinflammation in the DLFC (CD68 density, OR of increasing one quartile = 0.53, 95% CI 0.
29–0.98, p= 0.043), and increased synaptic protein density (β= 0.306, 95% CI 0.065–0.546, p= 0.014). Among CTE cases,
TMEM106Bminor allele was also associated with reduced ante-mortem dementia (OR = 0.40, 95% CI 0.16–0.99, p= 0.048),
but was not associated with TDP-43 pathology. All case-only models were adjusted for age at death and duration of football
play. Taken together, variation in TMEM106Bmay have a protective effect on CTE-related outcomes.
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Introduction
Chronic traumatic encephalopathy (CTE) is a progressive
neurodegenerative disease that has been neuropathologi-
cally diagnosed in individuals with a history of repetitive
head impacts (RHI) [22], including contact and collision
sport athletes who participated in American football, ice
hockey, rugby, mixed martial arts, soccer, and boxing [20].

Currently, CTE can only be diagnosed post-mortem. In a
recent report describing a convenience sample of 202
former American football players, 99% of former National
Football League (NFL) players were neuropathologically
diagnosed with CTE at autopsy. Although the frequency
of CTE in individuals with less football exposure was
substantial, it was nonetheless lower (highest level of play
- college: 91%; highest level of play – high school: 21%)
[24]. Further, among those with CTE, former college and
professional players had both mild and severe CTE path-
ology. It is unclear why among players with comparable
RHI exposure, only some develop CTE or why disease
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severity varies. This variation may be due to individual dif-
ferences in genetic, demographic, athletic or comorbid
pathologic factors [1, 17, 39]. Previous small studies have
identified suggestive relationships between CTE and can-
didate genetic factors such as apolipoprotein E4 (APOE
ϵ4), microtubule associated protein tau (MAPT), and
transmembrane protein 106b (TMEM106B) [3]. However,
these relationships were not statistically significant and/or
have not been replicated [21, 38].
Several converging lines of evidence suggest that

TMEM106B may be involved in the development of CTE.
In CTE, previous studies have implicated neuroinflamma-
tion as a potential disease mechanism, with chronic
microglial activation triggering a positive feedback loop
with the hyperphosphorylation and aggregation of tau
[10]. TMEM106B may have a protective role with respect
to neuroinflammation. A recent genome wide associate
study (GWAS) of age-associated transcription changes
implicated TMEM106B and found that the effect size was
amplified when limited to a microglia-associated gene ex-
pression cluster [34]. The top-ranked single nucleotide
polymorphism (SNP), rs1990622, was associated with a
transcription pattern in the frontal cortex linked to youn-
ger chronological age. Among participants greater than
age 65, the rs1990622 minor allele was associated with im-
proved cognitive status. In human monocyte-derived den-
dritic cells, rs1990622 was associated with a reduced
inflammatory state. Additionally, variation in TMEM106B
is associated with TDP-43 pathology [43], a feature found
in many cases of CTE [21], as well as several other neuro-
degenerative diseases. In a GWAS of frontotemporal lobar
degeneration (FTLD)-TDP, rs1990622 was the top SNP and
achieved genome wide significance [43]. Rs1990622 also has
been associated with cognitive impairment in amyotrophic
lateral sclerosis (ALS) [44], hippocampal sclerosis in normal
aging [28], and incidence of Alzheimer’s disease (AD) in
APOE ϵ4 negative individuals [14, 36].
Here, we assessed rs3173615, the only coding SNP in

high linkage disequilibrium (LD) with rs1990622, for as-
sociation with CTE-related outcomes. Rs3173615 en-
codes a change from threonine to serine at position 185
(p.T185S), may regulate TMEM106B protein levels, and
is a suggested functional variant underlying the associ-
ation with FTLD-TDP [30]. We hypothesized that the
minor allele of rs3173615 is associated with CTE risk
and, among those with CTE, with reduced tau aggrega-
tion, TDP-43 burden, neuroinflammation, synaptic loss
and ante-mortem dementia.

Materials and methods
Participant selection
All CTE cases were ascertained from the Veterans
Affairs-Boston University-Concussion Legacy Founda-
tion (VA-BU-CLF) Brain Bank. Details on inclusion

criteria have been described previously [26]. To be eli-
gible for the brain bank, participants needed to have ex-
posure to RHI, either from contact sports, military
service or domestic violence. Clinical symptoms were
not considered in the inclusion criteria. Participants of
the current study were restricted to those who played
American football, who were reported to be Caucasian,
and who were neuropathologically diagnosed with CTE
without significant co-morbid neurodegenerative disease.
Because TMEM106B has been implicated in several
other neurodegenerations many of which can occur co-
morbid with CTE [39, 46], we excluded participants with
other significant co-morbid neurodegenerative disease.
A total of 86 of 261 brain bank participants met these
criteria (Fig. 1). An authorized legal representative pro-
vided written consent for participation and brain dona-
tion. IRB approval for the brain donation program was
obtained through the Boston University Alzheimer’s Dis-
ease & CTE Center and the Edith Nourse Rogers Me-
morial Veterans Hospital. Neurologically normal
controls were ascertained from a previous study of fron-
totemporal dementia [42]. These 376 participants had
undergone genotyping at rs3173615 and were found to
have no evidence of cognitive impairment or motor
neuron disease on clinical assessment.

Neuropathological assessment
VA-BU-CLF Brain Bank methods for pathologic process-
ing of tissue and neuropathologic evaluation have been
detailed elsewhere [45]. Briefly, the following stains were
used: luxol fast blue, hematoxylin and eosin, Bielschows-
ky’s silver, hyperphosphorylated tau (p-tau) (AT8), alpha
synuclein, amyloid beta (Aβ), and phosphorylated TDP-43

Fig. 1 Inclusion flow chart for CTE Cases. Red curved arrows indicate
participants that were excluded. Tissue was not available for genotyping
for the following reasons: 1) consults with tissue returned to consulting
neuropathologist; 2) only small fragments received; 3) tissue was
significantly degraded and did not pass quality control for genotyping
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using previously published methods [18, 19, 22]. TDP-43
pathology was assessed in paraffin sections from the
dorsolateral frontal cortex (DLFC), hippocampus, amyg-
dala, entorhinal cortex, and midbrain. The neuropatho-
logical diagnosis of CTE was made using the National
Institute of Neurological Disorders and Stroke (NINDS)/
National Institute of Biomedical Imaging and Bioengineer-
ing (NIBIB) consensus criteria based on the presence of
abnormal perivascular accumulations of p-tau in neurons,
astrocytes, and cell processes in an irregular and patchy
distribution concentrated at the depths of cortical sulci
[18]. Other neurodegenerative diseases were diagnosed
using well-established criteria for AD, dementia with Lewy
bodies (DLB), FTLD, and motor neuron disease (MND)
[4, 6, 7, 12, 15, 16, 23, 27, 29]. Neuropathologists were
blinded to all clinical data at the time of diagnosis.

Clinical assessment
VA-BU-CLF Brain Bank clinical assessment was con-
ducted as previously described utilizing telephone clin-
ical interviews with informants, online questionnaires,
and medical record review [26, 38, 40]. Briefly, each of
the following was assessed: type and amount (in years)
of contact sport play, military service, whether mood,
behavioral or cognitive symptoms were present and pro-
gressed over time, presence of functional impairment,
and cause of death. Clinical history was presented at a
multidisciplinary clinical consensus conference where it
was determined whether the participant met criteria for
dementia [26]. All interviews were conducted blinded to
the results of the neuropathological examination.

Genotyping
For CTE cases, genomic DNA was extracted from cere-
bellum using the Qiagen DNeasy Blood & Tissue Kit.
Genotyping of rs3173615 was performed using iPLEX
Assay and MassARRAY System as per manufactures
protocols. Controls were also genotyped using an iPLEX
Assay and MassARRAY System, but not as part of the
same batch.

Enzyme-linked immunosorbent assay (ELISA)
Flash frozen brain tissue was obtained from 37 of the 86
CTE cases as previously described [9]. Frozen tissue was
collected from identical regions in Broadman area 8/9.
Briefly, freshly prepared, ice cold 5 M Guanidine Hydro-
chloride in Tris-buffered saline (20 mM Tris-HCl,
150 mM NaCl, pH 7.4 TBS) containing 1:100 Halt pro-
tease inhibitor cocktail (Thermo Scientific) and 1:100
Phosphatase inhibitor cocktail 2 & 3 (Sigma) was added
to the brain tissue at 5:1 and homogenized with Qiagen
Tissue Lyser LT, at 50 Hz for 5 min. Lysate was diluted
according to manufacture protocol and spun down at
17,000 g, 4 °C, for 15 min. Supernatant was investigated

using a PSD-95 ELISA (MSD #K250QND) and run ac-
cording to manufactures protocols. Plates were analyzed
with an MSD SECTOR S 600 Imager, and results were
reported as arbitrary values. Values appeared normally
distributed on visual inspection and then were converted
to z-scores with a mean of zero and standard deviation
of one.

Digital histology and analysis
Immunostaining for AT8 and CD68 and analysis using
the Aperio ScanScope (Leica) were performed as previ-
ously described [10]. Briefly, tissue blocks of cortical
samples were taken from Broadman area 8/9 for all
cases. Whole stained DLFC sections were scanned and
digitized using an Aperio ScanScope AT Turbo. Digital
images were viewed and analyzed using Aperio Image-
Scope (Leica). Analysis of digital images were limited to
the depth of the superior frontal sulcus which was de-
noted as the bottom third of the connecting superior
and middle gyri. White matter was excluded. A custom-
ized version of the Aperio positive pixel count algorithm
(Version 9) was used to determine total AT8 positive
staining. Similarly, a modified nuclear count algorithm
(Version 9) was used to count total number of CD68
positive cells. Densities in units of count per mm2 were
obtained by standardizing quantifications to the area
measured. For both AT8-positive pixel density and
CD68-positive cell density, participants were stratified
into quartiles to account for the rightward skew of the
densities.

Statistical analysis
The association of rs3173615 with six dimensions of
CTE-related outcomes (presence of positive CTE neuro-
pathological diagnosis, AT8-positive pixel density in the
DLFC, CD68-positive cell density in the DLFC, synaptic
density as measured by PSD-95 ELISA, presence of
TDP-43 pathology in any brain region and ante-mortem
dementia) was evaluated using an additive genetic
model. Genotype and allele frequencies were compared
between cases and controls using the Cochrane-Armi-
tage Trend test and chi-squared test respectively. All
other analyses were only conducted among those with
CTE (case-only analyses). We used separate ordinal lo-
gistic regression models to estimate the relative odds of
a one quartile increase in AT8-positive pixel density or
CD68-positive cell density for each additional minor al-
lele, linear regression to estimate differences in PSD-95
synaptic density for each additional minor allele, and
separate binary logistic regression models to estimate
the relative of odds of having anti-mortem dementia or
having TDP-43 pathology for each additional minor al-
lele. All case-only analyses were adjusted for age at death
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and years of football play. Statistical analyses were per-
formed using SPSS (v.24, IBM) and R (v.3.5.0).

Results
TMEM106B genotype is not associated with CTE diagnosis
Clinical and pathological characteristics of the partici-
pants with CTE are presented in Table 1. Controls were
significantly older than the CTE cases (p = 0.01).
Rs3173615 allele and genotype frequencies were not sig-
nificantly different between cases and controls (p = 0.71
and p = 0.74, respectively).

TMEM106B genotype is associated with CTE-related
neuropathology and ante-mortem dementia in persons
with CTE
The rs3173615 minor allele (G) was significantly associ-
ated with lower p-tau (AT8-positive) pixel density in the
DLFC in a dose-dependent manner: for each G allele,
the odds of increasing one quartile in p-tau pixel density
was 0.42 (Fig. 2, Table 2). The G allele was significantly
associated with lower CD68-positive cell density in the
DLFC in a dose-dependent manner: for each G allele,
the odds of increasing one quartile in CD68-positive cell
density was 0.53 (Fig. 2, Table 2). The G allele was sig-
nificantly associated with higher synaptic density, as
measured by PSD-95 ELSIA, in a dose-dependent

manner: for each G allele, synaptic density increased by
0.31 standardized units (Table 2). Rs3173615 genotype
was not associated with the presence of TDP-43 path-
ology. However, the presence of each G allele reduced
odds of dementia prior to death by 60% (Table 3).

Discussion
In a series of former American football players with neu-
ropathologically confirmed CTE, we found that
rs3173615, a coding SNP in TMEM106B that was previ-
ously implicated with risk of FLTD-TDP, was associated
with p-tau density, CD68 density, synaptic loss, and de-
mentia status in case-only analyses. However, this variant
was not associated with risk of CTE in an analysis that
compared allele and genotype frequencies between the
CTE cases and a group of neurologically normal controls.
Although several genes have been proposed as potential

CTE risk factors, this is the first study to demonstrate that
a variant in TMEM106B is associated with CTE-related
outcomes. The findings in this study provide further evi-
dence that variation in TMEM106B is linked with neuro-
degeneration. Interestingly, the effects of TMEM106B are
heterogeneous across all diseases with which it has been
associated. In FTLD, hippocampal sclerosis, and APOE
ϵ4-negative AD, variation in TMEM106B is associated
with disease risk [14, 28, 35, 43]. However, variation in

Table 1 Clinical, genetic and pathologic characteristics of participants

Controls
(n = 376)

CTE cases
(n = 86)

P Value

Age (mean ± SD (range)) 61.02 ± 10.2 (35–90) 57.02 ± 21.19 (17–89) 0.01

Years of exposure (mean ± SD (range)) – 13.49 ± 5.47 (1–31) –

Cases with dementia (%) – 33 (38.4%) –

TMEM106B MAF 43.2% 41.9% 0.71

rs3173615 genotypes 0.74

CC (%) 123 (32.7%) 29 (33.7%)

CG (%) 181 (48.1%) 42 (48.8%)

GG (%) 72 (19.1%) 15 (17.4%)

CERAD (mean ± SD) – 0.29 ± 0.50 –

Cases with TDP-43 (%) – 27 (31.4%) –

AT8 Quartiles (positive pixel density/mm2 ± SD)

1 – 283 ± 221

2 – 2863 ± 1362

3 – 10,438 ± 3715

4 – 65,914 ± 62,629

CD68 Quartiles (Positive cell/mm2 ± SD)

1 – 93 ± 15

2 – 138 ± 10

3 – 171 ± 10

4 – 226 ± 31

CERAD Consortium to establish a registry for Alzheimer’s disease, CTE Chronic Traumatic Encephalopathy (Ranges from Stage I-IV), MAF minor allele frequency
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TMEM106B does not change the risk for ALS, but among
those with ALS, it is associated with the presentation of
cognitive impairment [44]. Similarly, in the present study,
the TMEM106B SNP rs3173615 was not associated with
CTE risk, but among those with CTE, it modified the
neuropathological and clinical presentation, influencing
p-tau density, CD68 density, synaptic loss, and odds of
dementia.
Rs3173615 underlies the production of two different

isoforms of the TMEM106B protein. The more common
C allele codes for a highly conserved threonine (T185),
whereas the less frequent G allele codes for a substitu-
tion of serine (S185) at this location [30]. Functionally,
the protein product with S185 is more rapidly degraded
than the protein product with T185 [30]. This results in
more TMEM106B protein present in C allele carriers.
Although the full mechanistic action of the protein is
unclear, TMEM106B has been implicated in controlling
the size, shape, and acidification of the lysosome [5].
Overexpression of TMEM106B can result in larger lyso-
somes that do not properly acidify and have impaired
function. Enhanced TMEM106B expression has also
been demonstrated to result in cell oxidative stress and
cytotoxicity [41]. These changes present in rs3173615 G
allele carriers with CTE could help explain the increase
in microglial activation and p-tau when compared to
those lacking this allele. A properly functioning lyso-
some is critical for the phagocytosis and elimination of
toxic proteins. Microglia as well as neurons have been

shown to participate in the removal of proteins such as
Aβ [8] and tau [2, 33]. An impaired lysosome could re-
sult in the buildup of pathogenic proteins as seen in
CTE. Future studies will be needed to investigate im-
paired lysosomal function and how that might prevent
proper elimination of ptau.
The association of TMEM106B with neuroinflamma-

tion as indicated by increased CD68-positive cell density
in participants with CTE is consistent with a recent
GWAS of age-associated transcriptional changes that
identified a genome-wide significant finding with TME
M106B. The TMEM106B signal was amplified when the
outcome was limited to a microglia-associated gene ex-
pression cluster [34]. Furthermore, ex vivo analysis in
monocyte-derived dendritic cells showed an enhanced
stimulated inflammatory response in participants with
the risk allele [34]. This increased sensitization is similar
to the priming response observed in microglia [31].
Microglia that have been exposed to a previous inflam-
matory stimulus can exhibit enhanced reactive markers
and a more severe immune response when stimulated
for a second time [32]. Microglia from individuals with
the risk allele might exist in a primed-like state. Expos-
ure to RHI may thus elicit an increased glial reactivity.
Our previous work on CTE suggests that microglia and
p-tau exist in a positive feedback loop where each com-
ponent can enhance the other [10]. However, the full
spectrum of microglial-mediated inflammatory changes
will not be fully captured using only one marker (CD68).

Fig. 2 Representative images of ptau (AT8) and neuroinflammation (CD68) staining by TMEM106B genotype. Positive staining for the respective
proteins is in red while hematoxylin counterstain is blue. All images are from the DLFC at the depth of the cortical sulcus. Scale bars represent
500 μm (a–c) and 200 μm (d–f)

Table 2 Ordinal and linear regression models predicting AT8 tau deposition, CD68 cell density, and PSD-95 concentration

AT8 tau pathology CD68 cell density PSD-95 concentration

OR 95% CI p-value OR 95% CI p-value B 95% CI p-value

TMEM106B minor G allele (additive) 0.42 0.22–0.79 0.008 0.53 0.29–0.98 0.04 0.31 0.07–0.55 0.01

TMEM106B genotype rs3173615; additive genetic models adjusted for age at death and years of American football participation; AT8 tau pathology and CD68 cell
density are stratified into quartiles and OR is for a one quartile increase; PSD-95 concentration is in standardized units; OR = odds ratio; B = standardized beta; n =
81 (AT8), 84 (CD68), or 37 (PSD-95). Cases were not included for analysis if staining was not successful due to poor tissue quality, the tissue sources had been
exhausted, or brains arrived as fragments and did not include the area of analysis
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Future studies should utilize a combination of histologic
markers and biochemical techniques to further explore
the effect TMEM106B on neuroinflammation.
Finally, TMEM106B genotype was related to dementia

status, adjusting for age at death and duration of football
play. For each protective minor allele, odds of dementia
decreased by 60%. This finding provides insight into why
certain individuals with CTE may progress to dementia
while others have slower progression and do not become
functionally impaired, even though the exposure to con-
tact sports might be similar. One possible pathologic
mechanism for the TMEM106B-dementia relationship
comes from the relationship between TMEM106B and
PSD-95 protein levels. PSD proteins are post-synaptic
density proteins that are often used as markers of synap-
tic loss and dysfunction [13]. Loss of synaptic proteins
can impair neuronal signaling and recruitment of essen-
tial neuronal proteins, leading to loss of long-term po-
tentiation and cognitive dysfunction. Synapse loss can
occur through a variety of ways [37]. Two common
pathways for synaptic loss that may occur in CTE are
neuronal death and microglia-mediated synaptic pruning
[11]. These pathways may be mediated by tau-induced
synaptic dysfunction and neuroinflammation respect-
ively. Future studies should further tease apart the
mechanisms leading to synaptic loss and its relationship
to clinical impairment.
There are several limitations to this study. CTE cases

were largely self-selected or referred by the next-of-kin
after death and are not necessarily representative of all in-
dividuals who play football. However, selection should
only bias a genetic relationship if there are pleiotropic ef-
fects that influence selection into the study [25]. Addition-
ally, methods for determination of RHI exposure and
clinical and medical history depended on retrospective re-
view and inaccuracies associated with informant-report
may introduce measurement error. Another limitation
comes from the inclusion of a separately genotyped con-
trol group for the case-control analysis. As the control
group was clinically, but not neuropathologically assessed,
it is possible they may have underlying sub-clinical path-
ology. Additionally, although the same genotyping plat-
form was used for cases and controls, they were
genotyped in separate batches, potentially introducing
bias. Ideal controls would have played football and would
not have evidence of CTE or other neurodegenerative
pathology. Unfortunately, most football players from the
VA-BU-CLF brain bank have evidence of CTE pathology;

therefore, we relied on controls from another study who
may have developed CTE if they were exposed to football.
This misclassification may have biased our case-control
analysis toward the null, but would not affect our
case-only analyses. Future studies should include controls
with a complete athletic history and neuropathological
evaluation and should not genotype cases and controls
separately. An additional limitation is the small sample
size by genetic standards. However, studies have only re-
cently ascertained contact sport history or conducted
neuropathological examinations for CTE. The current
study was conducted in the largest group of CTE cases
available to date. Additionally, to maximize statistical
power, these cases were densely phenotyped using a quan-
titative measure of tau pathology. Nonetheless, the find-
ings should be interpreted with caution until they can be
independently replicated. Lastly, sufficient genetic data
was not available to account for population substructure,
which could confound a genetic relationship. However,
the analysis was limited to informant reported Caucasian
participants to grossly account for population differences.
Future studies will be needed to better understand the ef-
fects of rs3173615 in non-Caucasian ethnicities.

Conclusions
In conclusion, this study reports one of the first genetic
associations for CTE-related outcomes. Although
TMEM106B was not associated with CTE case-control
status, in case-only analyses, the minor allele had a pro-
tective effect for multiple CTE-related neuropathological
outcomes including neuroinflammation, p-tau density
and synaptic dysfunction. Similarly, in case-only ana-
lyses, the minor allele had a protective effect for demen-
tia. Future work is required to replicate these findings in
an independent sample and to determine the mechanism
by which TMEM106B interacts with RHI and other gen-
etic risk factors to modify CTE-related outcomes. Over-
all, TMEM106B genotype may partially explain why
some individuals experience more severe CTE- related
outcomes while others are spared despite similar expos-
ure to contact sports.
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