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Summary

Treatment of medical device-related infections is challenging, and recurrence is common. The 

main reason for this is that microorganisms adhere to the surfaces of medical devices, and enter 

into a biofilm state in which they display distinct growth rates, structural features, and protection 

from antimicrobial agents and host immune mechanisms compared with their planktonic 

counterparts. This article reviews how microorganisms form biofilms and mechanisms of 

protection against antimicrobial agents and the host immune system provided by biofilms. Also 

discussed are innovative strategies for diagnosis of biofilm-associated infection, and novel 

approaches to treatment and prevention of medical device-associated infections.
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Introduction

Device-associated infections are one of the most common and feared complications in 

medical practice. Treatment of medical device-related infections is notoriously challenging, 

and recurrence is common.1 The main reason for this is that microorganisms adhere to 

surfaces of medical devices and enter into a biofilm state in which they display distinct 

structural features, growth rates, and microenvironments, when compared with planktonic 

organisms.2,3 Decreased susceptibility to antimicrobial agents and the host immune system 

is observed in microorganisms in biofilms compared with planktonically-grown organisms.4 

The biofilm structure itself, decreased growth rate, antimicrobial-destroying enzymes within 

the matrix, upregulation of stress-response genes and horizontal transfer of antimicrobial 

resistance genes are involved in reduced antimicrobial susceptibility.3,4 Microorganisms in 

mature biofilms over 7 days old are 500–5000 times less susceptible to killing by 

antimicrobial agents compared to planktonic organisms.5

Many controversies and uncertainties exist in the diagnosis, prevention and treatment of 

biofilm-associated infection.6 Once a biofilm develops on a medical device, eradication of 

microorganisms becomes extremely challenging and cost can be substantial due to the 

frequent need for prolonged hospitalization, surgery, and long-term antimicrobial treatment.7 

Bacterial biofilms are associated with approximately 1.7 million hospital-acquired infections 

annually in the United States, incurring an annual economic burden of approximately 11 

billion dollars.8 Biofilm formation is now accepted as one of the most important virulence 

factors in medical device-associated infections.2

This article reviews the means by which microorganisms develop biofilms and their defense 

mechanisms against the host immune system and antimicrobial agents. Also discussed are 

innovative concepts for the diagnosis of biofilm-associated infection and novel approaches 

to treatment and prevention of medical device-associated infections.

Body of Text

Understanding of Biofilms

Definition and structure of biofilms—Biofilms appear very early in the fossil record 

and can be formed by a diverse range of microorganisms; they are widespread in natural, 

industrial and hospital settings.9 A biofilm is generally defined as “an aggregate of 

microorganisms adherent to a biotic or abiotic surface, embedded within a matrix of 

extracellular polymeric substance (EPS) (Figure 1).10 Interestingly, free-floating cells can 

also self-aggregate and form a biofilm, which can display features similar to those of a 

medical device-associated biofilm.10,11 A major feature of biofilms is their self-produced 

EPS which consists of polysaccharides, nucleic acids and/or proteins.3 The EPS matrix 

advances microbial attachment to surfaces and cell-to-cell adhesion and aggregation, and 

functions as a three-dimensional barrier to protect cells against from external threats, 

including host defense mechanisms and antimicrobial treatment.12 Moreover, the EPS 

matrix can create harsh environments by modulating chemical and nutrient gradients, and 

contribute to important virulence attributes.12 Host-derived components, including fibrin, 

platelets and immunoglobulins, may also be components of biofilms in complex host 
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environments. A description of biofilms as ‘aggregated, microbial cells surrounded by a 

polymeric self-produced matrix, which may contain host components’ was suggested at the 

5th ASM Biofilm Conference.10 Microorganisms can attach to almost all types of medical 

devices and also biotic surfaces (e.g., skin, bone, airway, connective tissue, intestinal 

mucosa, vascular endothelium).9 Therefore, biofilms may be associated with various types 

of tissue-associated chronic infections, in addition to their association with medical devices 

(Table 1). Medical device-associated infections are most commonly caused by 

Staphylococcus epidermidis and Staphylococcus aureus, but a long list of species of bacteria 

and fungi can cause these infections.13,14 While some authors suggest that S. epidermidis 
accounts for approximately 80% of the bacteria causing medical device-related infections,15 

in the hospital setting, multidrug-resistant Gram-negative bacteria such as Escherichia coli, 
Klebsiella pneumoniae, Acinetobacter baumannii and Pseudomonas aeruginosa, have 

emerged as serious concerns, especially in catheter-associated urinary tract infection 

(CAUTI).16

Stages of biofilms—The initial step of biofilm formation is initiated by complex 

interactions between surfaces and the microorganism (or microorganisms). Biofilm 

formation consists of several stages, beginning with attachment and progressing to 

detachment (Figure 2).2 At the stage of initial attachment, surface characteristics such as 

hydrophobicity, charge, topography, and exposure time influence attachment of 

microorganisms to the surface of medical devices.17 Adherence of microorganisms to 

medical devices has been reported to occur through cell surface proteins, such as biofilm-

associated protein - a fimbria-like polymer -, and the protein autolysin of S. epidermidis, and 

the capsular polysaccharide/adhesion of S. epidermidis and other coagulase-negative 

staphylococci.18–21 Host-derived proteins, such as fibronectin, fibrinogen, and vitronectin, 

released to aid in healing, are absorbed onto the surfaces of medical devices, producing a 

conditioning film, which enhances microbial colonization through interactions between 

microbial and host proteins.17,18 At the stage of biofilm growth, microorganisms proliferate, 

and cell-to-cell adhesion on the colonized surface is enhanced. These organized structures 

are then surrounded by a self-produced EPS.2,3,8 As biofilms mature, they become a 

structured multicellular community providing protection against from external threats, 

including host defense mechanisms and antimicrobial treatment. Microorganisms in biofilms 

release autoregulators and have altered gene expression that stimulates production of 

virulence factors, enhancing their own survival.22 At the stage of cell detachment, planktonic 

cells may be released from the surface, potentially resulting in distant metastatic infections 

and/or further regional biofilm formation. Dispersed microorganisms revert to an active 

state, comparable to that of their planktonic counterparts, making them more susceptible to 

antimicrobial agents.23 In addition, dispersed biofilm cells lose the protective effects granted 

by the biofilm community and its structured organization. The cyclic di-GMP (c-di-GMP) 

second messenger reported in E. coli, P. aeruginosa, and Salmonella enterica,24 is an 

example of a molecule responsible for biofilm dispersal.25

Tolerance and resistance of microorganisms in biofilms—Biofilm-associated 

infections are particularly challenging to treat. Several mechanisms account for protection 

against the host immune system and antimicrobial agents, compared with microorganisms in 

Wi and Patel Page 3

Infect Dis Clin North Am. Author manuscript; available in PMC 2019 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the planktonic state. This type of resistance is not mainly due to the genetic antimicrobial 

resistance that occurs by mutation or horizontal gene transfer but is rather better described as 

a reversible tolerance to antimicrobial agents.4,26 Tolerance can be the result of entrapment 

or inactivation of antimicrobials, and/or of the slow growth that is characteristic of biofilms.
4,26 Restricted penetration of antimicrobial agents into the depth of a mature biofilm due to 

the EPS matrix of the biofilm itself can contribute to the antimicrobial tolerance.4,26 EPS 

matrix has also been shown to inactivate antimicrobial substances by harboring enzymes 

secreted into it.4,26 Another mechanism involves slow-growing or non-growing 

microorganisms due to nutrient and oxygen depletion within biofilms, particularly with 

regard to resistance to killing by growth-dependent antimicrobial agents.9 This phenomenon 

can be amplified by the presence of phenotypic variants or “persisters”.27 Persister cells are 

thought to be tolerant to antimicrobial agents because they are in a particularly dormant 

state.28 Importantly, dispersed planktonic microorganisms can lose tolerance and restore 

their susceptibility to antimicrobial agents; thus, targeting dispersal mechanisms is a 

potential adjuvant strategy to render conventional antimicrobial agents active against 

biofilms.29 Growth within a biofilm may facilitate acquisition of genetic changes such as 

mutations and gene transfer.30,31 One study showed that plasmid conjugation was up to 700–

fold more efficient in biofilms compared with free-living microorganisms.32 Similarly, 

hypermutability may occur in biofilms, with mutation rates for S. aureus and S. epidermidis 
being 4- and 60-fold higher, respectively, in biofilms than that under planktonic conditions.
31 Together, increased gene transfer and hypermutability can increase selection of genetic 

antimicrobial resistance.

Diagnosis of medical device-associated infections

Bearing in mind that most medical device-associated infection are associated with biofilms 

on the surfaces of the devices, diagnostic strategies that approach the surface of the device 

are preferred. Sampling surfaces of medical devices may require invasive procedures such as 

aspiration, biopsy, or extirpation of medical devices. However, device removal is not 

necessarily required for diagnosis in all situations. For central-line associated bloodstream 

infections (CLABSI), diagnostic methods based on qualitative (or quantitative) blood 

cultures, including differential time to positivity, may be used.33–35 Swab cultures are not 

recommended because of the small volume of sample available for culture; negative results 

do not necessarily correlate with the absence of infection.36 Nevertheless, for some medical 

device-associate infections, microorganisms may not be identified until the medical device is 

removed. Moreover, culture is not always positive even when the device is removed. Slow 

growth rates in biofilms can lead to the ‘viable-but-nonculturable’ state (VBNC state) of 

microorganisms.37 S. aureus, for example, can enter the VBNC state in biofilms, rendering it 

undetectable using standard growth media;38 daptomycin and vancomycin are particularly 

noteworthy for inducing a VBNC state in S. aureus biofilms.39 The emergence of small 

colony variants (SCVs) can also render successful diagnosis difficult.40,41 SCVs are slow 

growing subpopulations of microorganisms that differ from normal microorganisms in their 

small colonial size and biochemical characteristics.41,42 S. aureus SCVs have increased 

intracellular persistence.41
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Sonication may improve culture positivity of large device-related infections.43 One study, 

focusing on prosthetic hip and knee infection, demonstrated that sonicate fluid cultures had a 

sensitivity of 79% compared with 61% for periprosthetic tissue cultures.43 Sonication is not, 

however, recommended for all devices; the use of a quantitative sonication technique to 

detect catheter colonization has been shown to be no better than the easier-to-perform 

semiquantitative roll-plate culture method.44 Combinations of sonication with certain 

nucleic acid amplification tests further enhance the sensitivity to diagnose infection.45,46 

Several studies show differences between findings using culture and molecular diagnostic 

methods; molecular methods may identify additional organisms (i.e., increased diversity) 

compared to culture and/or may detect microorganisms in culture-negative cases.47,48 In 

culture-negative endocarditis, for example, identification of the causative bacterium by 

broad-range bacterial (e.g., 16S ribosomal RNA gene) PCR of heart valve tissues can be 

useful.49 Some infections may be missed or their microbiology not defined because of a high 

rate of false negative microbiological results with conventional culture methods; an example 

is arthroplasty failure.50, 51,52 As mentioned above, implant sonication can improve 

diagnosis. Alternatively, DL-dithiothreitol has been used as for detection of biofilms on 

orthopedic implants.53 Disclosing agents have been suggested as an intra-operative strategy 

to visualize biofilms, but the sensitivity of this approach is not defined.54 Confocal laser 

scanning microscopy (CLSM) and scanning electron microscopy (SEM) are advanced 

options to visualize biofilms in resected specimens,55,56 but are not typically used in direct 

patient care.

Treatment and prevention of medical device-associated infections

Basic principles of infection prevention should be applied to prevent microbial 

contamination of implanted devices because, as mentioned, this can readily lead to biofilm 

formation. Device implantation and handling must be performed as outlined in current 

guidelines.57 Appropriate perioperative antibiotic prophylaxis should be administered to 

cases of surgically implanted devices. And of course, the need for the indwelling medical 

device itself must be justifiable at any time.

Current preventive (and to some extent therapeutic) approaches can be divided into two 

broad categories, surface-coating or elution, and physical/mechanical/electrical/biological 

approaches. Surface modification of medical devices using antibiotics and silver has been 

the focus of much research to reduce microbial colonization and biofilm formation.1,2,6,58 

Minocycline-rifampin catheters, which are commercially-available, have been associated 

with reductions in microbial colonization and CLABSI.59 Although impregnated and 

standard catheters have similar CLABSI risks over first 10 days after placement; a cost-

effectiveness analysis suggested minocycline-rifampin catheters to be most attractive if the 

catheter is anticipated to be in place for eight or more days.60 Chlorhexidine-silver 

sulfadiazine catheters also decrease microbial colonization of surfaces.61 Antibiotic 

impregnated materials may reduce the incidence of orthopedic foreign body-associated 

infections.62 A silver impregnated endotracheal tube (ETT) showed a maximal effect during 

the first 10 days of intubation and reduced mortality in patients with ventilator-associated 

pneumonia (VAP).63 Water sprays and jets have been used as physical–mechanical 

approaches for biofilm removal (e.g., debridement of surgical-site, exudates or dental 
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biofilms).64 In addition, the use of dedicated devices to mechanically remove ETT biofilm is 

supported by a limited number of studies.65 Electrical and electrochemical strategies are 

being investigated as strategies to prevent biofilm formation on device surfaces.66

When confronted with therapeutic difficulties, removal of the indwelling medical device is a 

definitive option for curing a medical device-associated infection. However, removal of a 

medical device may not always be feasible or desirable and the removal procedure itself may 

be prone to complications and associated with substantial cost. Microorganisms in biofilms 

show a wide degree of tolerance to different antimicrobial agents. Antibiotics such as 

rifampin, for the staphylococci in particular, and the fluoroquinolones, may exhibit activity.
67,68 Conversely, antibiotics that inhibit cell wall synthesis (e.g., β-lactams) may be less 

active because microorganisms in biofilms display slow growth rates.69 When using 

rifampin-based therapy, combination with another antimicrobial agent, rather than 

monotherapy, must be employed to minimize the emergence of rifampin resistance. 

Glycopeptides or linezolid when combined with rifampin showed enhanced effects against 

staphylococcal biofilms.67,70 In a cage-associated methicillin-resistant S. aureus (MRSA) 

infection model in guinea pigs, the combination of levofloxacin or daptomycin with rifampin 

had higher activity than the combination of vancomycin or linezolid with rifampin.71 

Rifampin and fosfomycin or tedizolid also showed enhanced effects in treating medical 

device infections caused by MRSA biofilms in vivo.72,73 Dalbavancin alone has recently 

been shown to have in vitro activity against staphylococcal and enterococcal biofilms, 

potentially providing an option to treat dalbavancin-susceptible staphylococcal and 

enterococcal biofilm-associated infections.74,75 Oritavancin also demonstrates activity 

against staphylococcal biofilms.76 Age of the biofilm and biofilm species composition are 

important variables that impact susceptibility microorganisms in biofilms. Age of S. 
epidermidis biofilms was shown to be related with activity of erythromycin, clindamycin, 

cephalothin, teicoplanin, and vancomycin.77 With respect to biofilm species composition, 

susceptibility of Streptococcus pneumoniae to β-lactam antibiotics was reduced by the co-

presence of β-lactamase producing Moraxella catarrhalis in the biofilm.78 In a biofilm 

composed of Candida albicans and S. epidermidis combined, the staphylococcal EPS 

inhibited azole penetration into the biofilm, and C. albicans appeared to protect S. 
epidermidis against vancomycin.79 High dosages of antibiotics and prolonged duration of 

treatment are also important when treating medical device-associated infections. The 

application of catheter lock solutions is a strategy to eradicate established biofilm in the 

catheter lumen; using this approach, antimicrobial agents dwell at supratherapeutic 

concentrations (but concentrations sufficient to exhibit anti-biofilm activity) in the catheter 

lumen for a prolonged time. Antimicrobial lock solutions have been shown to decrease the 

risk of CLABSI in immunocompromised hematologic patients and those undergoing 

hemodialysis.80,81 Antibiotic lock therapy is used in conjunction with systemic antibiotics in 

the treatment of patients with uncomplicated CLABSI.82

Recent advances in surface technologies and materials have ushered in development of 

defined surface patterns of chemistry and topography that can impact biofilm formation 

without adding antimicrobial agents.58 Novel materials such as zinconium oxide and 

electropolished stainless steel reduce bacterial adhesion.27 Incorporation of the Sharklet 

micropattern (motivated by shark skin) on the surface of medical devices may reduce 
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microbial colonization and biofilm formation.83 Several studies show the feasibility and 

efficacy of surface modification of medical devices with antifouling polyurethanes and 

hydrogels to reduce microbial colonization.1,27 Bacteriophages are viruses that propagate in 

their bacterial host, and can kill their host and/or produce anti-biofilm substances.84 

Pretreating hydrogel-coated catheters with a single S. epidermidis bacteriophage or a 

cocktail of P. aeruginosa bacteriophages mitigated biofilm formation by relevant bacteria in 
vitro.85–87

Recent advances in understanding the complexity of biofilm biology has informed the 

development of novel biofilm-targeting therapeutic strategies.1,2,27 EPS-degrading enzymes 

are a new strategy that may enhance efficacy of antimicrobial agents against biofilms.88,89 

Enzymes such as deoxyribonuclease 1 (DNase 1) and dispersin B (DspB) may be useful 

adjuvants in this regard.88,89 Both DNase 1 and DspB are being investigated as promising 

options for biomedical coatings.90 Another antibiofilm strategy is the use of lysins - 

bacteriophage-encoded peptidoglycan hydrolases.91 Small molecules such as mannosides or 

peptides impede bacterial adhesins binding to host surfaces, thereby preventing biofilm 

formation.92–94 The widespread use of quorum sensing systems of bacteria for controlling 

virulence and biofilm formation constitutes another target tactic for the development of 

novel therapeutics.95 Nanoparticles provide yet 96 another exciting area of development of 

new biofilm-targeting methodologies. Nanoparticles are currently in the spotlight mainly for 

their intrinsic antimicrobial activity and strong anti-biofilm potential together with relatively 

low toxicity to the host.97 Nanoparticles can be used for targeted delivery of antibacterial 

and antibiofilm agents.98 Liposomes are widely used as representative organic nanoparticles 

for delivery agents for antimicrobial agents. 99–103 Recently, nanomodified ETTs have been 

shown to have decreased bacterial colonization compared to unmodified ETTs.104,105 Nano- 

and chemical engineering approaches can be used to develop improved materials for 

prevention of biofilm formation. Finally, electrical and electrochemical strategies are being 

developed for their anti-biofilm activities.96,106–115

Summary

Medical device-associated infections are biofilm-associated infections related to organized 

communities of microorganisms embedded within a matrix of EPS of microbial and host 

origin. Because of the entrapment or inactivation of antimicrobial agents, and of the slow 

growth in biofilms, microorganisms in biofilms display tolerance to a wide range of 

antimicrobial agents. The VBNC state and emergence of SCVs in biofilms can make 

successful diagnosis difficult using standard microbiological assays. New diagnostic 

techniques such as sonication of large implants and molecular diagnostic methods may 

improve not only identification of pathogens but also reveal greater microbial diversity than 

previously appreciated. Although most currently available antibiotics have poor activity 

against microorganisms in biofilms, some, notably rifampin against staphylococci, have been 

shown to be active against biofilms. Surface-coating or eluting substrates and physical/

mechanical/chemical/electrical/biological approaches aimed at inhibition of initial 

attachment and biofilm removal are two main current biofilm-targeting approaches. Recent 

advances in surface technologies and materials have ushered in development of material 

optimization and surface modification with antifouling polyurethanes, hydrogels, and 
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bacteriophages. Recent insights into the biofilm matrix have accelerated novel biofilm-

targeting therapeutic strategies such as extracellular polymeric substance-degrading 

enzymes, small molecules targeting host–extracellular polymeric substance interactions, and 

quorum sensing systems involved in biofilm formation and dispersal. Electrical and 

electrochemical strategies are under development.
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Box 1

Clinical features of medical device-associated infections

• Presence of an indwelling medical device

• Clinical findings suggestive of infection, often with low-grade inflammation

• Infection lasting more than one week

• Failure of antibiotic treatment without planktonic genetic antimicrobial 

resistance

• Recurrence of infection (particularly if same microorganism is detected over 

multiple time points, and clinical findings improve/resolve with antibiotic 

therapy, only to recur after therapy has ceased)

(Data from Hoiby N, Bjarnsholt T, Moser C, et al. ESCMID guideline for the diagnosis 

and treatment of biofilm infections 2014. Clin Microbiol Infect. 2015;21 Suppl 1:S1–25.)
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Key Points

• Treatment of medical device-related infections is challenging because 

microorganisms adhere to and accumulate on the surfaces of medical devices 

producing biofilms. Microorganisms in biofilms display tolerance to a wide 

range of antimicrobial agents.

• The ‘viable-but-non-culturable’ state, alongside emergence of small colony 

variants, can render successful diagnosis of biofilm-associated infections 

difficult using standard microbiological assays. Sonication of infected 

implants and molecular diagnostic methods may improve not only detection 

and identification of pathogens but also reveal greater microbial diversity than 

traditionally recognized.

• Surface-coating or eluting substrates and physical/mechanical/chemical/

electrical/biological approaches targeted at inhibition of initial attachment and 

bacterial removal are two biofilm-targeting approaches in use and/or under 

development.

• Recent advances in surface technologies and materials have ushered in 

development of material optimization and surface modification with 

antifouling polyurethanes, hydrogels, and bacteriophages.

• Recent insights into the biofilm matrix have accelerated novel biofilm-

targeting therapeutic strategies such as extracellular polymeric substance-

degrading enzymes, small molecules targeting host–extracellular polymeric 

substance interactions, and interventions targeting quorum sensing systems 

involved in biofilm formation and dispersal.
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Figure 1. Scanning electron microscopy of Staphylococcus epidermidis biofilm
S. epidermidis was grown in the laboratory on a Teflon surface.
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Figure 2. Steps in biofilm formation on an orthopedic prosthesis
Biofilm formation has distinct stages: Initial Attachment, in which microorganism attaches 

to an orthopedic implant through interactions between the microorganism and host 

molecules on the foreign body surface as well as the foreign body surface itself; Biofilm 
Growth, in which the microorganism begins to proliferate, and individual cells adhere to 

one another, and become surrounded by a self-produced extracellular polymeric substance; 

Biofilm Maturation, whereby the biofilm develops a structured multicellular community 

protecting its members against from external threats, including host defense mechanisms and 

antimicrobial treatments; and finally Cell Detachment, whereby planktonic cells may be 

released from the surface of large biofilms, causing distant metastatic infections and further 

regional biofilm establishment.
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Table 1

Biofilm-associated infections.

Medical devices associated with infections Tissues associated with infections

Cardiovascular implantable electronic devices Biliary tract

Catheters, shunts and stents Internal ear (chronic otitis media)

Cochlear implants Tonsils (chronic tonsillitis)

Contact lenses Sinuses (chronic sinusitis)

Deep brain stimulators Wounds

Endotracheal tubes Teeth (dental caries)

Dental implants Heart valves (endocarditis)

Orthopedic implants Kidney stones

Tissue fillers, including breast implants Lung (cystic fibrosis patients)

Sutures and surgical meshes Bone (osteomyelitis)

Vascular grafts

(Data from Hoiby N, Bjarnsholt T, Moser C, et al. ESCMID guideline for the diagnosis and treatment of biofilm infections 2014. Clin Microbiol 
Infect. 2015;21 Suppl 1:S1–25.)
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