Figure 4.
A hypothetical overview of how different brain areas are more or less involved depending on manual dexterity tasks involving more cognitive rule-making or more sensorimotor integration requirements. Arrow thickness reflects degree of task-related involvement processes. The hypothesis is that brain areas and processing involved in manual dexterity tasks depend on whether the task requires (i) on-line sensorimotor integration (yellow arrows) to adapt performance according to feedback or (ii) rule-based associations (blue arrows) that result in performance predictions that are adapted during performance. The force tracking task requires a greater level of on-line matching of motor output to sensory feedback with engagement of sensory-premotor-motor networks. In contrast, tasks requiring more cognitive processing including stimulus-based decisions (temporal or spatial) according to task rules (maintained in working memory) involve a greater contribution from prefrontal cortex and hippocampus. The basal ganglia and the cerebellum, also involved in manual dexterity processing, are not shown for simplicity.