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Abstract

The androgen receptor drives the growth of metastatic castration-resistant prostate
cancer. This has led to the development of multiple novel drugs targeting this hormone-
regulated transcription factor, such as enzalutamide - a potent androgen receptor
antagonist. Despite the plethora of possible treatment options, the absolute survival
benefit of each treatment separately is limited to a few months. Therefore, current
research efforts are directed to determine the optimal sequence of therapies, discover
novel drugs effective in metastatic castration-resistant prostate cancer and define patient
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subpopulations that ultimately benefit from these treatments. Molecular studies provide mMCRPC

evidence on which pathways mediate treatment resistance and may lead to improved androgen deprivation
treatment for metastatic castration-resistant prostate cancer. This review provides, firstly therapy

a concise overview of the clinical development, use and effectiveness of enzalutamide in > docetaxel

the treatment of advanced prostate cancer, secondly it describes translational research

addressing enzalutamide response vs resistance and lastly highlights novel potential

treatment strategies in the enzalutamide-resistant setting.

Introduction

Ever since the discovery that prostate cancer (PCa)
growth after androgen deprivation therapy (ADT)
remains dependent on androgen receptor (AR) signaling,
researchers have been looking for new effective ways to
block the action of this hormone-dependent transcription
factor (Attard et al. 2009, Tran et al. 2009, Scher et al. 2012).
Upon stimulation with androgens, the AR dissociates
from its molecular chaperones and translocates to the
nucleus, where it binds to thousands of sites throughout
the human genome to regulate transcription of directly
responsive genes, including pro-mitotic genes involved in
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tumor cell proliferation (Fig. 1A) (Brinkmann et al. 1999,
Itkonen & Mills 2012, Mills 2014).

Inhibiting androgen signaling through ADT initially
results in tumor regression in the vast majority of cases,
but inevitably the tumor cells adapt to low androgen
levels, leading to disease progression, which is known as
castration resistance (Harris et al. 2009, Massard & Fizazi
2011, Karantanos et al. 2013).

Potent antiandrogens, that either target the AR
directly through physical competition with the receptor’s
natural ligand dihydrotestosterone (DHT) or indirectly
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via inhibition of androgen biosynthesis, are among the
treatment options for metastatic castration-resistant
prostate cancer (mCRPC) (Helsen et al. 2014).

At the moment, enzalutamide (MDV-3100) is the
most frequently prescribed compound for treatment of
mCRPC (Sanford 2013). This drug belongs to the class
of direct androgen receptor inhibitors and tackles the
AR pathway at multiple nodes: by preventing ligand
binding, by blocking AR nuclear translocation and by
inhibiting DNA transactivation, ultimately abrogating
the expression of androgen-responsive genes (Fig. 1B)
(Tran et al. 2009, van Soest et al. 2013). The multiple stage
actions of enzalutamide on AR signaling are considered
the main reason for its superior clinical activity over other
direct AR inhibitors, such as flutamide, bicalutamide and
nilutamide (Antonarakis 2013).

However, due to inter-patient heterogeneity of PCa,
which is widely recognized as a major drawback for
therapy efficacy, treatment responses to enzalutamide
vary between patients (Boyd et al. 2012). Whereas some
patients do not have a substantial clinical benefit from
enzalutamide therapy, others who do benefit, start
progressing after a certain period of time, which is also
dependent on therapy sequencing (Scher et al. 2012, Beer
et al. 2014, Merseburger et al. 2015).

This review, of which the content is illustrated in
Fig. 2 (1-5), will firstly provide a comprehensive insight
into the use of enzalutamide in the treatment of advanced
PCa - spanning from treatment options in the pre-
enzalutamide era (1) to its preclinical development and
the landmark studies that led to its FDA approval for
mCRPC (2). Thereupon, we discuss translational research
directed at tackling unmet clinical needs in the treatment
of advanced PCa using enzalutamide. This includes having
on-treatment and predictive biomarkers for treatment
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Figure 1

AR signaling axis and mechanism of action of
enzalutamide. (A) Upon dihydrotestosterone
(DHT) binding, the AR dimerizes and translocates
to the nucleus, where it binds to AR-response
elements (ARE) and recruits nuclear receptor
coregulators (NRC), so-called coactivators or
corepressors, to regulate transcription of directly
responsive genes involved in cell proliferation and
survival. (B) Enzalutamide (Enza) binding to the
ligand-binding pocket of the AR results in a
conformational change, rendering the receptor
incapable of forming an active transcriptional
complex. Further, enzalutamide blocks AR nuclear
translocation and the enzalutamide-bound AR is
impaired in its DNA-binding ability, ultimately
preventing AR-dependent gene expression.

response (3); a better understanding of molecular
mechanisms underlying enzalutamide resistance (4); and
lastly, the development of novel therapeutic approaches
aimed to overcome therapy resistance (5).

The pre-enzalutamide era
Androgen deprivation therapy

ADT has been the standard of care for patients with
symptomatic metastatic PCa since the forties of the last
century (Merseburger et al. 2016). However, despite initial
response to ADT, eventually resistance emerges in practically
every patient, which is mediated by AR-dependent or
-independent pathways (Scher & Sawyers 2005). Initially,
two retrospective studies have shown a limited survival
benefit of continued androgen suppression with luteinizing
hormone-releasing hormone (LHRH) analogs in the mCRPC
setting (Taylor et al. 1993, Hussain et al. 1994). Based on these
findings, all mCRPC patients enrolled in the trials discussed
further below continue androgen suppression therapy.
Although data are limited, the benefits of continuing
androgen deprivation outweighed the potential risks of
discontinuing the therapy.

Chemotherapy

In 2004, the TAX-327 trial initiated a transition in systemic
mCRPC treatment (Tannock et al. 2004). In this phase
II study, 1006 patients with mCRPC were randomized
to receive prednisone either in combination with
mitoxantrone (a chemotherapy that provides palliation,
but does not lead to an improvement in survival for
patients with castration-refractory PCa (Tannock et al.
1996) or with docetaxel (a chemotherapy that has been
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Recurrent mCRPC after ADT and docetaxel

Recurrent mCRPC after ADT and docetaxel and enzalutamide

Graphical summary capturing the topics discussed in this review. Docetaxel has been the first agent showing a survival benefit in mCRPC patients (1). Despite
initial responses upon docetaxel chemotherapy, patients eventually progress, whereby enzalutamide has been shown to be effective in such a docetaxel-
resistant MCRPC setting (2). Current translational research efforts are aimed at developing biomarkers for enzalutamide response (3), understanding molecular
underpinnings of enzalutamide-resistant mCRPC (4) and optimizing treatment strategies to overcome enzalutamide resistance (5).

reported in phase II studies to successfully reduce serum
prostate-specific antigen (PSA) levels Beer et al. 2001,
Berry et al. 2001).

Whereas mitoxantrone, as a type II topoisomerase
inhibitor that intercalates between DNA bases and
thereby disrupts DNA synthesis and repair (Nitiss
2009, Pommier et al. 2010), is not directly linked to
AR biology, docetaxel is. It belongs to the taxane class
of chemotherapeutic agents that bind to tubulin and
hyperstabilize microtubules, which ultimately leads to
impairments of the mitotic cell cycle and AR signaling
by preventing its nuclear translocation (Kuroda et al.
2009, Zhu et al. 2010, Darshan et al. 2011, Fitzpatrick
& de Wit 2014).

The TAX-327 study identified docetaxel as the
first chemotherapeutic drug that showed a modest
overall survival (OS) benefit compared to mitoxantrone
(Table 1) (Berthold et al. 2008). Based on these results,
docetaxel was established as a first-line therapy option for
both, symptomatic as well as asymptomatic mCRPC.

Docetaxel resistance

As described earlier, mCRPC patients treated with
docetaxel-based chemotherapy have a modest OS benefit
implying most patients will progress rather rapidly.

In patients with a good initial response to docetaxel
therapy, re-challenging with the same chemotherapeutic
agent results in a PSA response in up to 60% of patients
with a median time to progression of 6 months (Beer et al.
2004). As this response is less profound as compared to
the therapeutic effect in the first round, it could also be
hypothesized that the efficacy of docetaxel re-challenge
will keep decreasing until its effect becomes negligible.
Mechanisms underlying this docetaxel resistance in the
mCRPC setting can be diverse (Seruga et al. 2011). On
the one hand, those include rather general mechanisms
associated with resistance to taxanes, including an altered
microtubule composition affecting docetaxel binding
(such as upregulation of certain isotypes Ranganathan
et al. 1998 or mutations Yin ef al. 2010), a reduced
intracellular drug accumulation due to overexpression
of drug efflux pumps (such as P-glycoprotein Zhu et al.
2013) or an impaired drug distribution due to aberrant
angiogenesis (Marignol et al. 2008). On the other hand,
resistance can also develop due to mechanisms intrinsic to
the biology of mCRPC like continued AR signaling which
stimulates PCa growth and inhibits apoptosis (Seruga
et al. 2011) or due to the activation of compensatory
oncogenic pathways (such as PI3K/AKT or MAPK/ERK Zhu
& Kyprianou 2008) which are themselves associated with
proliferation and survival. As a result of taxane resistance,
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new therapeutic approaches tackling docetaxel-resistant
mCRPC were needed and much sought-after.

Enzalutamide as a second-line
hormone therapy

Preclinical development

Ever since molecular profiling studies have revealed that
many CRPC tumors remain AR driven, there has been
great interest in identifying novel and potent strategies to
better block the AR signaling axis (Chen et al. 2004). Such
next-generation antiandrogens should — unlike their first-
generation counterparts (e.g. bicalutamide and flutamide)
— preferably possess greater AR-binding affinities without
any agonistic effects (Chen et al. 2004, Bambury & Scher
2015). In their search for such improved antiandrogens,
Tran et al. (2009) screened nearly 200 thiohydantoin
derivatives of RU59063 - a non-steroidal AR agonist with
a relatively high affinity and selectivity over other nuclear
hormone receptors — for retained activity in human PCa
cells that overexpressed the AR protein, which is also
clinically observed in the castration-resistant disease
setting. RD162 and MDV3100 (now enzalutamide) were
selected as the lead compounds for additional biological
validation, and importantly, both antiandrogens led to
tumor regression in xenograft models (Tran et al. 2009).
Due to its favorable drug-like properties, such as oral
bioavailability and longer serum half-life, enzalutamide
was selected for further clinical development (Bambury
& Scher 2015).

Clinical testing

The preclinically demonstrated antitumor activity of
enzalutamide was subsequently validated in a phase
I/II trial, in which patients with progressive mCRPC
were enrolled in dose-escalation cohorts, ultimately
demonstrating its safety and tolerability, along with
antitumor effect at all tested doses (Scher et al. 2010).

In 2012, the preliminary analysis of the AFFIRM
trial was published, being the first phase III study on
enzalutamide in the mCRPC setting (Scher et al. 2012).
In this trial, 1199 mCRPC patients who progressed on
docetaxel therapy were randomized to receive either
enzalutamide or placebo. Enzalutamide treatment
significantly improved patient outcome after docetaxel
therapy compared to the placebo control group (Table 1).

The efficacy of enzalutamide and its limited toxicity
as compared to chemotherapy could not only be achieved
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in mCRPC patients who were previously treated with
docetaxel, but also in the chemotherapy-naive setting, as
addressed by the PREVAIL study (Beer et al. 2014). This
was a randomized phase III trial including 1717 chemo-
naive mCRPC men comparing enzalutamide therapy
to a placebo. Again, enzalutamide therapy resulted
in a significant improvement in OS and radiographic
progression-free survival (rPFS) (Table 1) (Beer et al. 2017).

Moreover, the results of the randomized phase III
PROSPER trial were recently published. Therein, the
addition of enzalutamide or placebo to continued ADT
was tested with regards to its potential to delay metastasis
formation in men with non-metastasized CRPC who are
at high risk for developing distant lesions. In this setting,
enzalutamide therapy led to a 71% lower risk of metastasis
or death compared to placebo (Hussain et al. 2018).

Based on these results, enzalutamide is now a
primary treatment option for metastasis-free CRPC and
asymptomatic mCRPC, whereas docetaxel is mainly
used in men with symptomatic metastasized disease and
acquired resistance to first-line therapeutics (Ryan et al.
2013, Beer et al. 2014, Hussain et al. 2018).

Biomarkers for enzalutamide response

The readout of PSA levels as a diagnostic biomarker
was already introduced in the 1980s, but has also been
questioned since then, mainly due to its non-specificity as
a marker for cancerous lesions (Oesterling 1991, Salman
et al. 2015). However, PSA measurements as a monitoring
biomarker for either treatment response or resistance
following PCa diagnosis and corresponding interventions,
are routinely used in the clinic. PSA declines of at least
30% after 4 weeks and >30% or >50% after 12 weeks of
treatment have been shown to correlate with a survival
advantage especially in patients treated with AR-targeting
compounds, whereas stable or increased PSA levels
correlated with poorer outcome (Scher et al. 2008, Brasso
et al. 2015, Fuerea et al. 2016, Rescigno et al. 2016).
Moreover, circulating tumor cells (CTCs) seem to be a
promising tool to predict a treatment-induced survival
benefit. It has been observed that patients with a decline
in number of CTCs (>30%) after 4 weeks of therapy have
a better prognosis (Scher et al. 2015, Lorente et al. 2016,
Heller et al. 2017, Prekovic et al. 2018a). Consequently,
CTCs could be a better marker for treatment resistance in
tumors progressing without an obvious PSA rise, taking
into account that further validation is warranted before
it can be recommended in daily clinical practice. These
on-treatment readouts, however, solely allow monitoring

of a patient’s response to for example, enzalutamide
therapy. Whereas some men do respond exceptionally
well and continue treatment for several years, others
progress within months or even do not show any response
at all (Attard & Antonarakis 2016). Thus, biomarkers that
enable the identification of patient subpopulations that
benefit from enzalutamide treatment are urgently needed
to improve the management of PCa patients.

Especially in the primary disease setting, tissue
biopsies have proved to be highly informative. Besides
classification systems based on clinical parameters (such
as Gleason score, PSA and clinical staging) (D’Amico et al.
1998), genomic analyses may provide risk-assessment
biomarkers that stratify patients with PCa on outcome
(Irshad et al. 2013, Knezevic et al. 2013, Stelloo et al.
2015). However, the bone-predominant metastatic
landscape of CRPC renders them rather impractical in
routine clinical practice and current approaches almost
exclusively focus on minimally invasive biomarkers from
blood (Wyatt et al. 2016). Until now, several studies have
shown that the profiling of CTCs or cell-free tumor DNA
(cfDNA) in liquid biopsies enables the detection of AR
splice variants, AR copy number gains and AR mutations,
all of whom are at least associated with enzalutamide
resistance and poorer prognosis (Schwarzenbach et al.
2009, AntonaraKkis et al. 2014, Diaz & Bardelli 2014, Salvi
et al. 2016, Wyatt et al. 2016, Conteduca et al. 2017).
Nonetheless, no such biomarker is implemented and
routinely used in the clinic thus far, and further studies
that robustly validate each biomarker in a prospective
fashion are required for a potential practice change
(Attard & Antonarakis 2016).

Molecular basis underlying
enzalutamide resistance

The AFFIRM and PREVAIL trials clearly demonstrated
the advantages of enzalutamide treatment. However,
46 (AFFIRM) and 22% (PREVAIL) of patients with mCRPC
did not respond to second- or first-line treatment with
enzalutamide, meaning that their PSA levels did not
decline >50% from baseline. The remaining 54 and 78%
of enzalutamide-treated patients responded initially, but
PSA progression could be observed after a median time of
8.3 months (AFFIRM) and 11.2 months (PREVAIL) (Scher
et al. 2012, Beer et al. 2014).

The mechanisms underlying this pre-existent or
acquired resistance to enzalutamide are still not fully
elucidated, but several possible mechanisms have been
proposed (Claessens et al. 2014). In the next section,
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we will briefly discuss such potential mechanisms, which
are elaborately discussed in Prekovic et al. (2018b).

AR mutations

Gain-of-function mutations in the AR gene, especially
within the exon 7 (encoding for the ligand-binding
domain), have been found in 5-30% of CRPC patients
(Taplin et al. 1999, Coutinho et al. 2016, Kumar et al.
2016, Rathkopf et al. 2017, Pal et al. 2018). These genomic
alterations do not only permit receptor activation by
various circulating steroids next to testosterone (such as
H875Y or T878A), but may also alter the responsiveness
of the AR to antiandrogens, resulting in antagonist-to-
agonist switching (Grossmann et al. 2001, Nadal et al.
2017, Prekovic et al. 2018a). This is exemplified by the
F877L/T878A and M896V/S889G double mutants,
which were associated with resistance (Lallous et al.
2016, Prekovic et al. 2016) and have recently been found
in cfDNA extracted from plasma of mCRPC patients
progressing on enzalutamide therapy (Azad et al. 2015,
Wyatt et al. 2016).

AR splice variants

Alternatively spliced AR variants, especially AR-V7, have
been reported to be implicated in resistance to AR-targeting
drugs, including enzalutamide. AR-V7 is an AR isoform that
lacks the ligand-binding domain (LBD), causing the variant
to be constitutively active and resistant to LBD-targeting
inhibitors (Guo et al. 2009, Hu et al. 2009, Antonarakis
et al. 2016). Multiple studies have demonstrated that AR-V7
expression is a biomarker for resistance to AR-targeting
drugs in CRPC (Li et al. 2013, Scher et al. 2016, Antonarakis
et al. 2017, Del Re et al. 2017, Qu et al. 2017, Todenhofer
etal. 2017), but it remains to date unclear whether AR-V7 is
driving the resistance or whether it merely is a manifestation
of treatment-induced selective pressure without being the
key-driver to therapy failure.

Glucocorticoid receptor takeover

The glucocorticoid receptor (GR) has been reported to be
upregulated or re-expressed after AR blockade, indicating
a complex cross-talk between AR and GR biology. Due
to great similarities in the mechanism of action between
nuclear receptors, GR is suggested to take over the role
of AR by driving the expression of a subset of androgen-
responsive genes, thus enabling the tumor to progress even
in presence of the AR-selective antagonist enzalutamide

Enzalutamide: efficacy, 26:1 R36
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(Arora et al. 2013, Kach et al. 2015, Li et al. 2017, Shah
et al. 2017, Puhr et al. 2018).

Intratumoral production of androgens

In addition, reactivation of the AR can occur via
intratumoral production of androgens, enabling the
prostate cancers to progress despite ongoing androgen
deprivation (Locke et al. 2008). The expression of one of
the essential enzymes in androgen biosynthesis, AKR1C3,
was significantly increased in enzalutamide-resistant cells
and xenograft tumors as well as in clinical specimens of
advanced PCa, making it an attractive therapeutic target
(Wako et al. 2008, Pfeiffer et al. 2011, Hamid et al. 2013,
Liu et al. 2015, 2017). Inhibition of AKR1C3 as a novel
therapeutic strategy is currently under investigation in a
clinical trial (NCT02935205) studying its potential benefit
in combination with enzalutamide therapy in mCRPC
(Pan et al. 2018).

Other known resistance mechanisms

Next to the aforementioned AR-related underpinnings of
enzalutamide resistance, several additional mechanisms
have been described to give rise to therapy resistance,
but are not within the scope of this review. Among those
are very diverse adaptations, such as metabolic changes
(e.g. shifting to aerobic glycolysis Cui et al. 2014 or
alterations in the hexosamine biosynthetic pathway
Itkonen et al. 2016), but also autophagy (Nguyen et al.
2014) or activation of certain signaling pathways (such as
Wnt Lee et al. 2015 or interleukin 6 Liu et al. 2014b) — all
of whom are addressed in depth in Prekovic et al. (2018D).

Beyond enzalutamide resistance - therapy
sequencing and alternative therapeutic options

Scheduling of enzalutamide treatment in mCRPC
patients can differ greatly; depending on a patient’s
PCa stage, overall health status, treatment history and
personal preference (Fig. 3). The mechanisms behind
enzalutamide resistance (or other AR antagonists) may
therefore also differ as these may depend on the settings
in which the drug was administered. Over the last decade,
several treatments have been developed, even though
the optimal sequence of therapies still remains to be
determined. This is especially the case, since none of the
available therapeutic options described in Table 2 have
yet been compared head-to-head in clinical trials (Sartor
& Gillessen 2014).
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Figure 3

Schematic representation of treatment options in the mCRPC setting according to current standards of care. Therapeutic options are subdivided in
first- and second-line therapies based on the clinical setting of the disease (asymptomatic vs symptomatic or visceral metastases). Treatment options are
also determined by the overall performance status (PS) of the patient (PS 0-1: normal activity or some symptoms, but almost entirely ambulatory; PS >2:

symptomatic patients <50% of daytime in bed up until completely bedridden).

Available therapeutic options in clinical practice

For mCRPC patients responding to enzalutamide, there
is no doubt that outcomes have improved significantly.
Nevertheless, despite the survival benefits, patients are still
progressing and improvements in absolute survival rates
are rather disappointing. Besides enzalutamide, several
other therapeutic options with proven benefit for mCRPC
patients have been developed in the past 10 years, which
are summarized in Table 2 and will be briefly discussed
hereafter.

Cabazitaxel

Cabazitaxel is — like docetaxel — a taxane, which stabilizes
microtubules and consequently impairs mitotic cell
division (Fig. 4A) (Fitzpatrick and de Wit 2014, Quinn
et al. 2017). However, the drug shows antitumor activity
in docetaxel-resistant models, potentially due to the fact
that cabazitaxel is a poor substrate for the drug efflux

pump P-glycoprotein, which is reported to contribute to
docetaxel resistance (Paller & Antonarakis 2011). In line
with this, cabazitaxel has been shown to improve OS
in mCRPC patients with progressive disease on or after
docetaxel-based intervention (de Bono et al. 2010, Bahl
et al. 2013).

Abiraterone acetate

Abiraterone acetate (hereafter referred to as abiraterone) is
targeting the AR signaling axis by inhibiting cytochrome
P45017A1(CYP17A1)-anenzymeinvolvedinintracellular
biosynthesis of androgens that enables prostate cancer cells
to bypass androgen deprivation (Fig. 4B) (Montgomery
et al. 2008, Attard et al. 2009, Helsen et al. 2014). In
addition, it has been demonstrated that abiraterone and
one of its metabolic derivatives are able to directly bind
to the AR and thereby inhibit the signaling of this ligand-
dependent transcription factor (Richards ef al. 2012,
Soifer et al. 2012, van Soest et al. 2013, Li et al. 2015).
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Several large clinical trials have shown its efficacy in
the hormone-naive metastatic PCa setting (Fizazi et al.
2017, James et al. 2017) as well as in the chemo-naive
(Ryan et al. 2015) and post-docetaxel (Fizazi et al. 2012)
mCRPC setting.

Sipuleucel-T

Sipuleucel-T is an autologous cell-based cancer
immunotherapy, in which the patient’s immune
system is reprogrammed to recognize and eradicate
cancer cells (Higano et al. 2010). During the procedure,
antigen-presenting cells are isolated from blood and
primed ex vivo to recognize prostatic acid phosphatase
- an enzyme overexpressed in prostate cancers — after
which the activated immune cells are reinfused into
the patient (Fig. 5A) (Di Lorenzo et al. 2011, Handy &
Antonarakis 2018). In a phase III trial, this therapeutic
cancer vaccine has prolonged OS of mCRPC patients
with asymptomatic or minimally symptomatic disease,
making it the first immunotherapeutic approach shown
to improve survival in PCa (Kantoff et al. 2010). However,
Sipuleucel-T administration has thus far only been
tested with concurrent or prior to enzalutamide therapy
(NCT01981122), where both treatment schedules seem
to result in similarly robust immune responses with
no differences in median OS (Antonarakis et al. 2018,
Petrylak et al. 2018). Until now, Sipuleucel-T is therefore
considered as a therapeutic option prior to docetaxel and
enzalutamide, as recommended by a European Expert
Consensus Panel, unless further studies demonstrate its
effectiveness in the enzalutamide-resistant mCRPC setting
(Fitzpatrick et al. 2014).

Radium-223

In symptomatic mCRPC patients with skeletal metastases,
Radium-223 dichloride (Radium-223) is an additional
therapeutic option that improves OS (Parker et al. 2013).
Radium-223 is a bone-seeking calcium mimetic that
concentrates at areas of increased bone turnover, as found
in osteoblastic bone metastases from prostate cancer,
where it emits high-energy alpha-particle radiation
that causes severe DNA damage in nearby cells (Fig. 5B)
(Henriksen et al. 2002, Bruland et al. 2006, Parker et al.
2013, Deshayes et al. 2017).

Therapeutics in clinical development
The antiandrogens apalutamide (ARN-509) (Dellis &
Papatsoris 2018) and darolutamide (ODM-201) (Shore 2017)
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Mechanisms of action of taxane chemotherapeutics and the antiandrogen abiraterone acetate. (A) Taxane chemotherapeutics, such as docetaxel and
cabazitaxel, act by hyperstabilizing microtubules, which - due to the microtubules' role in chromosome segregation during mitosis - causes a cell cycle
arrest in metaphase followed by apoptosis. Moreover, taxanes directly affect AR signaling by inhibiting the microtubule-dependent AR nuclear
translocation in response to androgen stimulation. (AR, androgen receptor; ARE, AR-response element; DHT, dihydrotestosterone). (B) Abiraterone is a
cytochrome P450 17A1 (CYP17A1) inhibitor that leads to androgen deprivation by inhibiting the intracellular biosynthesis of androgens in the testis and
adrenal glands. Androgens are produced via the hypothalamic-pituitary-testis and to a small degree also via the hypothalamic-pituitary-adrenal axis.
Within these axes, CYP17A1 is responsible for converting cholesterol to androgens, such as testosterone, which gets reduced to the potent AR agonist
DHT in the prostate. In addition to androgen deprivation, abiraterone is capable of directly interacting with the AR and thereby blocks the signaling of this
hormone-responsive transcription factor. (ACTH, adrenocorticotropic hormone; FSH, follicle-stimulating hormone; LH, luteinizing hormone; LHRH,
luteinizing hormone-releasing hormone; NRC, nuclear receptor coregulator).

are two novel therapeutics, which are currently under clinical
investigation. Whereas apalutamide’s structure is highly
similar to enzalutamide’s, darolutamide is structurally distinct.
Nevertheless, both novel antiandrogens possess a higher
affinity for the AR LBD and less passage through the blood-
brain barrier compared to enzalutamide. This should reduce
the risk of seizures — a common side-effect of non-steroidal
antiandrogens, potentially due to an off-target binding to

GABA, receptors in the brain (Imamura & Sadar 2016),
which in the initial phase I/II dose-escalation study occurred
in about 2.1% of enzalutamide-treated patients (3 of 140),
all of whom, however, received doses that were more than
twice as high as the later on approved dosage of 160mg/day
(Scher et al. 2010, Higano et al. 2015). The results of a placebo-
controlled phase III trial showed significantly improved
metastasis-free survival and time to symptomatic progression
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increased bone formation, as found in bone metastasis from PCa, where Radium-223 emits high-energy alpha-particle radiation that causes severe

DNA damage in nearby cells.

upon apalutamide treatment in men with non-metastatic
CRPC (Smith et al. 2018). Similarly, a study investigating the
efficacy of darolutamide in this setting is presently running
(NCT02200614).

Another drug that is currently being studied with
regards to overcoming enzalutamide
niclosamide. It is an FDA-approved anthelminthic drug,
which has been identified as a potent AR-V7 inhibitor
in PCa cells, resulting in PCa cell growth inhibition
in vitro and tumor growth inhibition in vivo. Further,
if administered in combination with enzalutamide,
niclosamide could re-sensitize enzalutamide-resistant

resistance is

tumors to the antiandrogen (Liu et al. 2014a). Currently,
the safety and pharmacokinetics of the combination
therapy are being tested in phase I trials (NCT02532114,
NCT03123978), in which the poor oral bioavailability
of niclosamide has recently been reported to limit its
efficacy (Schweizer et al. 2018). Therefore, the current
oral formulation of niclosamide might not be effective
enough as a mCRPC intervention, demonstrating the
importance of further clinical testing along with the
development of niclosamide analogs with improved
pharmacokinetic and antitumor properties (Schweizer
et al. 2018).
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Taken together, there are—atleast theoretically —several
alternative treatment options for mCRPC patients whose
disease progressed on or after enzalutamide treatment.
However, while choosing an appropriate subsequent
therapeutic option, possible cross-resistance needs to
be considered — especially among the next-generation
antiandrogens. Moreover, a potential attenuation in a
drug’s clinical efficiency may occur if used as a second- or
third-line intervention, emphasizing the importance of
optimal treatment scheduling.

Optimizing the sequence of therapies

The introduction of the aforementioned novel effective
therapies has added an additional dimension to the
complex therapeutic landscape of mCRPC. As all of them
have proven survival advantages, diverse scenarios of
therapeutic interventions could be generated, but it still
remains elusive how best to sequence and/or combine
these treatment options.

Clinical and translational research exploring
enzalutamide scheduling

Since it is out of the scope of this review to discuss all
ongoing clinical studies with enzalutamide (co)treatment,
we have compiled a non-exhaustive list of clinical trials
registered on clinicaltrials.gov (Supplementary Table 1,
see section on supplementary data given at the end of this
article). Herein, we will focus on the limited number of
studies that compare the efficacy of the various treatment
options with the aim to identify an optimal sequence of
treatments. One such trial is the ongoing OSTRICh study,
in which patients with poor prognostic features who
progressed on docetaxel therapy are randomized between
cabazitaxel and either enzalutamide or abiraterone
(NCT03295565).

Sequential treatment with different AR-targeting
agents has shown limited efficacy as exemplified by
modest PSA responses when sequentially treated with
enzalutamide and abiraterone or vice versa (Loriot et al.
2013, Noonan et al. 2013, Bianchini et al. 2014, Schrader
et al. 2014, Brasso et al. 2015, Cheng et al. 2015, Petrelli
et al. 2015, Badrising et al. 2016a). Furthermore, it is
suggested that docetaxel has a reduced activity after prior
therapy with enzalutamide or abiraterone (Mezynski et al.
2012, Aggarwal et al. 2013, Suzman et al. 2014).

A possible combinatorial treatment regimen
is currently being tested in trials that evaluate the
efficacy of enzalutamide in combination with taxane-
based chemotherapeutics for the treatment of mCRPC.

Such chemohormonal therapies have proven benefit
in the metastatic non-castrate PCa setting, prior
to developing hormone insensitivity. Therein, the
CHAARTED (Sweeney et al. 2015, 2016, Kyriakopoulos
et al. 2018) and STAMPEDE (James et al. 2016) trials
showed thatupfrontaddition of docetaxel chemotherapy
to ADT at diagnosis of treatment-naive metastatic PCa
improves OS as compared to standard-of-care ADT.
Based on these results, upfront docetaxel combined
with ADT is considered to be a treatment option in men
with de novo metastatic hormone-naive PCa (Gillessen
et al. 2018a). However, its benefit in the mCRPC setting
remains elusive, as such chemohormonal combinations
(such as enzalutamide +docetaxel (NCT01565928) or
enzalutamide + cabazitaxel (NCT02522715)) have thus
far only been tested in phase I/II trials with relatively
small sample sizes and consequently require further
study in a larger population (Morris et al. 2016,
Sternberg 2016).

Up to now, the consensus on therapy sequencing in
the mCRPC setting is mostly based on small retrospective
studies that are unable to give a clear answer. Recently,
a post-registration study evaluated the efficacy and
safety of enzalutamide treatment in patients with
mCRPC who had previously progressed on abiraterone.
Therein, enzalutamide therapy was beneficial in some
patients, whereas the majority presented cross-resistance
between the two hormonal agents (de Bono et al. 2018).
Similar results were shown in a retrospective study, in
which the response to enzalutamide was associated with
a longer interval between end of abiraterone and start
of enzalutamide treatment, suggesting that over time
the chance for a subsequent enzalutamide response
potentially increases (Badrising et al. 2016b).

On the basis of the observed cross-resistance, it is
important to evaluate which of the endocrine treatment
options is more effective as first-line therapy for patients
with mCRPC. This issue is currently being addressed in the
ENABLE study for prostate cancer, a phase III multicenter
randomized controlled trial, in which the efficacies of
enzalutamide and abiraterone will be compared head to
head (Izumi et al. 2017).

Additionally, a randomized controlled trial
(NCT02125357) is currently being performed, which
assesses PSA response rates in therapy-naive mCRPC
patients being sequentially treated with abiraterone and
enzalutamide or vice versa (Chi et al. 2017).

Combining different AR-targeting drugs simultaneously
might improve efficacy as compared to consecutive
treatment. This is being investigated in patients treated
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with enzalutamide or abiraterone alone vs a combination
therapy consisting of both antiandrogens (NCT01949337,
NCT01995513). Furthermore, although in the hormone-
naive setting, the result update of the STAMPEDE trial is
awaited with high expectations, as it includes an arm with
such a combination therapy (NCT00268476, Arm ]J).

Another approach to re-challenge enzalutamide-
resistant mCRPC has been described by Schweizer et al.
(2015) and is referred to as bipolar androgen therapy
(BAT). BAT is exploiting the adaptive increase of AR
levels in CRPC, allowing the tumor cells to cope with
castrate levels of testosterone, by rapidly cycling between
androgen stimulation and deprivation. A subsequent
phase II study of BAT in mCRPC patients that progressed
on enzalutamide showed successful re-sensitization to
the drug, when the patients were re-challenged with the
antiandrogen upon progression on testosterone therapy
(Teply et al. 2018).

Current consensus guidelines for enzalutamide
treatment and therapy sequencing

The St. Gallen Advanced Prostate Cancer Consensus
Conference (APCCC) assists clinicians in their therapeutic
decision-making regarding the management of patients
with advanced prostate cancer (Gillessen et al. 2018a,b).
The recommendations most relevant to this review have
been summarized in Supplementary Table 2. Accordingly,
enzalutamide is considered as a first-line treatment in
patients with asymptomatic mCRPC, regardless of whether
they had received ADT alone or in combination with
docetaxel in the castration-sensitive setting. Similarly,
enzalutamide is a first-line option for symptomatic
men who received docetaxel in the castration-naive
setting; whereas either docetaxel, abiraterone or
enzalutamide treatment are the therapies of choice for
symptomatic patients who did not receive docetaxel in
this setting. Furthermore, there was consensus that both,
asymptomatic as well as symptomatic mCRPC patients,
progressing on or after first-line docetaxel chemotherapy
should receive either enzalutamide or abiraterone as a
second-line agent.

Novel therapeutic targets

In addition to the clinically used enzalutamide alternatives
described earlier, there are currently several treatment
strategies in development. The studies with the most
promising (pre-) clinical data and/or ongoing clinical
trials are discussed hereafter.

Enzalutamide: efficacy, 26:1 R42
resistance and beyond

In clinical development
Recently whole-exome and transcriptome analysis of
advanced PCa revealed that 89% of 150 mCRPC patients
had clinically targetable aberrations (Robinson et al. 2015).
Next to well-known frequently occurring aberrations
(AR, ETS, TP53 and PTEN), new genomic alterations
were found to be highly enriched in mCRPC patients,
including PIK3CA/B, R-spondin, BRAF/RAF1, APC, p-catenin
and ZBTB16/PLZF. Furthermore, genes involved in DNA
damage repair (BRCA2, BRCA1 and ATM) were altered more
frequently than expected (Robinson et al. 2015). More
recently, Pritchard et al. (2016) have found that 11.8%
of patients with metastatic PCa have inherited germline
mutations in DNA damage repair genes, which seem to
be effectively treatable with the PARP-inhibitor olaparib
(Mateo et al. 2015). In consequence of the identification
of these genomic alterations in mCRPC, there is a great
interest in the design of clinical trials targeting these
pathways in combination with enzalutamide treatment.
Trials that are currently running include PI3K/AKT/mTOR
pathway inhibition using LY3023414 (NCT02407054),
TGEF-p receptor I pathway inhibition using galunisertib
(NCT02452008) and IGF1 pathway inhibition using
xentuzumab (NCT02204072).

mCRPC is also characterized by changes in the
epigenetic and chromatin status like altered histone
acetylation or DNA methylation, based on which
chromatin readers/modifiers are regarded as potential
therapeutic targets (Li et al. 2005, Metzger et al. 2005, Spans
et al. 2016, Bennett & Licht 2018). Therefore, the BET
family of proteins which recognize and bind acetylated
histones and are implicated in transcriptional regulation
processes are potential therapeutic targets (Padmanabhan
etal. 2016). In particular, BRD4, a conserved member of the
BET family of chromatin readers, has a crucial role in global
RNA polymerase II (RNA-Pol II)-mediated transcription
(Jang et al. 2005, Asangani et al. 2014). Inhibition of BRD4
recruitment to active chromatin results in displacement
of RNA-Pol II from its target genes and eventually leads
to growth inhibitory effects in CRPC xenograft models
(Filippakopoulos et al. 2010, Asangani et al. 2014, 2016,
Welti et al. 2018). Besides, BRD4 can physically interact
with the N-terminal domain of the AR to mediate its
transcriptional signaling (Yang et al. 2005, Asangani et al.
2014, Urbanucci et al. 2017). Hence, clinical trials have
been initiated that investigate safety, pharmacodynamics,
pharmacokinetics and clinical responses to a BET inhibitor
(GSKS525762) as monotherapy (NCT01587703) or in
combination with antiandrogens (NCT03150056) in men
with chemo-naive or chemo-treated CRPC.
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Different types of immunotherapy, e.g. anti-PD-L1
antibodies, are being examined in nearly all types of
cancer, showing most efficacy in tumors with a high
mutational load and an immunologically ‘hot’ tumor
microenvironment (Hodi et al. 2010, Powles et al. 2014,
Rizvietal. 2015, Spranger 2016). However, PCa is generally
characterized by a relatively ‘cold’ microenvironment
with little cytotoxic T-cell infiltration (Wargo et al. 2016).
Moreover, the mutational frequency is comparatively low,
possibly restricting successful immunotherapy-mediated
interventions to prostate tumors with deficient DNA
damage repair (Sartor & de Bono 2018). Recently, Zehir
et al. (2017) reported a patient case with castration- and
enzalutamide-resistant PCa, who responded exceptionally
well to anti-PD-L1 immunotherapy. Prospective clinical
sequencing of the patient’s tumor and blood samples
revealed a DNA mismatch-repair (MMR) deficiency
signature in the cancerous tissue without a clear underlying
somatic or germline MMR pathway lesion (Zehir et al.
2017). Hence, clinical trials are currently investigating
the safety and efficacy of PD-L1 checkpoint inhibition
as a monotherapy (using Avelumab) in patients with
metastatic neuroendocrine-like PCa (NCT03179410), and
as a combinatorial treatment (using Atezolizumab and
enzalutamide) in patients with mCRPC (NCT03016312).

In the preclinical phase

Besides targeting the AR itself, translational research has
focused over the last couple of years on finding treatment
options interfering with molecules that are associated
with the AR signaling pathway and thus required for
proper AR action. By now, hundreds of these AR regulators
and interactors have been identified, all of which could
be of interest for future drug development (Heemers &
Tindall 2007, Paltoglou et al. 2017, Stelloo et al. 2018). In
the following, we briefly discuss therapeutic intervention
strategies with promising preclinical results that target
a subset of AR coregulators and thus serve as a proof of
principle.

Recently, several inhibitors of the histone
acetyltransferases E1A-binding protein (p300) and cAMP
response element-binding protein (CREB)-binding protein
(CBP) have been developed, such as GNE-049 (Jin et al.
2017), A-485 (Lasko et al. 2017) and CCS1477 (Pegg et al.
2017). CBP and p300 are two closely related and known
transcriptional AR coactivators that have been suggested
to play an important role in PCa progression (Debes et al.
2003, Heemers et al. 2007). In preclinical studies p300
/CBP inhibitors block the AR transcriptional program and

PCa cell proliferation in cell lines as well as castration-
resistant xenograft models (Jin et al. 2017, Lasko et al.
2017, Pegg et al. 2017), supporting their potential clinical
impact, which needs to be further validated in clinical
trials. Very recently, a phase I/II trial assessing the safety
and biological activity of the p300/CBP inhibitor CCS1477
as monotherapy or in combination with abiraterone
or enzalutamide in mCRPC patients has been initiated
(NCT03568656).

Other AR coactivators that are currently being studied
regarding their potential as therapeutic targets are the
p160 steroid receptor coactivators SRC-1, SRC-2 and SRC-3
(Lonard & O’Malley 2016). SRC-1 and SRC-3 have been
reported to be overexpressed in PCa cell lines and clinical
specimens, where their expression levels have been
associated with tumor grade and disease-specific survival
(Gnanapragasam et al. 2001, Lonard & O’Malley 2016).
Moreover, SRC-3 knockdown experiments in mice have
shown decreased tumor growth, indicating its importance
in prostate cancer proliferation and progression (Zhou
et al. 2005, 2010). SRC-2 has been suggested as an PCa
oncogene on the basis of integrated genomic profiling of
218 prostate tumors, illustrating SRC-2 gene amplifications,
mutations or overexpression to occur in 8% of primary
and 37% of metastatic PCa lesions (Taylor et al. 2010).
Rather recently, a novel potent small-molecule inhibitor
for SRCs (SI-2) has been developed, which is setting the
stage for further (pre-)clinical validation (Song et al. 2016).
Paradoxically, not only SRC inhibition, but also hyper-
stimulation can be exploited to selectively induce cancer
cell death and in vivo tumor growth inhibition. A high-
throughput screen identified a small molecule (MCB-
613), which over-activates SRC transcriptional programs,
leading to excessive cellular stress in cancer cells that
highly rely on proper SRC functioning (Wang et al. 2015).

While most of the above-mentioned novel
therapeutic approaches represent systemic treatments,
interventions that specifically interfere with acquired
features in PCa and thus would limit off-target effects,
are of prime interest. A fusion of the androgen-responsive
transmembrane protease serine 2 (TMPRSS2) and the
v-ets erythroblastosis virus E26 oncogene homolog (ERG)
is found in approximately 50% of prostate cancer cases,
making it the most common genetic aberration in PCa
(Tomlins et al. 2005, Cancer Genome Atlas Research
2015). TMPRSS2-ERG gene fusions lead to overexpression
of the usually lowly expressed ERG master transcription
factor driven by the androgen-regulated promoter of
TMPRSS2. This is considered an early event in PCa
development and phenotypically results in increased PCa
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cell migration, invasion and incomplete differentiation
compared to benign prostate epithelial cells due to an
altered transcriptional profile (Tomlins et al. 2008, Mounir
et al. 2015, Kron et al. 2017). Thus far, three preclinical
approaches have been published using either a peptide-
based vaccine to prime the patient’s immune system
to recognize the TMPRSS2-ERG fusion as an antigen
(Kissick et al. 2013); liposomal nanovectors containing
TMPRSS2-ERG-specific siRNAs (Shao et al. 2012) or cell-
permeable ERG inhibitory peptides that specifically block
ERG-mediated transcription by interacting with its DNA-
binding domain (Wang et al. 2017). However, much more
preclinical validations and targeting strategies have to be
explored until this therapeutic approach could potentially
move to the clinic.

Although AR action remains essential in mCRPC,
this is not the only targetable molecule driving this
complex disease. Indeed, increasing evidence suggests
that a subset of antiandrogen-resistant tumors show
neuroendocrine features, which seem to be a consequence
of treatment-induced adaptation of adenocarcinomas
with genomic and epigenomic drivers associated with
decreased AR activity and epithelial plasticity (Epstein
et al. 2014, Beltran et al. 2016). Efficacy of platinum-
based chemotherapy has been suggested in small-cell
neuroendocrine PCa before and a trial (NCT02208583)
is currently investigating this, based on the molecular
phenotype of mCRPC (Aparicio et al. 2013).

Conclusion and future perspectives

The introduction of enzalutamide as a second-line
hormonal therapy for patients with mCRPC has led to
significant improvements in the management of the
disease. Due to tumor heterogeneity, the duration of benefit
to enzalutamide interventions varies between patients.
While some men do respond extremely well and continue
treatment for several years, others progress rapidly as a
result of treatment resistance. The increasing number of
ongoing clinical trials reflects the successful preclinical
advances in wunderstanding enzalutamide resistance
mechanisms and in discovering novel therapeutic targets
to maximize clinical outcome. However, the disease
continues to be terminal and current treatment options,
including enzalutamide and its alternatives, have only
a modest impact on survival, highlighting that many
aspects of the disease remain poorly understood. Only
by understanding which mechanisms underlie treatment
resistance, robust molecular or clinical biomarkers can
be developed to guide therapeutic decision-making and

to identify patient subpopulations that benefit thereof
mostly. That way, well thought-out therapeutic strategies
can be designed, comprising optimal patient-tailored
therapy sequencing and combination.
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