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ABSTRACT OrthoList, a compendium of Caenorhabditis elegans genes with human orthologs compiled in 2011 by a meta-analysis of
four orthology-prediction methods, has been a popular tool for identifying conserved genes for research into biological and disease
mechanisms. However, the efficacy of orthology prediction depends on the accuracy of gene-model predictions, an ongoing process,
and orthology-prediction algorithms have also been updated over time. Here we present OrthoList 2 (OL2), a new comparative
genomic analysis between C. elegans and humans, and the first assessment of how changes over time affect the landscape of
predicted orthologs between two species. Although we find that updates to the orthology-prediction methods significantly changed
the landscape of C. elegans–human orthologs predicted by individual programs and—unexpectedly—reduced agreement among
them, we also show that our meta-analysis approach “buffered” against changes in gene content. We show that adding results
from more programs did not lead to many additions to the list and discuss reasons to avoid assigning “scores” based on support by
individual orthology-prediction programs; the treatment of “legacy” genes no longer predicted by these programs; and the practical
difficulties of updating due to encountering deprecated, changed, or retired gene identifiers. In addition, we consider what other
criteria may support claims of orthology and alternative approaches to find potential orthologs that elude identification by these
programs. Finally, we created a new web-based tool that allows for rapid searches of OL2 by gene identifiers, protein domains [InterPro
and SMART (Simple Modular Architecture Research Tool], or human disease associations ([OMIM (Online Mendelian Inheritence in
Man], and also includes available RNA-interference resources to facilitate potential translational cross-species studies.
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STUDIES in Caenorhabditis elegans have illuminated many
mechanisms relevant to human biology and disease. For-

ward genetic screens based on phenotype have identified
genes homologous to human disease-associated genes, illu-
minating fundamental properties about their roles andmech-
anisms of action (e.g., Greenwald 2012; Sundaram 2013;
Golden 2017; van der Bliek et al. 2017). Reverse genetic
methods have expanded the repertoire of possible genetic

approaches. These methods include the ability to phenocopy
loss-of-function mutations by feeding worms bacteria ex-
pressing double-stranded RNA (Fire et al. 1998; Timmons
and Fire 1998). The efficiency of RNA interference (RNAi)
in C. elegans has allowed for genome-wide screens (Fraser
et al. 2000; Kamath et al. 2003; O’Reilly et al. 2016), or
screens targeted to specific conserved genes, such as human
disease genes (e.g., Sin et al. 2014; Vahdati Nia et al. 2017;
Nordquist et al. 2018) or those involved in fundamental bi-
ological processes (e.g., Balklava et al. 2007; Dunn et al.
2010; Firnhaber and Hammarlund 2013; Allen et al. 2014;
Du et al. 2015). Other efficient reverse genetic methods in
C. elegans include the large-scale generation of deletion and
point mutations for functional genetic analysis (Moerman
and Barstead 2008; Thompson et al. 2013), transgenesis to
engineer models for gain-of-function mutations associated
with disease (Markaki and Tavernarakis 2010; Tucci et al.
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2011), and now CRISPR/Cas9-based genome engineering for
manipulation of endogenous genes (Dickinson and Goldstein
2016).

To facilitate cross-platform studies, we created OrthoList, a
compendium of C. elegans genes with human orthologs that
was originally published in the form of an Excel spreadsheet
(Shaye and Greenwald 2011). Subsequently, we created
a minimal, unpublished, online tool distributed through infor-
mal C. elegans community channels to enhance its accessibility
and utility. OrthoList has indeed both facilitated the identifica-
tion of orthology (e.g., Firnhaber and Hammarlund 2013; Du
et al. 2015; Vahdati Nia et al. 2017) and has been used as the
basis for streamlining RNAi screens (e.g., Gillard et al. 2015;
Hernando-Rodríguez et al. 2018; Nordquist et al. 2018).

To generate OrthoList, we used ameta-analysis strategy in
which we compiled the results of different orthology-prediction
programs. Because each sequence-analysis method at the
base of these programs has its strengths and weaknesses, each
leading to a different trade-off between precision (true vs.
false positive rate) and recall (true vs. false negative rate),
we expected a meta-analysis to capture the greatest number
of potential orthologs, with high precision and recall. Our
expectation was subsequently supported by independent as-
sessments (Pryszcz et al. 2011; Pereira et al. 2014) and by our
new results below.

Genome annotation in both C. elegans and humans is an
ongoing process, and the efficacy of genome-wide, orthology-
prediction approaches depends on the accuracy of the gene
models in the genomes under scrutiny. Thus, we have now
performed a new meta-analysis using current information to
generate OrthoList 2 (OL2), an up-to-date compendium of
genes with C. elegans and human orthologs. In addition, we
have created an improved online tool associated with OL2
(found at http://ortholist.shaye-lab.org) with features that
facilitate genetic analysis in C. elegans by containing links to
the complete “feeding-RNAi” clone set (Fraser et al. 2000;
Kamath et al. 2003) as well as multiple data input options,
links to other databases [Smart Modular Architecture Re-
search Tool (SMART) and InterPro for protein domains
(Finn et al. 2017; Letunic and Bork 2018), Online Mendelian
Inheritance in Man (OMIM) for disease associations (McKusick
2007)], and more flexibility in accessing results. We analyze
the changes in content between OrthoList 1 (OL1) and OL2,
and demonstrate the robustness of the meta-analysis strategy,
including examples of the strengths and limitations of this
approach that have emerged during this update. Our analysis
highlights the importance of assessing orthology by meta-
analysis, rather than by relying on a single “snapshot” in time
or on a single program to obtain a comprehensive list of genes
conserved between C. elegans and humans.

Materials and Methods

A detailed description, and accompanying source code, of
howwe obtained and compiled the data underlyingOrthoList
canbe foundathttps://github.com/danshaye/OrthoList2, and

a freeze of the underlying code is provided as Supplemental
Material, File S8. Briefly, for all methods except Ensembl
Compara, we downloaded and analyzed results from the
most current release available. For details on the source
data underlying each of the orthology-prediction methods
queried, see Table S1. For Compara, which is updated every
2–3 months, we noticed a great deal of fluidity in results (see
Figure S1) within the three versions that were released as we
compiled OL2 (Ensembl Compara version 87, 88, and 89), so
that only �85% of the worm–human orthologs predicted
were common between the three versions. For example, the
update from version 87 to 88 led to a loss of 294 worm genes,
of which about half (158) were readded upon update to ver-
sion 89 (Figure S1). Similarly, the update from version 88 to
89 led to a loss of 320 genes, of which 178 had been supported
in both versions 87 and 88. Given these differences, and to
ensure the most comprehensive results from Ensembl Com-
para, we decided to keep all genes found by the three versions
released as we compiled and analyzed OL2.

Data comparisons and Venn diagrams were done with the
Web-based program VENNY, found at http://bioinfogp.cnb.
csic.es/tools/venny/index.html (Oliveros 2007). Statistical
analyses were conducted using resources from the Handbook
of Biological Statistics (McDonald 2014), found at http://
www.biostathandbook.com, and with GraphPad Prism Soft-
ware version 6.0.

Data availability

The authors affirm that all data necessary for confirming the
conclusions of the article are present within the article, fig-
ures, tables, supplemental materials, and at the online re-
pository located at https://github.com/danshaye/OrthoList2.
Supplemental material available at Figshare: https://doi.org/
10.25386/genetics.6967337.

Results

Addressing changes to gene predictions in the
C. elegans genome

Each time a genome sequence database is updated, there are
changes ingenepredictions. Someof the changesare “correct”
and will endure, while others may fluctuate as prediction
algorithms continue to evolve and more sequencing data
becomes available. We previously hypothesized that such
changes to gene predictions would have a minor effect on
the integrity of OL1, because conserved genes would be the
most likely to be accurately represented in genome releases
(Shaye and Greenwald 2011). The analysis in this and the
next section supports this hypothesis, as only �0.9% of
C. elegans and�0.1% of human genes in OL1 were removed,
or “deprecated,” due to updated gene predictions.

We analyzed alterations in C. elegans gene predictions by
cross-checking the 7663 genes in OL1, which was built using
WormBase version WS210 (released in 2009), to WormBase
WS257 (released in 2017). We found that only 151 worm
genes changed due to updated predictions. Most (67/151)
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resulted from their reclassification as pseudogenes, noncod-
ing RNA, being transposon derived, or killed due to lack of
evidence (type-I change, File S1). It is only this type of
change, representing �0.9% (67 of 7663) of worm genes in
OL1, that results in deprecation of a C. elegans gene previ-
ously believed to be conserved in humans.

A second type of change, seen with 43 worm genes,
resulted from combining or “merging” two or more genes
that had each, separately, been found to have a human ortho-
log. This type of change (type II, File S1) led to a net loss of
22 genes. Together, type-I and type-II changes led to a re-
moval of 88worm genes fromOL1. Our analysis below, which
addresses updates to human gene predictions, led to removal
of an additional six worm genes from OL1, leading to an
updated final number of 7569 worm genes predicted to have
human orthologs in OL1 (Figure 1 and File S2).

The final 41 worm genes that changed since OL1 were
assigned new identifiers (IDs), either because experimental
evidence suggested that they should be merged to genes that
were previously not in OL1 (16/41) or due to addition of
previously unpredicted gene segments (25/41) leading to a
new ID (type III, File S1). This last type of change does not
affect the total number of C. elegans genes in OL1.

Addressing changes to gene predictions in the
human genome

One of the major challenges we encountered in our analysis
was accommodating changes to human gene annotations.

We compiledOL1using the Ensembl genome browser (Vilella
et al. 2009) to obtain human genes and their associated ENSG
IDs, because Ensembl provides strong support for compara-
tive genomic studies via its BioMart tool for large-scale
datamining and analysis (Kasprzyk 2011). Based on Ensembl
data, OL1 appeared to include 11,416 predicted human
genes (ENSG IDs from Ensembl version 57, 2010; File S3,
tab A). However, we noticed that in some cases a single gene
had multiple ENSG IDs associated with it (e.g., the gene
NOTCH4 has seven associated IDs). These alternative IDs
occur when new sequence differs from the primary assembly,
due to new allelic sequences (haplotypes and novel patches)
or fix patches. Novel patches represent new allelic loci, but
not necessarily haplotypes. Fix patches occur when the pri-
mary assembly was found to be incorrect, and the patch re-
flects the corrected sequence (for details see the Genome
Reference Consortium page at https://www.ncbi.nlm.nih.
gov/grc). Regardless of source, the fact that some genes have
multiple IDs prevents us frommaking an accurate assessment
of how many human genes were in OL1. Henceforth, when
discussing human genes, we use the number of ENSG IDs as
an approximation for the number of human genes in Ortho-
list, and consider the gene estimate further in the section
describing the gene content of OL2.

To begin addressing changes to gene predictions in the
human genome, we cross-checked the 11,416 ENSG IDs from
OL1 with a recent release of Ensembl (version 89, 2017)
and found that 574 IDs appeared to be lost (File S3, tab A).

Figure 1 Workflow for genome analysis
and generation of OL2. The workflow
proceeded in four steps. Step 1: we
addressed changes to gene models in
the worm genome that have occurred
since OL1 was published (File S1) to yield
an updated OL1 (File S2). We also
addressed changes to human gene pre-
dictions (File S3). Step 2: we queried
updated versions of the orthology-
prediction methods used in OL1 (see Table
1) to generate OL1.1 (File S4), and found
that the number of worm genes added
was within the parameters predicted by
changes in individual programs (Table 2),
whereas gene loss appeared to be buff-
ered by combining results from the dif-
ferent methods (i.e., the meta-analysis
approach). Step 3: we next added results
from two additional orthology-prediction
methods (see Table 1) and found that
this had a low impact on the landscape
of human–worm orthologs identified in
OL1.1 (File S5). Finally, in step 4, we com-
bined the genes identified by these two
additional programs with OL1.1 to gen-
erate OL2 (File S5 and File S7). We note
that genes that did not continue to be

supported by orthology-prediction methods were retained as a legacy set present in the searchable database (File S6 and File S7). Both OL2 and the
legacy set of genes were cross-referenced to the C. elegans feeding RNAi library, protein domain prediction databases (InterPro and SMART), and to a
human disease association database (OMIM) to generate a final master list (File S7), which can be queried via the new Web-based tool found at http://
ortholist.shaye-lab.org.
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Although this is a small fraction of the IDs in OL1 (�5%),
this number seemed high in light of our hypothesis that con-
served genes should be stable. Unfortunately, Ensembl does
not provide details of ENSG ID curation. Instead they make
available a “version history” that describes changes and in-
dicates when an ID was “retired” (File S3, tab B). However,
as discussed below, our manual curation suggests that most
of the ENSG IDs marked as retired represent genes that still
exist in the human genome assembly with a different ID.

To ask whether the 574 retired ENSG IDs represented
genes that were truly deprecated, we undertook a cross-
species comparison. We extracted the 624 worm orthologs
of these apparently deprecated human genes from OL1. Based
on our analysis discussed above, six of these worm genes had
changed: two were themselves deprecated (type-I change,
File S1), so it is likely that the two human genes that matched
to these were themselves also truly deprecated (File S3, tab
D).The remaining fourwormgeneswereupdated (type-II and
type-III changes, File S1), and these are considered further
with respect to their relationship to apparently deprecated
human genes.

Of the 622 current worm genes that matched apparently
deprecated human genes, almost all (616/622 or �99%)
continue to have human orthologs with current ENSG IDs.
Manual inspection of a randomly selected subset (n= 20) of
these human–worm pairs showed that, in all cases, the un-
derlying human gene that appeared to be deprecated because
its ENSG ID had been retired actually has another current
ENSG ID assigned to it and, in almost all cases (19 of 20 in
the sampled set), the current ENSG ID is not linked to the
retired one (File S3, tab C; POLDIP2, the only gene within
this set for which its retired ENSG ID is linked to its current
one, is shown in bold). Therefore, it appears that in most, if
not all, cases where a worm gene matched an apparently
deprecated human gene in OL1, the human gene actually still
exists with a new ID that is not linked to the retired one. An
alternative, not mutually exclusive, possibility is that worm
genes that matched apparently deprecated human genes re-
main matched to one, or more, paralogs of the original hu-
man gene. However, since Ensembl does not make available a
detailed history of ID changes, we are unable to address this

possibility. Regardless, based on the continued extensive
orthology between C. elegans genes and erroneously depre-
cated human genes, we are only able to confirm deprecation
of 16 ENSG IDs from OL1 (see below).

The last 6 of 622 worm genes that matched apparently
deprecated human genes had, as sole orthologs, 14 human
genes that appear to be truly lost, as these worm genes do not
match any current ENSG ID (File S3, tab D). Moreover, these
six worm genes do not pick up any human sequences, even
by simple BLAST searches (File S3, tab D). Therefore, these
six worm genes no longer have human orthologs and were
thus removed from OL1 (resulting in the final number of
7569 worm genes in OL1; Figure 1 and File S2), and their
14 cognate human genes are truly deprecated. If we add the
two human ENSG IDs that matched deprecated C. elegans
genes (see above) to the 14 ENSG IDs discussed here, the
total number of confirmed deprecated IDs is 16, or just
�0.1% of the ENSG IDs in OL1 (Figure 1 and File S3, tab D).

This analysis supports our hypothesis that conserved genes
are stable and demonstrates that there are some difficulties
with human gene annotations that need to be taken into
account when performing genome-wide homology analyses.
Given these deficiencies in annotation, we are unable to
reliably address the changes in gene content of the human
portion of OrthoList. Therefore, to avoid confounding effects
that arise from differences in the quality of genome annota-
tion, hereafter our analysis will focus on theC. elegans content
of OrthoList.

Updates to the individual orthology-prediction methods
used in OL1 change the landscape of C. elegans–human
orthologs in the absence of meta-analysis

Orthology-prediction methods can be classified into three
general categories: graph-based, tree-based, or hybrid strat-
egies. However, recent analyses suggest there is no obvious
systematic difference in performance between these strate-
gies per se, even while there are differences in performance
of individual programs (Altenhoff et al. 2016; Sutphin
et al. 2016). Graph-based programs begin with pairwise
alignments between all protein sequences from two species
to identify the most-likely orthologous pair, followed by

Table 1 Databases used to build OL2

Program
Version in
OL1 (date)

Version(s) in OL2
(date)

No. of C. elegans
genes in OL1

No. of C. elegans genes
in OL2 (% change)

No. of human
ENSG IDs in OL1

No. of human ENSG IDs
in OL2 (% change)a

Ensembl
Compara

57 (2010) 87–89 (2016–2017) 6404 6801 (+6.2%) 8642 9186 (+6.3%)

HomoloGene 64 (2009) 68 (2014) 4127 3778 (28.5%) 2956 3205 (+8.4%)
InParanoid 7 (2009) 8 (2013) 5591 5581 (20.2%) 7527 8949 (+18.9%)
OrthoMCL 4 (2010) 5 (2011) 5663 5699 (+0.6%) 7417 7588 (+2.3%)
OMA NA 1 (2016) NA 3882 NA 4558
OrthoInspector NA 2 (2015) NA 5361 NA 7771

The programs used here all scored highly in a recent assessment of orthology-prediction methods (Altenhoff et al. 2016). For the four previously used programs, we report
the net change (%) in C. elegans and human genes predicted to be orthologs between versions. (For the other two programs, these measurements are not applicable).
a The change in human ENSG IDs upon updates includes those whose original IDs were retired, but which still exist in the Ensembl database with a new, unlinked, ID. This
deficiency in annotation makes it impossible to assess the true extent of gains and losses in the human gene set (see main text).
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different clustering criteria. Tree-based strategies take advan-
tage of the evolutionary relationships between species, simul-
taneously aligning sequences from multiple species to build
phylogenetic trees for each protein. Hybrid strategies combine
aspects of both graph- and tree-based approaches, applying
graph-based clustering methods at the nodes of phylogenetic
trees to generate ortholog predictions. To generate OL1, we
combined data from four programs: (1) InParanoid (Remm
et al. 2001), a graph-based approach that clusters orthologs
between two species, and defines paralogs, based on recip-
rocal-best BLAST hit (RBH) scores; (2) OrthoMCL (Li et al.
2003), a graph-based approach that generates a similarity
matrix using RBH scores within and between species, fol-
lowed by Markov clustering to produce interspecies ortho-
log groups; (3) Ensembl Compara (Vilella et al. 2009), a
tree-based approach; and (4) HomoloGene (Wheeler et al.
2007), a hybrid approach.

We wanted to assess the effects that updates to the orthology-
prediction methods used to generate OL1 would have on the
landscape of worm–human orthologs. The previously used
programs have been updated with varying regularity since
OL1was compiled (Table 1): InParanoid andOrthoMCL have
been updated once, HomoloGene has been updated four
times (the latest version, which we use here, released in
2014), and Ensembl Compara is updated every 2–3 months.
As discussed inMaterials and Methods, here we use combined
data from three recent Ensembl releases (versions 87, 88, and
89; December 2016–May 2017).

As shown in Table 1 and Table 2, at first glance the net
number of worm genes with human orthologs predicted by
each program did not appear to change greatly between ver-
sions of the orthology-prediction methods: the mean change
in worm genes with predicted human orthologs was 20.5%
(63.0% SEM). However, closer examination showed that the
change in gene content, i.e., the actual genes in the results, is
larger than reflected by the change in net numbers (Figure 2
and Table 2).

The average decrease in C. elegans genes with predicted
human orthologs resulting from updates to orthology-prediction
methods was 7.9% (63.6% SEM; Table 2), corresponding to
a predicted loss of 598 (6272) worm genes from OL1. As
discussed above, updates in gene predictions resulted in a

loss of only 95 worm genes from OL1; therefore, it appears
that updates to orthology-prediction methods causes about
six times more losses, suggesting that changes in orthology-
prediction algorithms over time have a greater effect on the
landscape of worm–human orthologs than do changes in un-
derlying gene models. Updates also appear to increase sensi-
tivity, because there was an average increase of 7.4% (62.6%
SEM) C. elegans genes with predicted human orthologs
(Table 2), corresponding to a predicted gain of 568 (6197)
worm genes.

Taken together, our analysis in this section suggests that
updates to individual orthology-predictionmethods over time
have a drastic effect on the landscape of orthologs between
worms and humans, on the order of �16% change in total
gene content. However, as shown below, the meta-analysis
approach of combining results from the different orthology
methods appears to buffer some of this change, in particular
when it comes to apparent loss of orthology. The documen-
tation associated with updates to the four previously used
orthology-prediction programs does not provide details of
the changes to their algorithms that might have led to the
large changes in gene content, despite the minor changes in
gene-structure predictions that we found in both species (see
sections above). We speculate that one possible reason be-
hind the larger change in the landscape of orthologs after
updates may be related to the inclusion of more sequenced
genomes when orthology-prediction methods were updated.
For example, in updating InParanoid from version 7 (which
was used for OL1) to version 8 (analyzed here), the number
of species included to generate ortholog groups increased
from 100 to 273, leading to an increase in the number of
ortholog groups of 423% (from 1.5 to 8.0 million), and
orthologous proteins by 141%, from 1.2 to 3.0 million
(Sonnhammer and Ostlund 2015). Such large-scale changes
in orthology assignments seem likely to be the cause of the
large shift in the landscape of orthologs predicted by the four
previously used methods.

Updates to orthology-prediction methods do not lead
to greater agreement between them

Less than half of thewormgenes in OL1were supported by all
four programs queried, suggesting a low degree of agreement

Table 2 Changes in gene number and content after updates to orthology-prediction methods

Gene numbers (net change) Gene content (actual genes in results)

Original Updated Change (%) No. lost No. gained Lost (%) Gained (%)

Ensembl Compara 6404 6801 +6.2 467 864 27.3 +13.5
HomoloGene 4127 3776 28.5 747 396 218.1 +9.6
InParanoid 5591 5581 20.2 290 280 25.2 +5.0
OrthoMCL 5663 5699 +0.6 57 93 21.0 +1.6

Mean 20.5 Mean 27.9 +7.4
SEM 63.0 SEM 63.6 62.6

The mean change in total number of worm genes with human orthologs predicted by each individual program was quite low (20.5 6 3.0%) after updates, although each
program showed distinct patterns of change, with Ensembl Compara adding more genes vs. all the other programs losing genes. However, when considering the change in
actual gene content, each program appears to have larger changes than what is apparent by just looking at the net change in numbers.
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between individual prediction methods. Moreover, �20%
of worm genes in OL1 were found by a single orthology-
prediction method, and hence we term these genes “uniques”
(Shaye and Greenwald 2011; see also Figure S2). If updates
to the orthology-prediction programs generally resulted in
improved prediction power, we reasoned that there should
be greater agreement among them (i.e., an increase in worm
genes found by all programs and/or a reduction in uniques).
To this end, we performed the same meta-analysis on the
results from updated versions of the previously used orthology-
prediction methods to generate OL1.1, which contains 7812
worm genes (Figure 3, A–C, and File S4).

Surprisingly, we found that updates to orthology-prediction
methods actually resulted in less convergence among their
results (Figure 3, A and B, and Figure S2): the proportion of
C. elegans genes scored as having human orthologs by all
four methods declined from 44.7 to 41.7% (P = 6.5 3 1028;
statistical analysis here, and below, were done via two-tailed,
chi-square, goodness-of-fit tests with Yates correction). Con-
versely, the proportion of uniques increased from 21.8 to
23.8% (P = 1.2 3 1025).

Not only were the results from these programs less con-
vergent after updating, but updates did not seem to provide
stronger support for predictions. The majority of OL1 genes
(5487 of 7569, or 72.5%) remained in the same “class” (i.e.,
unique, “found by two programs,” “found by three pro-
grams,” or “found by all”) after updating to OL1.1 (Figure
3D and Table 3), suggesting the same level of support. How-
ever, among the genes that changed class, the number that
lost support (e.g., went from being supported by all, to being
supported by three, two, or one, or those that went from
unique to not being supported at all, etc.) outnumbered
those that gained it: 1285 genes (17.0%) lost support, while

797 genes (10.5%) gained it (Table 3). This difference is
statistically significant (P , 0.001), consistent with the de-
creased convergence in results from the different methods
sampled.

We also note that the class a gene belonged to in OL1 does
not appear to be a predictor of increased or decreased support
after updates (Figure 3D and Table 3). Among genes that did
not change support after updates, the most represented type
(�52% of this class) were those predicted by all fourmethods
before and after updates; however, the next most numerous
class were those that remained unique (�21% of this class).
By this metric, genes supported by two or three programs
seem to be less stable. Among genes that lost support,
the vast majority (�93%) only changed by one “level” (i.e.,
unique to lost, two to unique, three to two, or all to three;
Figure 3D and Table 3). Somewhat surprisingly, the largest
contributing set of genes to the class that lost support was the
subset that was predicted by all four methods in OL1, sug-
gesting that genes predicted by all methods are not necessar-
ily the most likely to retain the highest level of support after
updates.

In sum, our analysis shows that updates to orthology-
prediction methods do not necessarily lead to greater agree-
ment among them, nor do these updates unambiguously or
consistently provide stronger support for specific predictions.
These observations demonstrate the difficulty of assessing a
priori which orthology-prediction method is the most accu-
rate, a question that continues to be debated in the field of
orthology prediction (Altenhoff et al. 2016). Thus, favoring
onemethod over another, and relying on results from a single
version in time of an orthology-prediction method, can in-
troduce unintended bias and increase false negative rates
when compiling a comprehensive list of orthologs between

Figure 2 Changes in the landscape of
C. elegans genes with human orthologs
due to updates in methods used to gen-
erate the original OrthoList. Venn dia-
grams shown here compare the worm
gene content of the original and updated
versions of (A) Ensembl Compara, (B)
HomoloGene, (C) InParanoid, and (D)
OrthoMCL. See also Table 2.
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species. A corollary that we discuss further below is that using
the number of programs that support a prediction as a proxy
for how good the prediction is, as several meta-analysis-
based methods do (Hu et al. 2011; Pryszcz et al. 2011;
Sutphin et al. 2016), is an uncertain metric, since the degree
of support appears to be fluid. As we show in the next section,
the meta-analysis approach also appears to guard against
these potential problems.

Meta-analysis “buffers” against losses resulting from
updates to individual orthology-prediction methods

When we compiled OL1, there was no “gold standard” for
identifying a set of orthologs between two species. We ar-
gued that a meta-analysis would insure high recall and pre-
cision, resulting in the most accurate picture of C. elegans and
human orthologs (Shaye and Greenwald 2011). Other stud-
ies (Pryszcz et al. 2011; Pereira et al. 2014) supported this
inference and show that the meta-analysis approach results
in a higher level of accurately predicted ortholog groups than
individual methods. Here, we provide additional support for
this view by demonstrating that a meta-analysis effectively
buffers against losses resulting from changes over time in
individual prediction methods.

The meta-analysis used to generate OL1.1 led to a gain of
530worm genes when compared to OL1 (Figure 1 and Figure
3C). As mentioned above, the mean gain in gene content
when analyzing individual programs was 7.3%, correspond-
ing to a predicted gain of �568 worm genes (Figure 1 and
File S3). Therefore, gains obtainedwith themeta-analysis are
close (within the SEM) to the expected. This shows that, with
respect to gene gains, the meta-analysis does not differ
greatly from the variability seen within individual programs.

On the other hand, the meta-analysis resulted in a loss of
just 287 genes (Figure 1 and Figure 2C). This contrasts with
the mean loss in gene content seen with individual programs,
which was 7.9%, corresponding to a predicted loss of �598
genes (Figure 1 and File S3). Thus, the number of genes lost
using the meta-analysis is much less than what would be
expected due to losses in individual programs. This suggests
that the meta-analysis approach provides a buffer against
loss in gene content due to changes in orthology-prediction
methods over time.

The majority of worm genes lost after updating to OL1.1
(260 of 287, or �90%) were uniques in OL1 (File S2, tab C,
and File S4, tabs D and E), suggesting that this class is the
most likely to lose orthology after updates to prediction
methods. However, two other considerations indicate that
genes predicted by a single method should be included in
OrthoList to ensure the most accurate representation of
orthology: (1) it is important to note that the 260 lost genes
represent just a small fraction (�16%) of the 1650 uniques in
OL1 (Figure S2; File S2, tab B; and File S4, tab E), and (2) we
found that a similar fraction of OL1 uniques (222 genes or
�13%) are now supported by two, or more, programs used to
compile OL1.1 (File S4, tab E).

Adding more orthology-prediction methods has only a
low impact on the landscape of human–worm orthologs
identified in OL1.1

In choosing the prediction programs to generate OL1, we
focused on those that, at the time, were rated highly by
publications that analyzed the performance of orthology-
prediction methods (Hulsen et al. 2006; Chen et al. 2007;
Altenhoff and Dessimoz 2009) and were amenable to

Figure 3 OL1.1 and longitudinal analysis of changes in the landscape of worm–human orthologs. To generate OL1.1, we combined results from updated
versions of the four previously used orthology-prediction methods. (A) The Venn diagram shows overlap in gene content between the four programs, while
(B) the table gives an overall measure of how many genes were found by one or more programs [regardless of which one(s) found them]. (C) The Venn
diagram shows the change in gene content between OL1 (Figure S2 and File S2) and OL1.1 (File S4), indicating a loss of 287 genes and a gain of 530 genes
after updates to orthology-prediction methods. (D) Bar graph illustrates the changes in orthology support after updates, also shown in Table 3, demon-
strating that most genes maintained the same level of support. However, among those that changed support level, there was no obvious trend toward
gaining more support with updates to prediction methods, nor was there more stability among genes that had higher support in OL1.
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extraction of genome-scale data. Amore recent assessment of
15 orthology-prediction methods (Altenhoff et al. 2016),
which did not include OrthoMCL or HomoloGene, continues
to support InParanoid as a solid performer (i.e., generating
results that balance precision with recall), while Ensembl
Compara performed less well. We note that, in regard to
the C. elegans–human set of orthologs, this assessment fits
our observations: InParanoid seemed to be more stable over
time, showing fewer changes in total gene number and con-
tent, when compared to Ensembl Compara (Table 2).

Our finding thatOL1.1 displayed a gain of 530 and a loss of
287 genes when compared to OL1 led us to test if including
results from additional orthology-prediction methods would
support these changes, or reveal shortcomings in themethods
used previously.We chose two additional orthology-prediction
methods, the Orthologous Matrix (OMA) project (Roth et al.
2008) and OrthoInspector (Linard et al. 2011, 2015) (see Ta-
ble 1) for their ease when it came to obtaining genome-wide
data and for their accuracywhen compared to other orthology-
prediction methods. In terms of recall and precision, among
the 15 programs assessed by Altenhoff et al. (2016), OMA
appears to be the most stringent, exhibiting the highest pre-
cision but with low recall (few false positives, but may miss
true hits); while OrthoInspector typically exhibited the most

well-balanced set of results with respect to precision and re-
call, being most similar in these respects to InParanoid.

OMA defines orthologs using a three-step process: first, it
analyzes full proteome sequences using all-against-all Smith–
Waterman alignments. Second, to identify orthologous pairs
from within significant alignment matches, closest homologs
are identified based on evolutionary distance, taking into ac-
count an estimation of uncertainty, the possibility for differen-
tial gene losses, and identifying paralogs based on third-party
proteome sequences as “witnesses of nonorthology.” Finally,
ortholog groups are built using a maximum-weight clique al-
gorithm. For our analysis, we downloaded the humans–
C. elegans “Genome Pair View” data set from the OMAWeb site.

The OrthoInspector algorithm is also divided into three
main steps. First, the results of a BLAST all-vs.-all alignment
are parsed to find all the BLAST best hits for each protein
within an organism, which is used to create groups of inpar-
alogs. Second, the inparalog groups of each organism are
compared in a pairwise fashion to define potential orthologs
and inparalogs. Third, best hits that contradict the potential
orthology between entities are detected and annotated. Un-
like InParanoid and OrthoMCL, OrthoInspector does not con-
sider RBHs as a preliminary condition to detect potential
inparalogs. Instead, inparalog groups are inferred directly

Table 3 Changes in support after updates to orthology-prediction methods

Class Type of support No. of genes
Percent of
class (%)

Representation with respect
to proportion in OL1 (significance)

Total genes
in class Percent of OL1 (%)

Stayed the same Unique 1164 21.2 Unchanged (P = 0.4340)

5487 72.5
Two 589 10.7 Underrepresented (P , 0.001)
Three 882 16.1 Underrepresented (P , 0.001)
Four 2852 52.0 Overrepresented (P , 0.001)

Lost support Unique to lost 260 20.2 Unchanged (P = 0.2205)

1285 17.0

Two to unique 184 14.3
Overrepresented (P = 0.0034)

Two to lost 27 2.1

Three to two 253 19.7
Unchanged (P = 0.2034)Three to unique 26 2.0

Three to lost 0 0.0

Four to three 492 38.3

Underrepresented (P = 0.0406)
Four to two 38 3.0
Four to unique 5 0.4
Four to lost 0 0.0

Gained support Unique to two 200 25.1
Overrepresented (P , 0.001)

797 10.5

Unique to three 23 2.9
Unique to four 3 0.4

Two to three 176 22.1
Overrepresented (P , 0.001)

Two to four 33 4.1

Three to four 362 45.4 Overrepresented (P , 0.001)

All statistics in this table are calculated by a two-tailed, chi-square with Yates correction. The majority of genes (72.5%) from OL1 retained the same level of support, but
significantly more lost support rather than gained it after updates (P. 0.001). To ask if there was a trend toward stability based on degree of support, we looked at whether
genes supported by more programs in OL1 were overrepresented in the class that retained—or gained—support, or whether they were underrepresented in the class of
genes that lost support. Conversely, we looked for whether genes supported by fewer programs were overrepresented in the class of genes that lost support. We did not find
strong evidence for such a trend. The proportion of uniques within the class that retained the same level of support, or lost it, was not significantly different from the
proportion of uniques in OL1. Moreover, uniques were overrepresented in the class that gained support. Therefore, being a unique is not a predictor for remaining unique or
losing support. We also noticed that genes supported by two programs were as likely to lose support as they were to gain it (overrepresented in both classes), while genes
supported by three or four programs are less likely to lose support upon updates.
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in each organism, and these groups are then compared be-
tween organisms. This approach allows for exploration of a
larger search space to discover potential orthologs.

When we compared results from OMA and OrthoInspector
toOL1.1, we found that the addition of these two programs did
not greatly change the landscape of human–worm orthologs
predicted by the four previously used methods (Figure 4A and
File S5). Of the 3881 worm genes with human orthologs pre-
dicted by OMA, 3768 (97.0%) were already present in OL1.1.
Similarly, of the 5361 worm genes predicted to have human
orthologs by OrthoInspector, 5343 (99.7%) were already pre-
sent in OL1.1. Therefore, these two programs at first glance
appear to have added 131 more predicted orthologs to Ortho-
List. However, we note that 31 of the 131 genes added byOMA
and OrthoInspector were actually in OL1, but had been lost
after the updates to the original orthology-prediction methods
that yieldedOL1.1 (Figure 1 and Figure 4B). Therefore, the new
content added by OMA and OrthoInspector is actually only
100 genes, or +1.3% of what was already present in OL1.1.

The final gene content of OL2

To generate OL2, we summed the content of OL1.1 and the
101 additional genes identified by OMA and OrthoInspector. As
in our originalmeta-analysis,we included genes found by even a
single program as a conservative approach to maximize the
inclusion of genes with potential conservation, especially with
theviewofusingOL2asaguideforRNAiscreens.Takentogether,
OL2 includes a total of 7943 C. elegans genes, or �41% of the
protein-coding genome (Figure 4C and File S5, tab C).

After compilingOL2,wewere leftwith256C. elegansgenes
that were previously predicted to have human orthologs, and

thus were in OL1, but are not supported by current versions
of orthology-prediction programs (Figure 4, B and C, and File
S5, tab C). Below we discuss this gene set, which we term
“legacy,” and why we chose to retain these genes in our
searchable database even though they no longer score as
orthologs in analysis programs.

As we noted above, there is some redundancy in Ensembl
human gene entries. In the version used to compile OL2,
Ensembl (version 89) contained 20,310 protein-coding genes
and 2751 alternative sequences (which are the ones that give
rise to the extra IDs for genes like NOTCH4, as described
above). Thus, there were a total of 23,061 human ENSG
IDs, of which �13.5% were alternative sequences. OL2 has
12,345 ENSG IDs, which, given the numbers above, we esti-
mate corresponds to�10,678 bona fide protein-coding genes
and �1667 alternative sequences. These considerations in-
dicate that �52.6% (10,678/20,310) of the human protein-
coding genome has recognizable worm orthologs supported
by current versions of orthology-prediction methods.

The legacy gene set

We found that 256 C. elegans genes that were present in OL1
were not identified either in OL1.1, using updates of the four
original programs, or by OMA or OrthoInspector (File S5, tab
C, and File S6, tab A). Thus, they would not be considered
orthologs as conventionally defined. Many (205/256 or
�80%) of these genes have functional domains recognized
by programs such as SMART (Letunic and Bork 2018) and
InterPro (Finn et al. 2017), while others have been placed in
protein families based on other criteria, e.g., the C/EBP protein
homolog cebp-1 (Yan et al. 2009; Bounoutas et al. 2011; Kim

Figure 4 Adding more orthology-prediction methods has a low impact on the landscape of human–worm orthologs identified in OL1.1. We queried
two additional programs, OMA and OrthoInspector, for worm–human orthologs and compared their gene content to OL1.1. (A) The Venn diagram
shows that the vast majority of orthologs called by OMA (3768/3881 or �97%) and OrthoInspector (5343/5361 or �99%) were present in OL1.1. (B)
The Venn Diagram shows that, among the “new” orthologs called by OMA and OrthoInspector, �24% (31/131) were in OL1, but had been lost due to
updates to previously used methods. Therefore, only 100 new orthologs were added after including results from two more orthology-prediction
methods. (C) Diagram shows how the gene content of OL2, which was compiled by combining the results shown in (A) (see File S5, tab C), compares
to the gene content from OL1 (see File S1, tab C).
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et al. 2016; McEwan et al. 2016), or several hedgehog-related
genes, called “groundhog” or grd in C. elegans (Bürglin and
Kuwabara 2006) (see File S6, tab A). In addition, some of these
genes have been discussed as orthologs in the literature, based
on their inclusion in OL1 or by independent analyses using the
underlying prediction programs or other methods. We there-
fore needed to consider how to deal with such genes in our
new meta-analysis here and, as will be described below, we
concluded thatwe needed a special designation for such legacy
genes that would recognize their history without considering
them current orthologs.

We give here four examples of C. elegans genes that illus-
trate properties of these legacy genes and complications of orthol-
ogy prediction. All four were included in OL1 based on Ensembl
Compara, a program that performed less well in the assessment
of Altenhoff et al. (2016), and which was also the least con-
gruent with the others and thus provided the most unique hits
in OL1 (Shaye and Greenwald 2011; see also Figure S2).

1. C. elegans cdk-2 is not predicted by any of the six programs
used here. Nevertheless, cdk-2 is functionally related to
human CDK2 in that it regulates cell cycle progression
from G1 to S phase (Fox et al. 2011; Korzelius et al.
2011). BLAST analysis indicates that C. elegans CDK-2 is
52% identical to human CDK2 and has a low “e-value,” but
CDK-2 would not be predicted as an ortholog by RBH, a
simple assessment of orthology (Altenhoff et al. 2016),
because if C. elegans CDK-2 is used as the query in a BLAST
search of the human database, CDK3 and CDK1 have
higher e-values, whereas if human CDK2 is used as a query
of C. elegans, CDK-1 and CDK-5 have higher e-values. This
situation may be relatively rare, but underscores the com-
plexity of ascertaining phylogenetic relationships of indi-
vidual genes of gene families.

2. C. elegans ceh-51 encodes a homeodomain-containing tran-
scription factor that functions in mesoderm (Broitman-
Maduro et al. 2009). In OL1, it was called as the ortholog of
VENTX, a homeodomain transcription factor that functions in
the human mesodermal derivatives of the myeloid lineage
(Rawat et al. 2010; Wu et al. 2011, 2014; Gao et al. 2012).
In OL2, four other C. elegans homeodomain (ceh) genes are
nowcalled asVENTXorthologs, underscoring howadjustments
to the prediction programsmay lead to shifts in which possible
paralogs in C. elegans are called as orthologs of human genes.

3. C. elegans FOS-1 is a transcription factor required for the
gonadal anchor cell to breach a basement membrane dur-
ing vulval development (Sherwood et al. 2005). In OL1,
Ensembl Compara predicted a total of six genes as potential
orthologs: c-FOS and five additional FOS-related genes, all
bZIP proteins containing a “BRLZ” domain according to
SMART (Letunic and Bork 2018). In contrast to ceh-51,
where there seemed to be a shift in the orthology call, here
none of the paralogs or other proteins with BRLZ domains
in humans were called as fos-1 orthologs in OL2.

4. C. elegans SEL-8, a core component of the Notch signal-
ing system, is a glutamine-rich protein that appears to be

homologous to the glutamine-rich human MAML proteins
based on its equivalent role in a ternary complex with
the Notch intracellular domain and the LAG-1/CSL DNA
binding protein, even though there is no primary sequence
similarity or any recognizable domains (Doyle et al. 2000;
Petcherski and Kimble 2000; Wu et al. 2000). However,
in OL1, Compara predicted SEL-8 to be homologous to
MED15, a component of the Mediator complex (Allen
and Taatjes 2015); while InParanoid uniquely predicted
C. elegans MDT-15 as the ortholog of human MED15, a
relationship that is also consistent with the SMART pro-
tein domain prediction.

The 256 worm genes that compose the legacy set were
previously found to be orthologous to 382 human ENSG IDs.
Of these, 217 (�57%) continue to have worm orthologs and
thus are included in OL2. The remaining ENSG IDs, corre-
sponding to 165 individual human genes, do not have cur-
rently supported worm orthologs and thus represent the
human legacy set of genes (File S6, tab B).

Given that one of the incentives for compiling OrthoList
was to obtain the most comprehensive set of functionally
similar human–worm homologs for cross-species studies,
and to acknowledge the publication history of these genes
as orthologs if questions arose in the future, we have retained
these worm and human genes as a legacy set (File S6), clearly
indicating that they were not found as orthologs per se by
current programs. Their change of status underscores the
difficulty of identifying orthologs between C. elegans and hu-
mans, which have such a distant evolutionary relationship.

An OL2 online tool with enhanced search capabilities
and links to external databases

OL1 was originally published in the form of a set of Excel
spreadsheets (Shaye and Greenwald 2011). However, this
form limited its utility and may have led to some confusion
when searching for worm genes with human orthologs, as
evidenced by publications that referenced OL1, but missed
genes that were in the spreadsheet and thus reported a lower
degree of reliability for this list (e.g. Roy et al. 2014). To
facilitate access, we subsequently developed a basic online
tool, which was never formally published but instead publi-
cized through a reader comment at the original journal Web
site and announcements in C. elegans venues. This simple tool
allowed C. elegans genes to be input (through their gene or
locus name, or WormBase ID), and human genes to be input
via ENSG ID, and outputs were similarly displayed.

To accessOL2,wehavedeveloped a significantly improved
online tool (http://ortholist.shaye-lab.org) with several fea-
tures (Figure 5A) not present in the original version made
available informally to the community. As before, searches
may be conducted using C. elegans or human gene IDs but,
importantly, this feature is now augmented by the ability to
search using Human Genome Organisation Gene Nomencla-
ture Committee (HGNC) names (Yates et al. 2017) and the
ability to permit partial matches to facilitate searches when
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there are multiple paralogs, such as NOTCH for the four
paralogs NOTCH1–4, when the “partial match allowed” op-
tion is selected. Additionally, we now include the ability to
query the database based on InterPro (Finn et al. 2017) and
SMART (Letunic and Bork 2018) protein domain annota-
tions, and human disease associations provided by the OMIM
database (McKusick 2007). We also provide the option to
restrict searches based on a given number of programs that
predict an orthologous relationship but, as we discuss below,

we believe that unique hits in OL2 should be viewed as ortho-
logs since they fit the criteria used by the most recent version
of a validated program. The legacy genes described above are
also found in this online tool and can be included in searches
by selecting “no minimum” in the “no. of programs” field.
Finally, we include an “instructions, tips, and feedback” sec-
tion, which we can update in response to user feedback.

In the results page (Figure 5B), users will find the number
of programs that call a particular C. elegans–human ortholog

Figure 5 OL2 query interface. (A) Input page at http://ortholist.shaye-lab.org. Users can select which fields to search (human and worm IDs, SMART or
InterPro protein domains, and disease phenotypes described in OMIM); whether to set a threshold for orthology support (see main text); and whether
partial matches should be allowed, which is useful when users want to find all members of a similarly named gene family (e.g., input “Notch” to find all
human Notch family members). (B) Sample results page for the gene let-60, with a search conducted using the default settings, returning a set of Ras
orthologs consistent with its sequence and genetic validation in a canonical Ras pathway (Han and Sternberg 1990; Sundaram 2013). The results page
contains links for viewing additional information about results and for exporting results to a comma-separated value (CSV) spreadsheet.
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prediction (Figure 5B). If the result displays a “0” in this
column, the genes returned are from the legacy set and are
not considered orthologs at this time (seeDiscussion of legacy
genes below). If a result displays one or more programs,
hovering over the “?” symbol shows which program(s) called
a particular orthology relationship. The results may be sorted
by clicking at the top of the columns for any of the names
(WormBase ID, Common Name Locus ID, Ensembl ID, or
HGNC Symbol) or the number of programs. Finally, we in-
clude links to SMART and InterPro protein domain descrip-
tions, as well as to OMIM entries for human disease
associations. Clicking on “toggle” displays links for the entire
column; clicking on “view” displays the links for a given gene.

Oneof the rationales for creatingOrthoListwas to facilitate
RNAi screens by preselecting genes with human orthologs
(Shaye and Greenwald 2011). To this end, we had incorpo-
rated IDs for the most used and extensive set of feeding-RNAi
clones (Fraser et al. 2000; Kamath et al. 2003) to our infor-
mally released online tool. When initially produced, the feed-
ing library targeted �72% of C. elegans genes. More recently,
a collection of new bacterial strains was produced to supple-
ment and enhance this library, which now targets �87% of
currently annotated genes (https://www.sourcebioscience.
com/products/life-sciences-research/clones/rnai-resources/
c-elegans-rnai-collection-ahringer/). We have now added
clone IDs for this newly released supplemental RNAi set to
our database to provide the most up-to-date resource for
finding RNAi clones that target genes conserved in humans.

Discussion

C. elegans is a powerful experimental system for using genetic
approaches to address biological problems of relevance to
human development, physiology, and disease. Harnessing
the full power of the system is enhanced by the knowledge
of evolutionarily related genes (homologs) between C. ele-
gans and humans. Homologs across species are often divided
into those that originated through speciation (orthologs) and
those that originated through duplication (paralogs). Al-
though orthology is an evolutionary—and not necessarily a
functional—definition, the “ortholog conjecture” proposes
that orthologs tend to maintain function, whereas paralogs
are more diverged. However, recent work suggests that even
paralogs retain significant functional similarity (Altenhoff
et al. 2012; Gabaldón and Koonin 2013; Dunn et al. 2018).
Therefore, as a proxy for functional conservation, establish-
ing the orthology relationship among genes in different spe-
cies has served as a useful tool to identify candidates for
cross-species and translational studies. However, identify-
ing homologs is not a simple undertaking and a wide vari-
ety of methods exist, with different balances between
precision (positive predictive value) and recall (true posi-
tive rate) (Altenhoff et al. 2016). Furthermore, there are
different versions of genome sequence databases and cura-
tion of predicted genes, and different versions of prediction
programs.

We had previously used a meta-analysis approach to com-
pile OrthoList, a compendium of C. elegans genes with human
orthologs (Shaye and Greenwald 2011). Initially compiled
for the practical purpose of streamlining RNAi screens, it also
had value as a study of the relationship between the two
genomes. Here, we have created OL2, a new meta-analysis,
which has similar value as both a practical tool and for in-
sights into the genomes.We consider threemain topics in this
Discussion. First, we discuss how our longitudinal analysis
here reveals that the meta-analysis approach is not just more
accurate as a snapshot view of the relationship between the
genomes, but alsomeans that OL2will remain a practical tool
for facilitating cross-platform studies for many years to
come. Next, we discuss how our results suggest that assign-
ing reliability scores in meta-analysis approaches, a com-
mon component of studies that followed OrthoList, may be
misleading. Finally, we provide a practicum on what to do
when a gene of interest is, or is not, found in OL2.

The meta-analysis approach results in a stable
landscape of orthologs

The initial rationale for performing a meta-analysis to gener-
ate a compendium of human–worm orthologs was based on
the fact that, at the time we compiled OL1, there was no
reliable benchmark that defined which orthology-prediction
method was the best. Another publication that used meta-
analysis to study genome-wide orthology, published at
the same time as OL1 (Pryszcz et al. 2011), generated the
Meta-Phylogeny-Based Orthologs (MetaPhOrs) database
(now offline), and a subsequent study (Pereira et al. 2014)
that developed a Meta-Approach Requiring Intersections for
Ortholog predictions (MARIO) further supported the idea
that a meta-analysis results in a higher level of accurately
predicted ortholog groups than individual methods.

Our work here not only shows that the meta-analysis
approach provides more accurate predictions, but also gen-
erates a robust set of orthologs that withstand the test of time.
Indeed, to our knowledge, this study is the first to assess how
changes in gene structure and orthology-prediction methods
over time (a longitudinal analysis) affects the landscape of
orthologs between two species, and the effect that the meta-
analysis approach has on these changes. Although very few of
the worm–human orthologs predicted in OL1 (,1%) were
lost due to changes in underlying gene predictions over the
last�7 years, we find that there have been significant changes
in gene content within individual orthology-prediction methods
over time, indicating that genome-wide orthology inference
based on a single version of any individual orthology-prediction
method will miss orthology relationships. Furthermore, these
changes did not lead to greater agreement between methods.
However, our meta-analysis approach buffered against ortholog
losses that led to this divergence between methods, demon-
strating a further, unexpected advantage of this approach.

This stabilitymeans thatOL2will remainapractical tool for
facilitating cross-platform studies for many more years. This
observation is important because there is a large labor cost to
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the manual-curation and quality-control steps required to
ensure that results from new methods are appropriately
vetted. For example, we found that a bottleneck of manual
curation was required to ensure that gene IDs for C. elegans
and humans were not deprecated, changed, or retired. We
also needed to take manual-curation steps to confirm that no
errors were introduced upon large-scale conversion of gene
IDs (which tend to be different for each program) to forms
that can be directly compared. We note that it is not clear
from the published reports if these steps were taken for other
published meta-analysis approaches.

Evaluating the utility of reliability scores in meta-
analysis approaches

Two different approaches have been used to infer reliability
of predictions in meta-analyses. One is to use the number of
methods that support an orthology prediction as a “simple
score” for the reliability of the prediction. The other is to use
different “weighting” approaches to emphasize predictions of
some methods over others. However, our results here raise
doubts as to whether either of these approaches is an appro-
priate scoring methodology, because the level of support is
not only dependent on which programs are used, but also on
when these programs were sampled. Furthermore, our work,
and that of Pryszcz et al. demonstrates that increasing the
number of orthology-prediction methods does not have a
major impact on the performance of a meta-analysis. The
study that generated the MetaPhOrs database (Pryszcz
et al. 2011) noted a significant increase in recall (fewer false
negatives) when results from two orthology-prediction pro-
grams were combined, compared to when individual pro-
grams were sampled. However, there was little difference
in recall, or precision, metrics when results from a third pro-
gram were added to the combinations of two. Our results
here support this observation, as addition of two more pro-
grams (OMA and OrthoInspector) to the four already used
for OL1 did not greatly increase recall, leading to addition of
only �100 worm genes to OrthoList. Given the lack of corre-
lation between having more programs in the meta-analysis,
and increased recall or precision, we caution researchers
against discarding hits with lower simple scores, for example
uniques, as it would lead to a higher false negative rate when
performing large-scale studies using meta-analysis-derived
databases.

Two other meta-analyses, DIOPT (Hu et al. 2011), which
samples 15 different orthology-prediction methods, and
WORMHOLE (Sutphin et al. 2016), which samples 14 meth-
ods, use alternative, weighted approaches to score reliability.
DIOPT assigns a different weight to each underlying orthol-
ogy-prediction program based on how well each performs in
a “functional” assessment; namely, the degree of semantic
similarity between high quality gene ontology (GO) molecu-
lar function annotations of fly–human ortholog pairs pre-
dicted by each method sampled. Unfortunately, several
reports have shown that GO annotation congruence as
a proxy for functional similarity is a problematic metric

(Chen and Zhang 2012; Thomas et al. 2012). Moreover, it is
not clear how GO semantic similarity applied to fly–human
ortholog pairs translates to other species, particularly
C. elegans and humans. Therefore, it is not clear that this
weighing approach is better than the simple-scoring ap-
proach and, as discussed above, even the simple-scoring
approach can introduce a higher level of false negative calls.

WORMHOLE developed a “scaled” confidence score,
based on a supervised learning model that analyzes data
for classification purposes, called a support vector machine
(SVM) classifier system. An SVM uses a set of training exam-
ples, each marked as belonging to one or another of two
categories [in the case of WORMHOLE, the categories were:
being a least-diverged ortholog (LDO) vs. not], and then the
SVM training algorithm builds a model to assign new exam-
ples (i.e., putative ortholog pairs) to one category or the
other. WORMHOLE used the PANTHER LDO data set (Mi
et al. 2013) as reference for training their SVM. This training
set includes all one-to-one orthologs, as well as the single
least-divergent gene pair in one-to-many and many-to-many
ortholog groups within the broader PANTHER ortholog data
set. PANTHER LDOs perform well in orthology benchmark-
ing assessments, however this set tends to be very conserva-
tive (Altenhoff et al. 2016): it consistently shows high
precision, but low recall (i.e., missing a lot of possible orthologs
compared to other programs). Therefore, using the PANTHER
LDO set as the training algorithm to generate a confidence
score has the potential of missing bona fide orthologs.

We have included the number and identity of programs
for each gene in OL2 for reference, but given the various
difficulties of current scoring systems we consider here, we
believe that the best approach is to avoid using scoring criteria
to support—or contradict—orthology assignments achieved
via meta-analysis, and to consider any gene identified by at
least one program as an ortholog for all practical purposes.

A gene is, or is not, in OL2: what does that mean?

OrthoList has proven to be a useful way to streamline RNAi
screens and to ask questions about the genome, particularly as
a first step to ask if a gene of interest in one system has an
ortholog in the other. However, the vast evolutionary distance
between C. elegans and humans has allowed for extensive
sequence divergence and larger-scale genomic alterations,
such as domain shuffling and local, or genome-scale, dupli-
cations (Babushok et al. 2007). Given the existence of such
mechanisms for genome divergence, which can affect the
ways that phylogenetic relationships are inferred by orthol-
ogy-prediction programs, the presence or absence of a gene
in OL2 should not be the only consideration when deciding
about homology. We consider here some common scenarios
we have observed when using a worm gene to query OL2,
other tests and extensions to support claims of orthology, and
other approaches to find potential orthologs that elude iden-
tification by the programs used here, even though, as de-
scribed above, they are generally high performing and use
different criteria in assessing orthology relationships. The
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same scenarios could apply in principle when a human gene
is used to identify the worm ortholog(s).

1. Using a worm gene as the query returns a set of human
paralogs. E.g., wnk-1 elicits the four paralogs, WNK1,
WNK2, WNK3, and WNK4. The C. elegans gene is the
ortholog of all four of these paralogous human genes,
not just the eponymous WNK1. Thus, functional informa-
tion about C. elegans wnk-1 may be applied to any of the
four human genes, and vice versa.

2. Using a worm gene as the query returns a set of nonpar-
alogous human genes. This may occur when proteins
share a domain but differ otherwise. For example, enter-
ing C. elegans lin-12 identifies the four human NOTCH
genes, as expected. However, two programs also call
the gene EYS, and two single programs (Compara or
OrthoMCL) call 10 additional nonparalogous human
genes. These additional genes encode proteins with
EGF-like motifs, which are also found in bona fide NOTCH
proteins, but lack the other hallmark domains of NOTCH.
The real NOTCH proteins, including LIN-12, have a simi-
lar domain architecture with several identifiable domains
in a similar arrangement and therefore can easily be dis-
tinguished from the proteins that contain EGF-like motifs,
but are otherwise dissimilar, by using a domain architec-
ture program such as SMART. However, for proteins with
single identifiable domains, domain architecture will not
resolve which of the set of nonparalogous genes is the
ortholog.

3. Using a worm gene as the query only identifies legacy
relationships. Because the longitudinal analysis presented
here has not been performed before, we devised the con-
cept of legacy genes as a category for genes that were
called orthologs in OL1 but are no longer called as such
in OL2. When a gene is no longer called as an ortholog by
contemporary programs, it cannot be considered an ortho-
log in the phylogenetic sense presented at the outset of
this Discussion. Nevertheless, we retained legacy genes in
the searchable database because many have recognizable
functional domains (File S6, tab A) and, in some cases,
additional work has established conserved function (e.g.,
cdk-2 and sel-8 discussed above), suggesting that addi-
tional work on other legacy genes may yet support orthol-
ogy. Thus, if a gene of interest only exists in the legacy set,
it will likely have a domain that gives some clue as to its
function, or it may be that future work will establish con-
served function even in the absence of strict phylogenetic
orthology.

4. Using a worm gene as the query does not identify any
potential human orthologs. If there are identifiable do-
mains, domain architecture searches may yield potential
functional orthologs.

An important key to resolving these questions comes from
the ability to use genetic analysis in C. elegans for functional
assessment. The most straightforward approach is to use
functional, trans-species rescue of a C. elegans mutant by

expression of a human protein to bolster an inference of
orthology. Indeed, the question of orthology vs. analogy/
convergence becomes moot for practical purposes if the hu-
man protein can replace the C. elegans protein. Similarly, the
conservation of biochemical/molecular function of different
human paralogs can be assessed by a rescue assay. Eventually,
similarities at the level of higher-order structure may be an-
other way to identify worm–human orthologs that have di-
verged at the primary amino acid sequence level.

Finally, as noted previously (Shaye and Greenwald 2011),
some components of pathways or complexes have diverged
to the point that they are not identified by primary sequence
and hence are not in our compendium. In such cases, the
presence of some components of conserved pathways or com-
plexes will essentially compensate for the absence of others
when performing RNAi screens streamlined by OL2. To illus-
trate this point, we consider the conserved Notch pathway
(Greenwald and Kovall 2013). Notch is essentially a mem-
brane-tethered transcriptional coactivator regulated by
ligand. When ligand binds, the intracellular domain is
released by proteolytic cleavage to join a nuclear complex
to activate target genes. The C. elegans Notch orthologs
(LIN-12 and GLP-1), the protease components that cleave
the transmembrane form to release the intracellular domain,
and the associated DNA binding protein LAG-1 are all present
in OL2; the canonical DSL transmembrane ligands (LAG-2,
APX-1, and ARG-1) and the SEL-8 Mastermind-like protein
are not. Thus, if the Notch pathway is involved in a phenotype
of interest, then enough components would be present in a
streamlined, but otherwise unbiased, RNAi screen based on
OL2.

OrthoList has already been used to design streamlined
RNAi screens that yielded important discoveries (e.g., Gillard
et al. 2015; Hernando-Rodríguez et al. 2018; Nordquist et al.
2018). To further facilitate the design of such screens, our
new Web-based tool not only includes the most up-to-date
version of the widely used C. elegans feeding RNAi library,
but it also allows users to focus their screens even further by
generating lists based on protein domains and/or human
disease associations. Therefore, our work here not only up-
dates the genome-wide orthology between humans and
C. elegans, it offers insight into how to evaluate results from
orthology-prediction methods and provides an easily acces-
sible tool that will aid in streamlining functional studies and
analyzing results with translational potential.
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