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ABSTRACT Body mass index (BMI), a proxy measure for obesity, is determined by both environmental (including ethnicity, age, and sex)
and genetic factors, with . 400 BMI-associated loci identified to date. However, the impact, interplay, and underlying biological
mechanisms among BMI, environment, genetics, and ancestry are not completely understood. To further examine these relationships,
we utilized 427,509 calendar year-averaged BMI measurements from 100,418 adults from the single large multiethnic Genetic Epide-
miology Research on Adult Health and Aging (GERA) cohort. We observed substantial independent ancestry and nationality differences,
including ancestry principal component interactions and nonlinear effects. To increase the list of BMI-associated variants before assessing
other differences, we conducted a genome-wide association study (GWAS) in GERA, with replication in the Genetic Investigation of
Anthropomorphic Traits (GIANT) consortium combined with the UK Biobank (UKB), followed by GWAS in GERA combined with GIANT,
with replication in the UKB. We discovered 30 novel independent BMI loci (P , 5.0 3 1028) that replicated. We then assessed the
proportion of BMI variance explained by sex in the UKB using previously identified loci compared to previously and newly identified loci
and found slight increases: from 3.0 to 3.3% for males and from 2.7 to 3.0% for females. Further, the variance explained by previously
and newly identified variants decreased with increasing age in the GERA and UKB cohorts, echoed in the variance explained by the entire
genome, which also showed gene–age interaction effects. Finally, we conducted a tissue expression QTL enrichment analysis, which
revealed that GWAS BMI-associated variants were enriched in the cerebellum, consistent with prior work in humans and mice.
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BODY mass index (BMI) is a proxy measure for obesity,
and high BMI ($ 30 kg/m2) increases the risk of many

health problems (Bhaskaran et al. 2014; Ortega et al. 2016;
Benjamin et al. 2017). BMI is determined by both genetic
and environmental factors, though their individual and com-
bined contributions to risk are not completely understood.
Recent BMI heritability estimates are �40%, over one-half of
which are due to common genetic variation (Hemani et al.
2013; Yang et al. 2015). To date, meta-analyses of genome-wide

association studies (GWAS) have identified 426 indepen-
dent BMI-associated variants (Liu et al. 2008; Thorleifsson
et al. 2009;Willer et al. 2009; Speliotes et al. 2010; Kim et al.
2011; Ng et al. 2012, 2017; Okada et al. 2012; Wen et al.
2012, 2014; Yang et al. 2012, 2014; Berndt et al. 2013;
Gong et al. 2013; Monda et al. 2013; Scannell Bryan et al.
2014; Hägg et al. 2015; Horikoshi et al. 2015; Locke et al. 2015;
Winkler et al. 2015; Ahmad et al. 2016; Bakshi et al. 2016;
Minster et al. 2016; Ried et al. 2016; Salinas et al. 2016;
Wang et al. 2016; Akiyama et al. 2017; Graff et al. 2017;
Justice et al. 2017; Nagy et al. 2017; Tachmazidou et al.
2017; Turcot et al. 2018) and 676 independent variants associ-
ated with measures of adiposity phenotypes, including BMI
(Scuteri et al. 2007; Chambers et al. 2008; Cotsapas et al.
2009; Heard-Costa et al. 2009; Lindgren et al. 2009; Meyre
et al. 2009; Heid et al. 2010; Scherag et al. 2010; Jiao et al.
2011; Kilpeläinen et al. 2011; Kraja et al. 2011; Paternoster et al.
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2011; Wang et al. 2011; Bradfield et al. 2012; Comuzzie et al.
2012; Melka et al. 2012; Graff et al. 2013; Liu et al. 2013;
Namjou et al. 2013; Wheeler et al. 2013; Pei et al. 2014,
2017; Shungin et al. 2015; Felix et al. 2016; Sung et al.
2016; Wen et al. 2016; Chu et al. 2017; Southam et al.
2017). These variants account for only �3% of the variance
for this complex trait (Speliotes et al. 2010; Wen et al. 2014;
Horikoshi et al. 2015; Locke et al. 2015). The vast majority of
these loci were identified in studies of European- or Asian-
ancestry (Okada et al. 2012; Wen et al. 2012, 2014; Scannell
Bryan et al. 2014; Yang et al. 2014; Akiyama et al. 2017; Graff
et al. 2017; Justice et al. 2017; Turcot et al. 2018) populations,
as sample sizes have been somewhat smaller in Hispanic/
Latino- (Salinas et al. 2016) or African-ancestry populations (Ng
et al. 2012, 2017; Gong et al. 2013; Monda et al. 2013; Salinas
et al. 2016). Previous work has implicated ancestral differ-
ences, with some conflicting results (Hu et al. 2015), but has
not yet assessed ancestry variation within nationality sub-
groups.

Gene–environment interaction may explain an additional
portion of the missing heritability. Previous work has discov-
ered several variants that differ between sexes (Locke et al.
2015) and age (Winkler et al. 2015), as well as overall herita-
bility differences in age (Robinson et al. 2017), but found that
this was driven only by young (ages 18–40) vs. old (age$ 60)
in the AHTHEL composite cohort, with no evidence of interac-
tion between ages 46–73 in the UK Biobank (UKB).

To further investigate the relationships among BMI, an-
cestry, sex, and age, we utilized 427,509 calendar year-
averaged BMI measurements from electronic health records
(EHRs) of 100,418 members from the Genetic Epidemiology
Research in Adult Health and Aging (GERA) cohort. Our goal
was to utilize advantages of having a single, largemultiethnic
cohort to obtain a more comprehensive picture of the genetic
landscape of BMI. To this end, we first comprehensively
assessed ancestry and nationality effects on BMI in the GERA
cohort. Then, to test for ancestry differences in polygenic risk
factors and further characterize single-nucleotide polymor-
phisms (SNPs), including age and sex differences, we first
attempted to increase the list of associated variants by search-
ing for additional BMI-associated variants in GERA, and
further meta-analyzed the GERA data with the Genetic In-
vestigation of Anthropomorphic Traits (GIANT) consortium
for improveddiscovery.We thenusedpreviously reportedplus
ournovel variants to test for age, sex, andancestrydifferences,
by both testing the individual variants themselves and testing
them together in polygenic risk scores, and through gene–age
coheritability estimates.

Materials and Methods

All statistical tests were two-sided.

Participants and phenotype

Our primary analysis used data on adult Research Program
on Genes, Environment and Health (RPGEH) GERA cohort

participants (Banda et al. 2015; Kvale et al. 2015) who were,
on average, 62.7 years old (at specimen collection) andmem-
bers of Kaiser Permanente Northern California (KPNC) for
23 years, and had comprehensive EHRs available for the re-
trieval of height and weight. Each individual’s height was cal-
culated as the mode (or median if no mode), and outpatient
weight measurements from 2005 to 2010 were averaged
within each calendar year, excluding outlier weights ,
70 or . 500 lb (, 31.7 or . 226.8 kg). Within a calendar
year, if the range exceeded 100 lb (45.3 kg) (3759 occur-
rences), weights$ 75 pounds (34.0 kg) from themedianwere
discarded. Across calendar years, if a difference between the
average of two consecutive years was . 175 lb (79.4 kg), the
one further from the median was excluded. BMI was calcu-
lated by definition: weight (kg)/height (m)2. We further ex-
cluded BMI measures , 10 or . 100 kg/m2, where age ,
18 year, 6 months prior to/after childbirth, or after bariatric
surgery. In total, 427,509 calendar-year BMI measurements
were available for 100,418 individuals. To define nationality/
geography within ethnicity groups, participants endorsed all
applicable from 23 groups (Banda et al. 2015). The KPNC
Institutional Review Board and the University of California
San Francisco Human Research Protection Program Commit-
tee on Human Health approved this project. Written in-
formed consent was obtained from all subjects.

Genotyping, quality control, and imputation

Individuals were genotyped at over 650,000 SNPs on four
custom Affymetrix arrays optimized for individuals of Euro-
pean, Latino, East Asian, and African American ancestry
(Hoffmann et al. 2011a,b), and South Asians were genotyped
on the European array. Genotype quality control procedures
were performed array-wise, as described previously by Kvale
et al. (2015), plus removal of SNPs with call rates , 90%.
Individuals were prephased with Shape-it v2.r727 (Delaneau
et al. 2011) and imputed from the 1000 Genomes Project
(http://1000genomes.org) cosmopolitan reference panel
with Impute2 v2.3.0 (Howie et al. 2009, 2011, 2012). After
excluding variants with rinfo2 , 0.3 (Marchini andHowie 2010)
and minor allele count , 20, we retained 24,149,855,
20,828,585, 15,248,462, 21,485,958, and 8,607,429 SNPs
in non-Hispanic whites, Latinos, East Asians, African Ameri-
cans, and South Asians (28,613,428 unique SNPs),
respectively.

Phenotype–ancestry distributions

To visualize the distribution of BMI by the ancestry principal
components (PCs; PCs calculated from only the highest-
performing call rate . 99.5% SNPs) (Banda et al. 2015),
we created a smoothed distribution of each individual i’s
age and sex-adjusted first BMIi measurement using a radial
kernel density estimate weighted on the distance to each
other jth individual,

P
jf({d(i,j)/maxi*,j*[d(i*,j*)]*15)}),

where f(.) is the standard normal density distribution and
d(i,j) is the Euclidean distance of the first two PCs. Ethnicity
and/or nationality subgroup labels were derived from the
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GERA cohort (described above) or the Human Genome Di-
versity Project (Banda et al. 2015).

GERA GWAS analysis and covariate adjustment

We first analyzed each of the five ethnicity groups (non-
Hispanic whites, Latinos, East Asians, African Americans,
and South Asians) separately, modeling each SNP using ad-
ditive dosages (Zheng et al. 2011). For computational rea-
sons, first a mixed model on BMI was fitted, adjusting for age
(at corresponding BMI measurement), sex, and ancestry
covariates. We then inverse normally transformed the resid-
uals, as has been done in large meta-analyses (Locke et al.
2015), to be comparable. We then averaged these trans-
formed residuals for each individual, and ran a linear re-
gression on each SNP in a mixed model framework using
estimated kinship matrices with Bolt-LMM v2.1 (Loh et al.
2015). We then undertook a fixed-effects meta-analysis to
combine the five ethnicity groups with Metasoft v2.0 (Han
and Eskin 2011).

We considered loci novel if $ 0.5 Mb was not present in
any previously or newly described loci [with larger distances
in regions of strong linkage disequilibrium (LD); specifically,
we determined this both via visual inspection of plots of each
locus and correlation structure, and conditional analysis with
surrounding variants to confirm (Han and Eskin 2011)].

Then, to find additional independent genome-wide signif-
icant SNPs at each previously and newly described locus, we
ran a stepwise regression analysis using all SNPs with rinfo2 .
0.8 within a 1-Mb window (6 0.5 Mb, or an expanded win-
dow size for regions with longer-LD stretches as just de-
scribed) of the lead SNP. In this analysis, we adjusted only
for ancestry PCs [top 10 for non-Hispanic whites, top six for
other groups (Banda et al. 2015)] instead of the mixedmodel
approach for simplicity and computational efficiency.

We estimated the amount that the genomic inflation factor
was due to causes other than polygenicity via LD score re-
gression with LDSC v1.0.0 (Bulik-Sullivan et al. 2015). We
used LD score estimates from the 1000 Genomes Project Eu-
ropean data supplied by the authors; as such, we report the
ratio in GERA European-ancestry individuals and in themeta-
analysis of all of GERA data (which may slightly inflate the
estimate of the ratio since GERA is only 81% European
ancestry).

SNPs previously identified

To determine if our loci were novel, we identified 528 non-
independentSNPs frompreviously reported studies todate for
adult BMI (Liu et al. 2008; Thorleifsson et al. 2009; Willer
et al. 2009; Speliotes et al. 2010; Kim et al. 2011; Ng et al.
2012, 2017; Okada et al. 2012; Wen et al. 2012, 2014; Yang
et al. 2012, 2014; Berndt et al. 2013; Gong et al. 2013;Monda
et al. 2013; Scannell Bryan et al. 2014; Hägg et al. 2015;
Horikoshi et al. 2015; Locke et al. 2015; Winkler et al.
2015; Ahmad et al. 2016; Bakshi et al. 2016; Minster et al.
2016; Ried et al. 2016; Salinas et al. 2016; Wang et al. 2016;
Akiyama et al. 2017; Graff et al. 2017; Justice et al. 2017;

Nagy et al. 2017; Turcot et al. 2018) (426 variants with all
pairwise r2 , 0.3 in European ancestry) and, separately,
1304 nonindependent SNPs more broadly associated with
adiposity-related phenotypes (Scuteri et al. 2007; Chambers
et al. 2008; Cotsapas et al. 2009; Heard-Costa et al. 2009;
Lindgren et al. 2009; Meyre et al. 2009; Heid et al. 2010;
Scherag et al. 2010; Jiao et al. 2011; Kilpeläinen et al. 2011;
Kraja et al. 2011; Paternoster et al. 2011; Wang et al. 2011;
Bradfield et al. 2012; Comuzzie et al. 2012; Melka et al. 2012;
Graff et al. 2013; Liu et al. 2013; Namjou et al. 2013; Wheeler
et al. 2013; Pei et al. 2014, 2017; Shungin et al. 2015; Felix
et al. 2016; Sung et al. 2016; Wen et al. 2016; Chu et al. 2017;
Justice et al. 2017; Southam et al. 2017) (including the adult
BMI, as well as childhood BMI, obesity, adiposity, weight,
waist–hip ratio, waist circumference, fat body mass; 676 vari-
ants with all pairwise r2 , 0.3 in European ancestry). We re-
quired our novel loci to be . 0.5 Mb from all of the more
general previously reported adiposity-related phenotypes (or
of greater distance in regions of strong LD, as described
above).

Replication of GERA- and GERA+GIANT-identified SNPs

To determine if any novel GERA genome-wide significant
results failed to replicate, we evaluated their association in
a meta-analysis of the GIANT and UKB data.

We used 234,069 European-ancestry individuals from the
GIANT consortium (Locke et al. 2015). We restricted to Eu-
ropean ancestry so we could extend GIANT results from the
smaller HapMap v22 reference panel to the 1000 Genomes
Project reference panel used here for GERA, using ImpG
v1.01 (Pasaniuc et al. 2014). After removing SNPs with #

200,000 individuals (Pasaniuc et al. 2014), 2,300,072 auto-
somal SNPs remained for the imputation backbone. We im-
puted 21,691,898 SNPswith frequency$ 0.01 (the approach
performs poorly for low-frequency variants). In particular,
note that using ImpG assumes all HapMap SNPs were im-
putedwithout error; likely dampening the results. Effect sizes
were estimated using allele frequency and Hardy–Weinberg
assumptions (Hoffmann et al. 2017).

The multiethnic UKB cohort (Sudlow et al. 2015) was
imputed to the Haplotype Reference Consortium (HRC;
www.ukbiobank.ac.uk, version 1 of the imputed data, HRC-
only sites); non-HRC imputation was done by prephasing
with Eagle (Loh et al. 2016) and imputing with Minimac3
(Das et al. 2016) with the 1000 Genomes Project described
above. BMI was calculated frommeasured weight and height
(UKB data record #21001). After excluding first-degree rel-
atives, we identified 431,743 individuals who reported their
ancestry as any white group and with global ancestry PC1 #

70 and PC2 $280, where PC1 and PC2 were calculated from
the entire cohort, in addition to 7620 mixed/other, 9275
South Asian, 1822 East Asian, and 8261 African British, to-
taling 458,721 individuals. Ancestry PCs were recalculated
within each ethnicity group, and using 50,000 random white
individuals with the remaining subjects projected in for
whites, as previously shown to work well (Banda et al.
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2015). Variants were analyzed as in GERA, except using lin-
ear regression (as opposed to a mixed model), since we were
only testing for replication on a few dozen variants.

GERA+GIANT meta-analysis and replication

To further our discovery, we meta-analyzed GERA with the
235,069 GIANT cohort individuals as described above, ge-
nome-wide. To determine if the genome-wide significant
GERA+GIANT meta-analysis SNPs replicated, we tested in
the UKB.

Characterizing SNP effects

To better characterize the effects of previously and newly
identified SNPs, we ran a series of analyses, as follows.

Testing for dominance and epistasis: We tested for domi-
nance deviation from additivity in the previously and newly
identified independent SNPs by fitting a model similar to
above, with an additive term for the genotype, plus an addi-
tional term for dominance (tested for significance), coded as
1 for both of the homozygote genotypes and 22 for the het-
erozygote genotype (here we used the best guess genotype
for the imputed data, rather than the dosages, as elsewhere;
Bonferroni correction for 457 SNPs, P , 0.00011).

We tested for epistasis at all pairwise sets of previously and
newly identified independent SNPs. For each SNP pair, we
fitted a model similar to above, with a coefficient for both
genotypes (each coded additively), plus an interaction termof
the two (tested for significance; Bonferroni correction for all
104,196 interactions of 353 SNPs, P , 4.7 3 1027).

Effects of sex and age on BMI-associated loci:Within GERA,
we analyzed for male and female heterogeneity at all SNPs.
WealsoanalyzedBMIassociations stratifiedbyyounger/older
individuals using the first BMI measurement [age # 50 year
(n= 20,848) or age. 50 (n= 79,111)], as in Winkler et al.
(2015), and then tested for heterogeneity.

In silico analyses

We conducted several in silico analyses to prioritize the
potentially causal variant at each of the 30 newly identified
BMI loci.

Credible sets of variants: We used the Bayesian approach
CAVIARBF(v2017-03-27) toderive thesmallest setofvariants
that includes the causal variant with 95% probability (Chen
et al. 2015).

Functional variant analysis using RegulomeDB: We used
RegulomeDB (Xie et al. 2013; Boyle et al. 2014) to identify
variants at each loci that likely influence regulation of gene
expression, incorporating data from the Roadmap Epigenomics
(Roadmap Epigenomics Consortium et al. 2015) and ENCODE
(ENCODE Project Consortium 2012) projects. SNPs showing
the most functional evidence (RegulomeDB score # 4) were
then investigated regarding their protein-binding capacity.

Expression QTL analysis: Lastly, we examined associations
with gene expression using expression QTLs (eQTLs) from
44 Genotype-Tissue Expression (GTEx) v6 tissues, including
subcutaneous and visceral adipose tissues (GTEx Consortium
2015). Cis-eQTLs were defined as variants associated with
gene expression within a 2-Mb window. If no eQTLs were
found, variants in high LD (r2 . 0.8) with the independent
SNPs were examined for expression association.

Genetic risk score

To test for aggregate group differences in the genetic burden
of variants currently known and for variance-explained cal-
culations described later, we additionally constructed a BMI
risk score for setsof independentSNPsatpreviouslyandnewly
described associated loci. For each GERA and UKB individual,
we summed up the additive coding of each SNP weighted by
effect sizes from the UKB meta-analysis (for GERA) and the
GERAmeta-analysis (forUKB), so the estimate is independent
from the cohort being used to test, respectively, stratified by
sex. We removed previously reported nonindependent BMI
variants such that no two pairwise SNPs had r2 . 0.3.

Heritability

To test for the aggregate genetic BMI burden, we first esti-
mated familial correlations and heritability by intraclass
correlations for spouse-pairs and sib-pairs, and Pearson
correlations for parent-offspring relationships.

We additionally estimated the additive array heritability of
all genotyped and imputed SNPs using Gear v0.7.7 (Chen
2014). As array heritability estimates can be more sensitive
to artifacts than GWAS results (Lee et al. 2011), we restricted
our analysis here to the largest set of non-Hispanic whites run
on the same reagent kit and microarray. We used only auto-
somal data (common in array heritability estimation) and
LD-filtered our data so no two pairwise SNPs had r2 . 0.8
using plink v1.90 (Chang et al. 2015), resulting in 547,922
genotyped and 3,796,606 imputed SNPs. Since there was
population stratification within the non-Hispanic whites,
we used PC-Relate (Conomos et al. 2016) to estimate the
kinship coefficients rather than GCTA estimates (Yang et al.
2011a), which assume a homogeneous population. We also
compared the results to this standard GCTA estimate, adjust-
ing for PCs as described above. We additionally used Gear
instead of GCTA for the PC-Relate-based heritability esti-
mate, as the PC-Relate kinship matrix estimate was not pos-
itive definite (this can happen as the kinship estimates are
based on different allele frequencies, i.e., those from the PC
analysis that depend on ancestry). Finally, we removed indi-
viduals so that no two individuals had kinship. 0.025, using
a greedy algorithm to maximize sample size (Chang et al.
2015), resulting in 62,791 individuals.

We also estimated genotype–age heritability interaction
effects using the genotype covariate interaction genome-
based restricted maximum likelihood (GCI-GREML) model
implemented in GCTA, as previously described for BMI
(Robinson et al. 2017).
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Tissue eQTL enrichment

We also used the 44 GTEx tissues to test for tissue enrichment
of all lead previously and newly identified variants. Similar to
previous work (Hoffmann et al. 2018), we constructed 106

sets of frequency-matched (6 0.5%) SNPs with respect to the
lead SNP. For each tissue, we calculated the proportion of
eQTL SNPS that were lead genome-wide significant SNPs (to
avoid bias due to varying numbers of eQTLs in each tissue,
owing to different sample sizes of each tissue). A P-value for
enrichment was calculated with a z-score using the overall
median tissue proportion and the SD of the null distribution
of that tissue.

Data availability

Summary statistics will be made publicly available from the
National Human Genome Research Institute-European Bio-
informatics Institute (NHGRI-EBI) GWAS Catalog, https://
www.ebi.ac.uk/gwas/downloads/summary-statistics. The
complete GERA data are available upon application to the
Kaiser Permanente Research Bank Portal, http://research-
bank.kaiserpermanente.org/our-research/for-researchers.
The UKB data are available upon application to the UKB,
www.ukbiobank.ac.uk. The GIANT summary statistics are
available online, http://portals.broadinstitute.org/collaboration/
giant/index.php/GIANT_consortium_data_files. GrandOppor-
tunity (GO) Project Institutional Review Board (IRB):
CN-09CScha-06-H. Supplemental material available at Fig-
share: https://doi.org/10.25386/genetics.6957152.

Results

Our main study sample included 100,418 GERA individuals
who had at least one recorded BMI measurement during the
years of available EHR data. Of those, 81,278 (81.0%) were
non-Hispanic white, 8322 (8.3%) Latino, 7290 (7.3%) East
Asian, 3069 (3.1%) African American, and 459 (0.5%) South
Asian. BMI varied by ethnicity group, with African Americans
averaging the highest BMI [although this group also has
greater bonemineral density and body protein content, so this
is not necessarily an indication of greater adiposity (Wagner
and Heyward 2000)], and East Asians and South Asians aver-
aging the lowest (Table 1). Men generally had higher BMI

thanwomen, except in African Americans, consistentwith pre-
vious findings (Robert and Reither 2004; Flegal et al. 2012).

Variation in BMI by ethnicity and ancestry/nationality

We next examined how BMI varied within each ethnicity group.
The first two ancestry PCs (Banda et al. 2015), calculated within
each group separately, generally represent geographic origin. In
non-Hispanic whites, we initially found PC1 (P=10272) and PC2
(P = 10245) associated with BMI, representing Northwest to
Southeast European ancestry and Northwestern to Southeastern
Europe, respectively. To better visualize this association of BMI
with ancestry groups, we smoothed the phenotype distribution
over the PCs (each ethnicity group and nationality subgroup in
Figure 1, similar pattern seen in age- and sex-adjusted residuals in
SupplementalMaterial, Figure S1). Refitting non-Hispanicwhites
with Ashkenazi’s removed, and then projected, along with a term
for Ashkenazi ancestry (Banda et al. 2015), we found an interac-
tion effect between the first two PCs (P = 0.00031; Table S1),
representing Northern vs. Southeastern (P = 7.7 3 10211) and
Northern vs. Southwestern (P = 4.5 3 10211), and Ashkenazi
ancestry was also associated with lower BMI (P = 10249; mean
valuesbygroup inTableS2). In Latinos,NativeAmericanancestry
was associated with higher BMI compared to European ancestry
(P = 1.4 3 1026), but African ancestry was not associated (P=
0.98); in addition, Central South American nationality was asso-
ciatedwith lowerBMI (P=7.031028). InEast Asians, therewas
also an interaction effect between thefirst twoPCs (P=0.00038),
representing the amount of European ancestry (P = 10267) and
Northern vs. Southern East Asian ancestry, including dramatic
nonlinear effects with linear (P = 5.2 3 10211) and quadratic
(P = 10235) terms. In African Americans, African ancestry was
associated with higher BMI compared to European ancestry (P=
2.7 3 1029), but PC2, representing East Asian ancestry, was not
associated (P=0.34), although there were not many individuals
with significant East Asian ancestry. In South Asians, PC1 was
associated (P = 0.0067) but was difficult to geographically
interpret.

GWAS of BMI in GERA, and replication in GIANT and
UKB combined

Before characterizing individual and aggregate SNP effects
with age, sex, and ancestry, we next sought to find additional

Table 1 Descriptive factors

Factors Non-Hispanic white Latino East Asian African American South Asian

N (%) 81,278 (80.9%) 8322 (8.3%) 7290 (7.3%) 3069 (3.1%) 459 (0.5%)
Female, N (%) 47,335 (58.2%) 5045 (60.6%) 4264 (58.5%) 1834 (59.8%) 189 (41.2%)
Average number measured (SD) 4.3 (1.3) 4.2 (1.4) 4.0 (1.4) 4.3 (1.3) 4.0 (1.4)
Age (years)
Male mean (SD) 63.9 (12.1) 59.1 (13.7) 59.2 (13.5) 61.6 (11.7) 55.3 (13.8)
Female mean (SD) 60.3 (13.6) 52.9 (14.9) 53.4 (14.7) 56.5 (14.2) 48.0 (13.9)
BMI (kg/m2)
Male mean (SD) 28.0 (4.6) 29.1 (4.9) 26.1 (4.0) 29.3 (5.2) 25.8 (3.7)
Female mean (SD) 27.3 (6.0) 28.6 (6.3) 24.5 (4.5) 30.8 (6.9) 25.2 (4.2)

Descriptive factors for the GERA subjects used in the genome-wide association study of BMI by ethnicity group at first BMI measurement (for age and BMI). Abbreviations: N,
number; BMI, body mass index.
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Figure 1 BMI distribution in GERA ethnicity groups using the first calendar year-averaged measurement. The phenotype distribution was smoothed
over the PCs (within the individuals in each respective figure), which were divided by their SD for interpretability (see Materials and Methods). Human
Genome Diversity Project populations are in a plain font and GERA populations are in an italic font. (A) Non-Hispanic whites including individuals with
Ashkenazi ancestry (n = 81,377); (B) Non-Hispanic whites excluding individuals with Ashkenazi ancestry (n = 76,088); (C) African Americans (n = 3069);
(D) East Asians excluding Indo Fijians (n = 7235); (E) South Asians (n = 459); (F) Latinos (n = 8322); (G) Latinos: Central and South American (n = 612); (H)
Latinos: Mexican (n = 3048); (I) Latinos: Puerto Rican (n = 148); (J) Latinos: Cuban (n = 40); and (K) Latinos: reporting as Latino and African American (n =
112). BMI: body mass index; GERA, Genetic Epidemiology Research on Adult Health and Aging cohort; PC, principle component.
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BMI-associated variants. For our discovery GWAS meta-
analysis across GERA ethnicity groups, our genomic inflation
factorwas1.11,which is reasonable forapolygenic traitwitha
sample size this large (Yang et al. 2011b) (Figures S2 and S3);
indeed, LD-score regression (Bulik-Sullivan et al. 2015) esti-
mates that for the non-Hispanic whites, all but 0.22% was
due to polygenicity (using European ancestry LD scores), and
for all of GERA all but 3.6% (using European ancestry LD
scores; since this reflects only 81% of our data, this may in-
flate the overall GERA estimate somewhat). Of note, in the
individual ethnicity group analyses, we identified genome-
wide significant loci in only the non-Hispanic white group
(themajority of the cohort). In themultiethnic meta-analysis,
we identified a total of 48 genome-wide significant loci, seven
of which (Table S3) were not previously reported for BMI or
any other adiposity-related phenotype (Table S4). We then
tested these seven lead SNPs in a combined meta-analysis of
234,069 European-ancestry individuals from the GIANT con-
sortium (Locke et al. 2015) (HapMap summary statistics ex-
tended to the 1000 Genomes Project, Figures S4 and S5
comparing the groups) and 458,721 UKB individuals from
five ethnicity groups (European, East Asian, South Asian,
African British, and mixed ancestries). Three of the seven
variants replicated at Bonferroni significance (P # 0.05/7 =
0.0071, same direction of effect) in the GWASmeta-analysis
of GIANT and UKB, and are reported in Table 2. Of note, two
of the SNPs that failed to replicate imputed poorly (r2info ,
0.8), while all other genome-wide significant variants im-
puted well (r2info $ 0.8).

Meta-analysis of GERA and GIANT, and replication
in UKB

For increased discovery, we then meta-analyzed GERA results
with GIANT (replication of GERA-identified variants included
these individuals plus others, as described above) (Figure 2).
Our genomic inflation factor was 1.071, which is slightly lower
than the analysis of GERA alone, likely due to the conservative
nature of extending summary statistics (Pasaniuc et al. 2014).
This analysis revealed an additional 31 genome-wide signifi-
cant loci not previously reported (Table S5). We then tested
these for replication in the UKB. Of the 31 variants, 27 repli-
cated at a Bonferroni level (P # 0.05/31 = 0.0016; Table 3).

Conditional results

A strength of a large cohort is more accurate conditional
analysis; we next sought to find additional independent
signals at each newly and previously identified locus within
our large, single GERA cohort. Only two loci (2p25.3 and
18q21.32) contained an additional genome-wide significant
conditional variant (Table S6). Onewas novel at theTMEM18
locus, previously reported to be associated with BMI with
lead SNP rs13021737 (Willer et al. 2009); our lead SNP at
that locus was rs10188334 (meta-analysis joint P = 3.1 3
10223), and additional independent rs62106258 (meta-
analysis joint P = 5.8 3 10218), which had r2 , 0.01 with
rs10188334 (Table S6). We confirmed this conditional as-
sociation in the UKB (joint Prs10188334 = 10284, Prs62106258 =
10277). We also confirmed a secondary association near
MC4R that has been previously reported in multiple studies
(Speliotes et al. 2010; Locke et al. 2015).

Characterizing SNP effects

Dominance and epistasis: We then sought to characterize
BMI-associated variants further with two analyses that are
typicallyhighlyunderpowered:dominanceandepistasis anal-
yses. However, we still found no evidence of individual SNP
dominance (using a P, 0.00011 criterion, Bonferroni for all
457 previously and newly identified independent SNPs), and
only a very modest overall distributional departure (Q-Q plot
Figure S6, l = 1.19). We also found no individual SNP epis-
tasis (Bonferroni P , 8.0 3 1027 for all pairwise tests of
previously and newly identified SNPs), nor any distributional
difference (Figure S7, l = 1.018).

Effects of sex and age on BMI-associated loci: We next
sought to characterize the individual SNP effects by sex.
We did not observe any additional genome-wide significant
associations for either of the sexes that were not found in the
main GERA meta-analysis, as might be expected due to the
reduced sample size in each analysis and resulting loss in
statistical power, nor didwefind any genome-wide significant
differences between the sexes. In addition, none of the pre-
viously and newly identified SNPs were different between
the sexes after Bonferroni correction (P , 0.00014, Figure
S8 and Table S7), although there was a moderate overall

Table 2 Novel loci associated with BMI (P £ 5 3 1028) in the GERA multiethnic meta-analysis that replicate in GIANT+UKB

GERA GIANT+UKB

SNPa Chr. Bp Locus Allele Freq. Info. b P b P

rs200870675i 3 77,646,862 ROBO2 TG/T 0.398 0.97 0.026 4.7 3 1029 0.012 3.6 3 10210

rs513357i 6 69,558,698 ADGRB3 A/G 0.124 0.99 0.036 4.4 3 1028 0.011 9.8 3 1025

rs7938308i 11 13,320,533 ARNTL C/T 0.712 0.97 0.027 2.7 3 1028 0.012 1.0 3 1029

Genomic contexts within genes, or surrounding genes, are given. Replication test is given by the GIANT+UKB meta-analysis. GERA P-values are based on the multiethnic
meta-analysis of GWAS (81,278 non-Hispanic whites, 8322 Hispanic/Latinos, 7290 East Asians, 3069 African Americans, and 459 South Asians) from the GERA sex-
combined data set; GIANT+UKB P-values are based on the multiethnic meta-analysis of the European ancestry GIANT cohort members and the UKB (GIANT: 234,069 non-
Hispanic whites; UKB: 431,743 non-Hispanic whites, 7620 mixed/other, 9275 South Asians, 1822 East Asians, and 8261 African British). GERA, Genetic Epidemiology
Research on Adult Health and Aging cohort; GIANT, Genetic Investigation of Anthropomorphic Traits consortium; UKB, UK Biobank; Chr., chromosome; Bp, base pair (based
on University of California Santa Cruz Genome Browser Assembly February 2009: GRCh37/hg19); Freq., frequency; Info., information; b, b coefficient.
a Genomic context: i, intron; no label is intergenic.
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distributional departure (Q-Q plot, Figure S9; l= 1.23; pro-
portion with larger female magnitude 50, 95% C.I. = 46–
55%, P = 0.50). As previously reported (Locke et al. 2015),
we observed suggestive evidence of heterogeneity between
men and women for rs543874 near SEC16B (P = 0.0082)

We then tested for age differences, stratifying by age #

50 year (n = 20,848) and age . 50 (n = 79,111), as in
Winkler et al. (2015). When testing for differences in the
coefficients between the two age groups at all genome-wide
SNPs, no SNP had genome-wide significant age differences.
Of the 15 BMI-associated SNPs previously identified as af-
fected by age (Winkler et al. 2015), none showed differences
between the two age groups after Bonferroni correction (P,
0.05/15 = 0.0033), but three reached nominal significance
(0.0033 # P , 0.05): rs1514174 (P = 0.023), rs1459180
(P = 0.0088), and rs12955983 (P = 0.019), more than the
one expected by chance. We note that our sample size was
smaller than the previous study (Winkler et al. 2015), poten-
tially reducing the power to detect age interactions. Finally,
looking at all previously and newly identified independent
SNPs for age differences, only rs12955983 (P= 1.33 1025)
was associated after Bonferroni correction (P , 0.00011,
Table S8). There was an overall very modest distributional
departure (Q-Q plot, Figure S10, l = 1.17) and evidence of
the effect sizes being higher in the younger group (61% of
SNPs, 95% C.I. = 56–65%, P = 7.1 3 1026).

In silico analysis: prioritizing variants and genes within
the 30 novel BMI-associated signals

The SNP with the smallest P-value at a locus is often not the
causal SNP. To prioritize variants within the 30 novel GERA
and GERA+GIANT genomic regions, we computed each var-
iant’s ability to explain the observed signal and derived the
smallest set of variants that included the causal variant with
95% probability (Chen et al. 2015). In each of the 30 autoso-
mal loci, the corresponding 30 credible sets contained from

1 to 4222 variants (6877 total variants, Table S9). Three (of
30) sets were relatively small with , 20 variants. Only
one set included a unique variant (intergenic variant SNP
rs7161194 with 95.4% probability of being causal), suggest-
ing that this variant may be the true causal variant. Out of the
6877 total variants, 23 variants had . 20% probability of
being causal (including 14 lead SNPs). All these 23 variants
were either intronic or intergenic.

We also examined whether our 30 replicating novel SNPs
identified in GERA or GERA+GIANT were likely to have
regulatory consequences using RegulomeDB (Xie et al.
2013; Boyle et al. 2014). Of the 30 SNPs, four SNPs were
likely to affect protein binding (score# 2) and an additional
two SNPs were less likely to affect protein binding (score =
4). These include, for instance, one SNP identified in the
GERA meta-analysis, rs7938308, located in the UTR region
of ARNTL on chromosome 11 (Table S4), where five genes
encode proteins that bind at the site of rs7938308: CTCF,
EP300, GATA2, GATA3, and RAD21.

As identifying expression levels in relation to GWAS-
identified variants may help prioritize causal genes, we also
examined associations with gene expression for each of the
30 genome-wide significant SNPs identified at novel BMI loci
in the current study.We used expression eQTLs from 44GTEx
tissues, including subcutaneous and visceral adipose tissues,
from 7051 samples (GTEx Consortium 2015). Out of the
30 SNPs, 10 had a significant GTEx eQTL (Table S10) in a
wide range of tissues.

Heritability, family correlations, and variance explained

We then tested formore aggregate overall genetic effects, and
interactions with sex and age. We first calculated phenotypic
correlations andheritability estimates among familymembers
in the GERA and the UKB non-Hispanic white groups (Table
4). Familial correlation estimates in GERA ranged from
23 to 41%, and were very similar in the UKB (25–34%),

Figure 2 GERA+GIANT multiethnic meta-analysis
Manhattan plot. Blue circles indicate previously
identified variants, orange triangles indicate GERA-
identified variants, and red triangles indicate GERA
+GIANT-identified variants. GERA, Genetic Epidemi-
ology Research on Adult Health and Aging cohort;
GIANT, Genetic Investigation of Anthropomorphic
Traits consortium.
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corresponding to maximum heritability of �50–80%. Sex-
specific heritability and a higher sibling vs. parent–child
correlation were observed in GERA, but not in UKB. For
comparison, in GERA, the spouse correlation was 26.6%
(95% CI = 24.2–28.9%, n = 6064).

We then estimated the GERA array heritability, which was
lower than the familial heritability estimates, at 21.0% (95%
CI = 19.6–22.4%) using imputed markers and the PC-Relate
method (Conomos et al. 2016). Using the standard GCTA
method, which does not account for population stratification
in the kinship estimate, yielded a higher estimate at 35.4%
(95% C.I. = 33.1–37.7%). We did not evaluate heritability in
the other GERA ethnicity groups as the sample sizes were
too small.

Next, we tested for age by heritability interaction. We
stratified the sample into five roughly equally-sized age
groups, using GCTA, as previously done (Robinson et al.
2017). We see a downward trendwith increasing age (Figure
3), with a genotype–age interaction that contributes 4.2%
(95% C.I. = 0.9–7.7%, P = 0.012) to BMI variation and a
coheritability estimate of 26.4% (95% C.I. = 24.6–28.2%).
We then tested all pairwise comparisons among the five

groups; the comparison between age , 52 year and 66 ,
age # 73 was the most suggestive (P = 0.0062, Bonferroni
P , 0.005; Table S11).

Finally, we assessed the proportion of BMI variance
explained using a genetic risk score (GRS) of the previously
identified BMI SNPs (N=426). Using independent effect size
estimates stratified by sex from the UKB meta-analysis, we
found that 3.2 and 3.0% of the variation in BMI was
explained by previously reported SNPs in non-Hispanic white
women and men, respectively (Table 5). Including GERA-
and GERA+GIANT-identified SNPs slightly increased esti-
mates to 3.5 and 3.2%. The variance explained was similar
in Latino groups with 4.1 and 2.8% in women and men, re-
spectively , and slightly less in the other groups with 2.6 and
1.7% in East Asians, and 2.0 and 1.3% in African Americans.
We also estimated the variance explained in the independent
UKB, using GERA/previous effect sizes. In the UKB, the var-
iance explained by previously reported hits in non-Hispanic
whites was 2.7% in women and 3.0% in men, increasing to
3.0% in women and 3.3% in men, with similar attenuations
in the other groups as in GERA. Stratifying by age groups in
GERA, variance explained decreased by age, which is also

Table 3 Novel loci associated with BMI (P < 5 3 1028) in the GERA+GIANT multiethnic meta-analysis that replicate in UKB

GERA GERA+GIANT UKB

SNP Chr. BP Locusa Allele Freq Info b P b P

rs1074657 1 243,746,634 AKT3i T/C 0.346 0.96 0.017 7.7 3 1029 0.012 1.9 3 1027

rs1396141 2 41,673,745 AC010739.1 T/C 0.669 0.98 0.017 1.2 3 1028 0.010 2.1 3 1026

rs7580766 2 42,939,351 MTA3 G/A 0.578 1.00 0.015 4.3 3 1028 0.008 0.00029
rs6710871 2 143,960,593 ARHGAP15i A/G 0.146 1.00 0.023 2.2 3 1029 0.020 1.9 3 10211

rs4857968 3 20,714,580 U6 G/A 0.749 1.00 0.018 1.1 3 1029 0.014 1.1 3 1028

rs1436351 3 104,617,973 ALCAM T/G 0.736 1.00 0.016 1.4 3 1028 0.015 2.5 3 10210

rs4833079 4 38,654,681 RP11-617D20.1i T/C 0.654 0.98 0.016 2.1 3 10210 0.011 2.1 3 1027

rs10019997 4 137,048,599 RP11-775H9.1 T/C 0.451 1.00 0.015 7.5 3 1029 0.016 1.5 3 10213

rs7730898 5 170,459,675 RANBP17i A/G 0.739 0.98 0.016 5.1 3 1029 0.018 2.2 3 10214

rs947612 6 73,738,661 KCNQ5i G/A 0.315 0.98 0.018 1.6 3 1028 0.012 7.1 3 1027

rs901630 6 98,539,519 MIR2113 C/T 0.617 1.00 0.014 2.5 3 1028 0.019 2.5 3 10219

rs6569648 6 130,349,119 L3MBTL3i C/T 0.205 1.00 0.016 4.3 3 1028 0.011 8.7 3 1026

rs9364687 6 163,817,911 QKI G/T 0.576 0.99 0.016 1.0 3 1029 0.007 0.0015
rs6471932 8 62,078,904 CLVS1 T/A 0.108 0.95 0.024 1.6 3 1028 0.017 6.5 3 1028

rs12352785 9 6,956,850 KDM4Ci A/C 0.282 0.99 0.018 5 3 10211 0.009 9.4 3 1025

rs118067556 10 63,136,165 TMEM26 C/T 0.966 0.89 0.044 5.6 3 1029 0.030 1.8 3 1026

rs10742752 11 45,438,374 RP11-430H10.4 C/T 0.628 0.99 0.015 3.9 3 1029 0.012 1.8 3 1028

rs11170468 12 39,430,048 RP11-554L12.1 A/C 0.787 0.99 0.017 1.2 3 1028 0.011 4.6 3 1026

rs1819844 12 68,205,604 RP11-43N5.1 A/G 0.181 0.99 0.019 4.4 3 1029 0.014 4.1 3 1027

rs2372716 12 99,573,426 ANKS1Bi C/T 0.198 0.99 0.017 3.1 3 1028 0.015 1.4 3 1028

rs9595908 13 33,184,288 PDS5Bi T/C 0.650 0.98 0.016 6.5 3 10210 0.017 1.1 3 10214

rs9563576 13 58,670,147 RN5S30 C/T 0.816 1.00 0.022 9.7 3 10212 0.024 7.1 3 10218

rs7161194 14 101,529,005 MIR377 A/G 0.341 0.90 0.019 1.5 3 1029 0.018 1.3 3 10214

rs12899850 15 66,051,299 DENND4Ai C/T 0.788 1.00 0.020 4.0 3 1028 0.011 0.00012
rs11081818 18 31,251,088 ASXL3i A/G 0.468 0.99 0.016 6.4 3 1029 0.012 1.5 3 1028

rs6142096 20 32,686,658 EIF2S2i A/G 0.523 1.00 0.016 1.1 3 1028 0.013 2.3 3 1029

rs17759796 22 22,190,163 MAPK1i A/C 0.133 1.00 0.020 2.5 3 1028 0.010 0.00067

Genomic context within gene, or surrounding genes, are given. Replication test is given by the UKB meta-analysis. GERA+GIANT P-values are based on the multiethnic meta-
analysis of GWAS (GERA: 81,278 non-Hispanic whites, 8322 Hispanic/Latinos, 7290 East Asians, 3069 African Americans, and 459 South Asians; GIANT: 234,069 non-
Hispanic whites) from the GERA sex-combined data set; GIANT+UKB P-values are based on the multiethnic meta-analysis of the European ancestry GIANT cohort members
and the UKB (431,743 non-Hispanic whites, 7620 mixed/other, 9275 South Asians, 1822 East Asians, and 8261 African British). GERA, Genetic Epidemiology Research on
Adult Health and Aging cohort; GIANT, Genetic Investigation of Anthropomorphic Traits consortium; UKB, UK Biobank; Chr., chromosome; Bp, base pair (based on University
of California Santa Cruz Genome Browser Assembly February 2009: GRCh37/hg19); Freq., frequency; Info., information; b, b coefficient.
a Genomic context: i, intron; no label is intergenic.
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seen in the UKB, although the effect is more pronounced in
women in the UKB (Figure 3).

Tissue eQTL enrichment analysis

For further aggregate biological insight into the role of BMI-
associated SNPs, we also utilized the GTEx eQTLs to test for
enrichment of all lead previously and newly identified BMI-
associated variants. For each tissue, we determined whether
the proportion of eQTLs was greater than expected. Expres-
sion in the cerebellum was different from the median expres-
sion over all tissues (P = 0.0002; Figure 4; Bonferroni
significance = 0.0011).

Discussion

In the large, ethnically diverseGERAcohortwithEHR-derived
BMI measurements, we noted nonlinear and interaction ef-
fects between ancestry PCs, in addition to nationality effects,
demonstrating effects of both ancestry and location (environ-
ment)onBMI;30novel, independentBMI-associated loci (not
previously associated with BMI or adiposity-related pheno-
types) very slightly increased variance explained; and vari-
ance explained decreased with increasing age by both GRS
and heritability estimates.

We found notable interactions (non-Hispanic whites and
East Asians) and nonlinear effects (East Asians) in the distri-
bution of BMI by ancestry PCs. These ancestry effects may
reflect genetic differences or theymay reflect environmental/
cultural differences. Specifically, the vertical cline in East
Asians appears to be determined by intact nationalities, and,
e.g., diets may differ among those nationalities. However, for
Latinos, the European–Native American ancestry PC does not
have the same distinct clusters of nationalities (Banda et al.
2015), and we additionally see a nationality effect, with indi-
viduals from Mexico and Central–South America overlapping
on ancestry PCs, but differing with respect to average BMI,
implicating environmental/cultural effects in this difference.
African Americans also did not have distinct subgroups.

Novel BMI-associated loci support the important role of
signaling pathways linked to adipose cell impairment, includ-
ing the adipogenesis and insulin signaling pathways (Pradhan
et al. 2017). In this study, we identified L3MBTL3 and AKT3
as novel BMI loci, which replicated at Bonferroni signifi-
cance; these two loci have been shown to be involved in
the insulin signaling pathway. SNPs in L3MBTL3 have been
shown to contribute to increased adult height and birth
length (Paternoster et al. 2011). Recently, L3MBTL3 was re-
ported to be associated with insulin resistance and affect
adipocyte differentiation (Lotta et al. 2017). AKT3 encodes
the AKT serine/threonine kinase 3, and mutations in this
gene can cause an overgrowth of the brain, called megalen-
cephaly (Alcantara et al. 2017). AKT3 protein is part of the
phosphatidylinositol-3-kinase (PI3K)-AKT-MTOR pathway
and has been shown to be stimulated by insulin (Brozinick
et al. 2003; Medina et al. 2005; Xie et al. 2016). Thus, muta-
tions in those genes could contribute to impaired Akt-
dependent insulin signaling in adipocytes, leading to adipose
tissue accumulation and insulin resistance. In this study, we
also identified KDM4C, which encodes a member of the Jumonji
domain 2 (JMJD2) family. KDM4C has been shown to be in-
volved in the PPARg transcriptional activation and regulation
of adipogenesis (Lizcano et al. 2011). Thus, these findings sup-
port an important role of KDM4C in the etiology of obesity,
and suggest that this gene might be a good therapeutic target
to treat obesity. Other genes within the novel loci identified in
the current study have a plausible role in biological mecha-
nisms relevant to obesity etiology. For example, ARNTL has
been reported to contribute to a morningness-associated
pathway related to circadian rhythms (Hu et al. 2016). Our
results support previous work showing a relationship be-
tween the genetics of morningness, circadian rhythms, and
metabolic traits, including BMI (Lane et al. 2017).

In addition, our tissue eQTL enrichment analysis revealed
that GWAS BMI-associated SNPs were enriched in the cere-
bellum. This finding is consistent with previous works show-
ing the importance of brain structure, and especially gray

Table 4 Heritability estimates

Group GERA h2 (95% C.I.) (N) UKB h2 (95% C.I.) (N)

Father–offspring 0.546 (0.436, 0.652) (1134) 0.636 (0.552, 0.716) (1820)
Father–son 0.622 (0.422, 0.816) (324) 0.558 (0.424, 0.688) (749)
Father–daughter 0.468 (0.396, 0.654) (810) 0.678 (0.57, 0.782) (1071)
Mother–offspring 0.618 (0.534, 0.702) (1778) 0.642 (0.588, 0.696) (4134)
Mother–son 0.564 (0.402, 0.720) (514) 0.652 (0.564, 0.738) (1616)
Mother–daughter 0.638 (0.538, 0.736) (1264) 0.65 (0.578, 0.718) (2518)
Sibling 0.704 (0.612, 0.790) (1487) 0.57 (0.546, 0.594) (21,650)
Sibling–male/male 0.708 (0.484, 0.914) (254) 0.612 (0.556, 0.666) (4202)
Sibling–female/female 0.820 (0.684, 0.946) (621) 0.624 (0.582, 0.664) (7659)
Sibling–male/female 0.542 (0.392, 0.684) (612) 0.486 (0.460, 0.534) (1820)
Array–typed PC-Relate 0.211 (0.195, 0.227) (62,791) —

Array–typed GCTA 0.278 (0.262, 0.294) (62,791) —

Array–imputed PC-Relate 0.210 (0.196, 0.224) (62,791) —

Array–imputed GCTA 0.354 (0.331, 0.377) (62,791) —

The estimates for parent–offspring and sibling heritabilities are twice the correlation estimates (see Materials and Methods). GERA, Genetic Epidemiology Research on Adult
Health and Aging cohort; PC, principle component; UKB, UK Biobank.
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Figure 3 Variance explained. Variance explained by previously and newly identified SNPs stratified by age in GERA non-Hispanic whites overall (A) and
by sex (B), and in UKB non-Hispanic whites overall (C) and by sex (D). Heritability in GERA non-Hispanic whites overall (E) and by sex (F). For GERA, one
random measurement from each available individual was included in each age bin (each GERA individual was used in multiple age bins whenever
possible); for UKB, we used only the one measurement available. GERA, Genetic Epidemiology Research on Adult Health and Aging cohort; UKB, UK
Biobank.
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matter volume in the cerebellum, in obesity susceptibility in
humans and in rats (Locke et al. 2015). In this study, we also
identified ADGRB3 (or BAI3 for brain-specific angiogenesis
inhibitor 3) as a novel BMI locus, which is a cell-adhesion G
protein-coupled receptor (GPCR). BAI3 is highly expressed in
Purkinje cells (neurons located in the cerebellar cortex of the
brain), and it is involved in C1ql1 signaling in the mouse
cerebellum to mediate normal motor learning (Lanoue
et al. 2013; Kakegawa et al. 2015). Other GPCRs have been
previously reported to be associated with obesity in humans
and mice (Ichimura et al. 2012; Nakajima et al. 2016), and
are currently being investigated as promising targets for drug
discovery to treat metabolic diseases (Hauser et al. 2017;
Riddy et al. 2018; Sloop et al. 2018).

As per the variance explained by genetic risk factors, we
showed here a decreasing variance explained with increasing
age in both GERA and UKB (albeit stronger in women in the
UKB). However, we note that it is possible that the decrease in
variance explained by age could also reflect a cohort–year
effect. In addition we found that GERA- and GIANT-identified
SNPs also slightly increased the variance explained in
GERA and the UKB, for a total of 3.5% in GERA non-Hispanic
white females and 3.2% in males, and 3.0% in UKB non-
Hispanic white females and 3.3% in males. Earlier studies
of BMI estimated 1.45% of the variance explained by known
SNPs (Speliotes et al. 2010), with more recent GIANT esti-
mates of 2.7% (but the same discovery cohort was used,
which can bias estimates upwards) (Locke et al. 2015), and
3.5% from a younger Finnish cohort of a younger mean age of
30 (Horikoshi et al. 2015). In addition, our estimate of the
variation explained by all variants was 21% with PC-Relate,
which adjusts for population substructure in the kinship es-
timate directly, which is less than the 35%when adjusting for

population substructure as covariates; these are close to re-
cent previous estimates of 27% (Yang et al. 2015). These are
still about one-half of the family-based estimates of 40%, as
has been noted (Yang et al. 2015); additional variation may
be due to rare variants, which were not well assessed here, or
unaccounted for shared environmental effects. Finally, our
estimate of gene–age interaction effects of 4.2% (95% C.I.
= 0.9–7.7%)was estimated as approximately one-half of pre-
vious work (8.1%) (Robinson et al. 2017), though our age
groups were slightly older. In addition, our results were con-
sistent with previous work (Robinson et al. 2017), showing
suggestive evidence of a gene–age interaction effect on BMI,
with the largest differences existing between the youngest
group compared to older groups.

Because our studywas conducted in a single, large, diverse
discovery cohort, we were able to evaluate effects across
ethnicity groups in the same setting. The variance explained
by previously reported loci was estimated highest in non-
Hispanic white and Latino women in both GERA and UKB,
with GERA andUKB East Asianwomen andmales both lower,
andwithGERAAfricanAmericanwomen lower,GERAAfrican
American men higher, and overall UKBmen and women both
lower than GERA.

There were several limitations to our study. In addition to
replication data on the sex chromosomes being unavailable in
GIANT, we note an additional limitation in using GIANT
summary statistics expanded from HapMap 22, rather than
full 1000Genomes Project imputed results, as such results are
not available. This use of approximated results, in addition to
the assumption that all test statistics fromGIANTare perfectly
imputed, is likely conservative in terms of the true effect at
each SNP. Nevertheless, 87% of the SNPs identified in the
GERA+GIANT meta-analysis replicated at a strict Bonferroni

Table 5 GRS in GERA and UKB ethnicity groups

P (426 SNPs) P+G+GG (457 SNPs) P+G+GG P+G+GG P+G+GG P+G+GG

Group Sex R2 R2 Mean SD Eff. P
GERA non-Hispanic whites F 0.032 0.035 7.632 0.265 0.772 102374

GERA non-Hispanic whites M 0.030 0.032 6.776 0.248 0.612 102244

GERA Latinos F 0.039 0.041 7.604 0.257 0.856 10248

GERA Latinos M 0.028 0.028 6.746 0.239 0.600 10222

GERA East Asians F 0.024 0.026 7.340 0.243 0.689 10226

GERA East Asians M 0.015 0.017 6.536 0.212 0.573 10212

GERA African Americans F 0.015 0.020 7.606 0.229 0.666 1029

GERA African Americans M 0.012 0.013 6.699 0.212 0.466 1024

UKB non-Hispanic whites F 0.027 0.030 8.315 0.287 0.639 1021545

UKB non-Hispanic whites M 0.030 0.033 6.017 0.217 0.760 1021451

UKB mixed/other F 0.033 0.035 8.346 0.288 0.700 10234

UKB mixed/other M 0.029 0.032 5.956 0.217 0.748 10226

UKB East Asians F 0.017 0.020 8.184 0.251 0.571 1026

UKB East Asians M 0.016 0.014 5.864 0.190 0.599 1023

UKB African British F 0.013 0.013 8.554 0.245 0.524 10215

UKB African British M 0.018 0.015 5.818 0.179 0.573 10213

UKB South Asians F 0.018 0.019 8.289 0.269 0.567 10219

UKB South Asians M 0.022 0.021 5.928 0.207 0.624 10224

Abbreviations: P, previously-identified; G, GERA-identified; GG, GERA+GIANT-identified; R2, variance explained from GRS using GERA meta-analysis effect sizes (stratified by
sex); Eff., effect; GERA, Genetic Epidemiology Research on Adult Health and Aging cohort; GIANT, Genetic Investigation of Anthropomorphic Traits consortium; UKB, UK
Biobank.
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correction in the UKB, and we could test SNPs on the sex
chromosomes in the UKB.

In summary, our results demonstrate the value of conduct-
inggenetic studies in large,diverse cohorts, enabledby linking
EHRs with genome-wide genotype data, and expand our
knowledge of the genetic basis of BMI.
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