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ABSTRACT We here present two methods for inferring population structure and admixture proportions in low-depth next-generation
sequencing (NGS) data. Inference of population structure is essential in both population genetics and association studies, and is often
performed using principal component analysis (PCA) or clustering-based approaches. NGS methods provide large amounts of genetic
data but are associated with statistical uncertainty, especially for low-depth sequencing data. Models can account for this uncertainty
by working directly on genotype likelihoods of the unobserved genotypes. We propose a method for inferring population structure
through PCA in an iterative heuristic approach of estimating individual allele frequencies, where we demonstrate improved accuracy in
samples with low and variable sequencing depth for both simulated and real datasets. We also use the estimated individual allele
frequencies in a fast non-negative matrix factorization method to estimate admixture proportions. Both methods have been
implemented in the PCAngsd framework available at http://www.popgen.dk/software/.
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POPULATION genetic studies often consist of individuals of
diverse ancestries, and inference of population structure

therefore plays an important role in population genetics and
association studies. Population stratification can act as a
confounding factor in association studies as it can lead to
spurious associations (Marchini et al. 2004). Principal com-
ponent analysis (PCA) has been used in genetics for a long
time, such as in Menozzi et al. (1978) where synthetic maps
were produced in an exploratory analysis of genetic varia-
tion. PCA is now a common tool in population genetic stud-
ies, where its dimension reduction properties can be used to
visualize population structure by summarizing the genetic
variation through principal components (Novembre and Ste-
phens 2008), correct for population stratification in associa-
tion studies, and investigate demographic history (Patterson
et al. 2006; Price et al. 2006; Fumagalli et al. 2013) as well as
perform genome selection scans (Hao et al. 2015; Galinsky
et al. 2016; Luu et al. 2017). PCA is an appealing approach to

infer population structure as the aim is not to classify the
individuals into discrete populations, but instead to describe
continuous axes of genetic variation such that heterogeneous
populations and admixed individuals can be better repre-
sented (Patterson et al. 2006). Another successful approach
in modeling complex population structure is to estimate
admixture proportions based on clustering-based methods
(Pritchard et al. 2000; Tang et al. 2005; Alexander et al.
2009; Skotte et al. 2013), such as the popular software
ADMIXTURE, which have also been used for correction of pop-
ulation stratification in association studies (Price et al. 2010).

Next-generation sequencing (NGS) methods (Metzker
2010) produce a large amount of DNA sequencing data at
low cost and are commonly used in population genetic stud-
ies (Nielsen et al. 2012). But NGS methods are associated
with high error rates usually caused by several factors such
as sampling, alignment, and sequencing errors. Many NGS
studies are based on medium (,153) and low (,53) depth
data due to the demand for large sample sizes as seen in
large-scale sequencing studies, e.g., 1000 Genomes Project
Consortium (2010, 2012). However, the use of medium-,
and, especially, low-depth sequencing data introduces chal-
lenges rooted in the statistical uncertainty induced when
calling genotypes and variants in these scenarios (Nielsen
et al. 2012). The statistical uncertainty increases for low-depth
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samples due to the increased difficulty of distinguishing a vari-
able site from a sequencing error with the information provided.
Problems can arise due to chromosomes being sampled with
replacement in the sequencing process, and both alleles may
not have been sampled for a heterozygous individual in low-
depth scenarios. Homozygous genotypes may also be wrongly
inferred as heterozygous due to sequencing errors. Thus, geno-
type callingwill associate individualswith a statistical uncertainty
that should be taken into account (Nielsen et al. 2011, 2012).

To overcome these problems related to NGS data and
genotype calling, probabilistic methods have been developed
to take use of genotype likelihoods in combination with
external information for various population genetic parame-
ters (Kim et al. 2011; Nielsen et al. 2012; Fumagalli et al.
2013; Skotte et al. 2013; Vieira et al. 2013; Korneliussen
et al. 2014; Kousathanas et al. 2017), such that posterior ge-
notype probabilities can be used to model the related uncer-
tainty. Genotype likelihoods can be estimated to incorporate
errors of the sequencing process such as the base quality
scores as well as the allele sampling (McKenna et al. 2010).
These posterior genotype probabilities have also been used to
call genotypes with a higher accuracy than previous methods
for low-depth NGS data (Nielsen et al. 2011, 2012).

Wepresent twonewmethods for low-depthNGSdata using
genotype likelihoods to model complex population structure
that connect the results of PCAwith the admixture proportions
ofclustering-basedapproaches.Onemethodperformsavariant
of PCA using an iterative heuristic approach of estimating
individual allele frequencies to compute a covariance matrix,
while the other uses the estimated individual allele frequencies
in an accelerated non-negative matrix factorization (NMF)
algorithm to estimate admixture proportions. The perfor-
mances of the two methods are assessed on both simulated
and real datasets in regards to existing methods for both low-
depth NGS and genotype data. The methods have been imple-
mented in a framework called PCAngsd (PCA of NGS data).

Materials and Methods

We will analyze NGS data of n diploid individuals across m
variable sites. These sites will either be known or called single-
nucleotide polymorphisms (SNPs), which are assumed to be
diallelic such that the major andminor allele of each SNP have
been inferred. This can either be done from sequencing reads
(Kim et al. 2011) or from genotype likelihoods (Korneliussen
et al. 2014) and only three different genotypeswill be possible.
Thus, we assume that a genotype G can be seen as a binomial
random variable with realizations 0, 1, and 2 that represent
the number of copies of the minor allele in a site for a given
individual in the absence of population structure. The expec-
tation and variance of G can therefore be defined as E½G� ¼ 2p
and Var½G� ¼ 2pð12 pÞ; with p representing the allele fre-
quency of a population, which we also refer to as population
allele frequency.

However, genotypes are not observed in NGS data and we
will instead work on genotype likelihoods that also include

information of the sequencing process. The genotype likeli-
hoods are the probability of the observed sequencing data X
given the three different possible genotypes, PðXjG ¼ gÞ; for
g ¼ 0; 1; 2: One method to compute genotype likelihoods
from sequencing reads is described in the supplemental
material based on the simple GATK model (McKenna et al.
2010).

External information can be incorporated to define poste-
rior genotype probabilities using Bayes’ theorem in combina-
tion with genotype likelihoods (Nielsen et al. 2011). The
population allele frequency is often used as information in
the estimation of prior genotype probability PðGisjpsÞ; for
an individual i in site s (Kim et al. 2011; Nielsen et al.
2012; Fumagalli et al. 2013; Vieira et al. 2013). Assuming
the population is in Hardy-Weinberg equilibrium (HWE)
for a site s, the prior genotype probability is then given
as PðGis ¼ 0jpsÞ ¼ ð12psÞ2; PðGis ¼ 1jpsÞ ¼ 2psð12 psÞ and
PðGis ¼ 2jpsÞ ¼ p2s for the three different possible genotypes.
As defined in Kim et al. (2011), using the estimated popula-
tion allele frequency p̂s; the posterior genotype probability is
computed as follows for individual i in site s:

P
�
Gis ¼ gjXis; p̂s

�
¼

P
�
XisjGis ¼ g

�
P
�
Gis ¼ gjp̂s

�
P

g9¼0
2 P

�
XisjGis ¼ g9

�
P
�
Gis ¼ g9jp̂s

�:
(1)

PCA

The standard way of performing PCA in population genetics
and using it to infer population structure is based on the
method defined in Patterson et al. (2006). For a genotype
matrix G of n individuals and m variable sites, the n3 n co-
variance matrix C, also known as the genetic relationship
matrix (GRM), is computed as follows for two individuals
i and j:

cij ¼ 1
m

Xm
s¼1

�
gis 2 2p̂s

��
gjs 2 2p̂s

�
2p̂s

�
12 p̂s

� : (2)

Here, gis is the observed genotype for individual i in site s, to
distinguish it from G defined above for unobserved geno-
types, and p̂ is the estimated population allele frequency.
The principal components are then inferred by performing
an eigendecom-position of the covariance matrix, such that
C ¼ VSVT with V being the matrix of eigenvectors and S the
diagonal matrix of the corresponding eigenvalues. Principal
components and eigenvectors will be used interchangeably
throughout this study. The top principal components capture
most of the population structure as they represent the projec-
tion of the individuals on axes of genetic variation in the data-
set (Patterson et al. 2006; Engelhardt and Stephens 2010).

This method has been extended to NGS data in Fumagalli
et al. (2013), as well as in Skotte et al. (2012), using the
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probabilistic framework described in Equation 1, by summing
over the genotypes of each individual weighted by the joint
posterior genotype probabilities under the assumption of HWE
in thewhole sample. Themethod has been implemented in the
ngsTools framework (Fumagalli et al. 2014). The covariance
matrix is estimated as follows for NGS data using only known
variable sites for two individuals i and j:

cij ¼ 1
m

Xm
s¼1

X2

gi¼0

X2

gj¼0

�
gi 2 2p̂s

��
gj 2 2p̂s

�
P
�
Gis ¼ gi;Gjs ¼ gj

���Xis; Xjs; p̂s
�

2p̂s
�
12 p̂s

� :

(3)

ngsTools splits up the joint posterior probability,
P
�
Gis;Gjs

��Xis;Xjs; p̂s
�
; into P

�
Gis

��Xis; p̂s�P�Gjs
��Xjs; p̂s

�
for i 6¼ j

by assuming conditional independence between individuals
given the estimated population allele frequencies. The non-
diagonal entries in the covariance matrix are now directly
estimated from the posterior expectations of the genotype
instead of the observed genotypes as described in Equation
2. The original method weighs each site by its probability of
being a variable site such that SNP calling is not needed prior
to the covariance matrix estimation. This is not taken into
account in this study as we are using called variable sites to
infer population structure. The population allele frequencies
are estimated from the genotype likelihoods using an expec-
tation maximization (EM) algorithm (Kim et al. 2011) as de-
scribed in the supplemental material.

The problem with this approach is that the assumption of
conditional independence between individuals given the pop-
ulation allele frequency is only valid when there is no pop-
ulation structure. Here, we propose a novel approach of
estimating the covariance matrix using iteratively estimated
individual allele frequencies toupdate theprior informationof
the posterior genotype probability. Thereby, we condition on
the individual allele frequencies as in the clustering-based
approaches such as Pritchard et al. (2000), Tang et al. (2005),
Alexander et al. (2009), Skotte et al. (2013).

Individual allele frequencies

A model for estimating individual allele frequencies based
on population structure was introduced in STRUCTURE
(Pritchard et al. 2000), as later described in Equation 13.
Hao et al. (2015) proposed a different model for estimating
individual allele frequencies P by using the information in
the principal components instead of having an assumption of
K ancestral populations. The model is defined as the matrix
product,

P ¼ SA; (4)

where S represents the population structure such that A rep-
resents themapping of the population structure S to the allele
frequencies. Hao et al. (2015) estimated the individual allele
frequencies through a singular value decomposition (SVD)
method, where genotypes are reconstructed using only the
topD principal components such that theywill bemodeled by
population structure. A similar approach has been proposed

by Conomos et al. (2016), where the inferred principal com-
ponents are used to estimate individual allele frequencies in
a simple linear regression model. However, due to working
on NGS data and not knowing the genotypes, we are extend-
ing the method of Hao et al. (2015) to NGS data by using
posterior expectations of the genotypes, referred to as ge-
notype dosages, instead of genotypes. Thus, we will be
using,

E

h
Gis

���Xis; p̂s
i
¼

X2
g¼0

g  P
�
Gis ¼ g

��Xis; p̂s�; (5)

for individual i in site s.
The individual allele frequencies are then estimated by

performing a SVD on the centered genotype dosages, and
reconstructing them using only the top D principal compo-
nents. 2p̂ is then added to the reconstruction and scaled by
1=2 based on a binomial distribution assumption of Gis; for
i ¼ 1; . . . ; n and s ¼ 1; . . . ;m; to produce the individual allele
frequencies. Since SVD is a method that takes real-valued
input, we will have to truncate the estimated individual allele
frequencies in order to constrain them in the range ½0; 1�:
However, Hao et al. (2015) showed that the resulting esti-
mates were still very accurate for common variants consider-
ing this limitation.

For ease of notation, let E be the n3mmatrix of genotype

dosages, eis ¼ E

h
Gis

���Xis; p̂s
i
; for i ¼ 1; . . . ; n and s ¼ 1; . . . ;m:

The following steps for estimating the individual allele fre-
quencies are adopted from the SVDmethod (Hao et al. 2015)
to work on NGS data:

For matrix notations, define Ŝ ¼ ½1;W1; . . . ;WD� and all
representing column vectors, such that Equation 4 can be
approximated as bP ¼ ŜÂ: Finally, bP is truncated to constrain
allele frequency estimates in a range based on a small value g�
1:03 1024

�
, such that p̂is 2 ½g; 12 g� for i ¼ 1; . . . ; n and

s ¼ 1; . . . ;m:

We now incorporate the individual allele frequencies into
the estimation of posterior genotype probabilities. The esti-
mated individual allele frequencies are used as updated prior
information instead of the population allele frequencies, and
will beable tomodelmissingdatawith the inferredpopulation
structure of the individuals. Thus, the posterior genotype
probabilities are estimated as follows for individual i in site s:

Algorithm 1: SVD method for estimating individual allele frequencies.

1. The centered genotype dosages are constructed as EðCÞi ¼ Ei 22p̂ for
i ¼ 1; . . . ; n:

2. Perform SVD on the centered genotype dosages, EðCÞ ¼ WDUT ; where
W will represent population structure similarly to V:

3. Define bEðCÞD to be the prediction of the centered genotype dosages

using only the top D principal components, bEðCÞD ¼ W1:DD1:DU
T
1:D:

4. Estimate bP by adding 2p̂ to bEðCÞD row-wise and scaling by 1=2; based on
p̂is � 1=2E½Gis�:
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P
�
Gis ¼ g

��Xis; p̂is
� ¼ P

�
Xis

��Gis ¼ g
�
P
�
Gis ¼ g

��p̂is
�

P
g9¼0
2 P

�
Xis

��Gis ¼ g9
�
P
�
Gis ¼ g9

��p̂is
�:
(6)

Each individual is now seen as a single population with
allele frequency p̂is; where as the prior genotype prob-
ability are estimated assuming HWE, such that

P
�
G ¼ 0

��p̂is
� ¼ �

12p̂is
�2
; P

�
G ¼ 1

��p̂is
� ¼ 2

�
12 p̂is

�
p̂is and

P
�
G ¼ 2

��p̂is
� ¼ p̂2

is: An updated definition of the posterior
expectations of the genotypes is then given as:

E

h
G
���Xis; p̂is

i
¼

X2
g¼0

g  P
�
G ¼ g

���Xis; p̂is

�
: (7)

This procedure of updating the prior information can be
iterated to estimate new individual allele frequencies on
the basis of updated population structure. Therefore, we
propose the following algorithm for an iterative procedure
of estimating the individual allele frequencies.

Convergence of our iterativemethod is definedaswhen the
root-mean-square deviation (RMSD) of the inferred popu-
lation structure in the SVD W is smaller than a value
mð1:03 1025Þ between two successive iterations. The RMSD
of iteration t þ 1 for D principal components is given as,

RMSD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
nD

Xn
i¼1

XD
d¼1

�
wðtþ1Þ
id 2wðtÞ

id

�2vuut : (8)

Covariance matrix

We now use the final set of individual allele frequencies to
estimate an updated covariance matrix in a similar model as
in Equation 3, but incorporating the individual allele frequencies
into the joint posterior probability. The entries of the covariance
matrix C are now defined as follows for individuals i and j:

cij ¼ 1
m

Xm
s¼1

X2

gi¼0

X2

gj¼0

�
gi 2 2p̂s

��
gj 2 2p̂s

�
P
�
Gi ¼ gi;Gj ¼ gj

���Xis; Xjs; p̂is; p̂js

�

2p̂s
�
12 p̂s

� :

(9)

For i 6¼ j; the joint posterior probability can be computed as

P
�
Gi

���Xis; p̂is

�
P
�
Gj

���Xjs; p̂js

�
; since, in contrast to the assumption

made in the model of Fumagalli et al. (2013) using popula-
tion allele frequencies, the individuals are conditionally in-
dependent given the individual allele frequencies. The above
equation can be expressed in terms of the genotype dosages
for ease of notation and computation for i 6¼ j :

cij ¼ 1
m

Xm
s¼1

�
E

h
Gi

���Xis; p̂is

i
2 2p̂s

��
E

h
Gj

���Xjs; p̂js

i
2 2p̂s

�

2p̂s
�
12 p̂s

�   :

(10)

However, for i ¼ j (diagonal of the covariance matrix), the
joint posterior probability is simplified to PðGijXis; p̂isÞ;
such that the estimation of the diagonal covariance entries
is given as:

cii ¼ 1
m

Xm
s¼1

P2
gi¼0

�
gi22p̂s

�2
P
�
Gi ¼ gi

���Xis; p̂is

�

2p̂s
�
12 p̂s

� : (11)

An eigendecomposition of the updated estimated covariance
matrix is then performed to obtain the principal components
as described earlier, C ¼ VSVT : Note that V and W from
algorithm 1 are not the same even though they both repre-
sent population structure through axes of genetic variation in
the dataset. This is due to a different scaling, and the joint
posterior probability of Equation 11 is not taken into account
in W for i ¼ j:

Number of principal components

It can be hard to determine the optimal number of principal
components that represent population structure. In ourmethod,
we are using Velicier’s minimum average partial (MAP) test as
proposed by Shriner (2011) to automatically detect the number
of top principal componentsDused for estimating the individual
allele frequencies. Shriner showed that the test based on a
Tracy-Widom distribution (Patterson et al. 2006) systematically
overestimates the number of significant principal components,
and performs even worse for datasets including admixed indi-
viduals. However, in order to be able to perform the MAP test
and detect the optimal D, an initial covariance matrix is esti-
mated based on the model in Equation 3.

The MAP test is performed on the estimated initial co-
variance matrix C for NGS data as an approximation of the
Pearson correlation matrix used by Shriner. Using the nota-
tion of Shriner, C*

d is defined as the matrix of partial correla-
tions after having partialed out the first d principal
components. Velicer (1976) proposed the summary statistic

ld ¼
Pn

i¼1;i 6¼j
Pn

j¼1

�
C*
d;ij

�2

n
�
n2 1

�; where C*
d;ij represents the entry in

C*
d for individuals i and j. Thus, the test statistic ld represents

the average squared correlation after partialing out the top
d principal components. The number of top principal compo-
nents that represent population structure is then chosen as
argmindld; for d ¼ 0; . . . ;m2 1: We have used the same
implementation of the MAP test as Shriner.

Algorithm 2: Iterative estimation of individual allele frequencies.

1. Estimate population allele frequencies p̂ from genotype likelihoods (see
supplemental material).

2. Estimate posterior genotype probabilities and genotype dosages E
based on genotype likelihoods and p̂.

3. Estimate bP using the SVD based method on E as described in
Algorithm 1.

4. Estimate posterior genotype probabilities and genotype dosages E
using updated prior information, bP:

5. Repeat steps 3 and 4 until individual allele frequencies have converged.
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The MAP test, and the preceding estimation of the initial
covariancematrix, can be avoided by having prior knowledge
of an optimal D for the dataset being analyzed and manually
selecting D.

Genotype calling

As previously shown in Nielsen et al. (2012) and Fumagalli
et al. (2013), genotypes can be called from posterior geno-
type probabilities to achieve higher accuracy in low-depth
NGS scenarios. We can adapt this concept to our posterior
genotype probabilities based on individual allele frequencies,
such that genotypes can be called at a higher accuracy in
structured populations from low-depth NGS data. The geno-
type for individual i in site s is called as follows:

ĝis ¼ argmax
g2f0;1;2g

P
�
Gis ¼ g

��Xis;pis
�
: (12)

Admixture proportions

Based on the likelihood model defined in STRUCTURE
(Pritchard et al. 2000), individual allele frequencies P can
be estimated using admixture proportions Q and population-
specific allele frequencies F (Alexander et al. 2009), such that:

pis
XK
k¼1

qikfsk; (13)

for an individual i in a variable site s. This is based on an
assumption of K ancestral populations where

P  K
k¼1qik ¼ 1

and 0# q; f # 1" q; f 2 ðQ; FÞ:HereQ and Fmust be inferred
in order to estimate the individual allele frequencies,
whereas K is assumed to be known. One probabilistic ap-
proach for inferring population structure through admixture
proportions for low-depth NGS data has been implemented
in the NGSadmix software (Skotte et al. 2013). Here both
parameters, Q and F; are jointly estimated in an EM algo-
rithm using genotype likelihoods.

In our case,wehave already estimated the individual allele
frequencies based on our iterative procedure using PCA de-
scribed above. K can be chosen as the number of principal
componentsDþ 1; since itwould explain the number of distinct
ancestral population from which the individual allele frequen-
cies have been estimated. There is, however, not always a direct
interpretation between principal components and admixture
proportions (Alexander et al. 2009; Engelhardt and Stephens
2010). Therefore, we propose an approach based on NMF to
inferQ and F using only our estimated individual allele frequen-
cies as information for low depthNGS data. NMF has previously
been applied directly on genotype data to infer population struc-
ture and admixture proportions by Frichot et al. (2014), where
their method showed comparable accuracy and faster runtime
in comparison to ADMIXTURE.

NMF is a dimension reduction and factor analysis method
for finding a low-rank approximation of a matrix, which is
similar to PCA, but NMF is constrained to find non-negative
low dimensional matrices. For an non-negative matrix

P 2 ℝn3m
þ ; the goal of NMF is to find an approximation of

P based on two non-negative factor matrices Q 2 ℝn3K
þ and

F 2 ℝm3K
þ ; such that:

P � QFT : (14)

Q will consist of columns of non-negative basis vectors such
that linear combinations of these approximatesP through F:
Thus, based on the non-negative nature of our parameters,
we can apply the ideas of NMF to infer admixture proportions
Q and population-specific allele frequencies F from our indi-
vidual allele frequencies. We use a combination of recent re-
search in NMF to minimize the following least squares
problem with a sparseness constraint on Q :

min
Q;F

���P̂2QFT
���2
F
þa

Xm
i¼1

XK
k¼1

jqikj; (15)

for Q$ 0; F$ 0; and a$ 0: Here k:kF is the Frobenius norm
of a matrix and a is the regularization parameter controlling
the sparseness enforced as also introduced in Frichot et al.
(2014).

Lee and Seung (1999, 2001) proposed an multiplicative
update (MU) algorithm to solve the standard NMF problem
without the sparseness constraint included above. Their update
rules can be seen as conservative steps in a gradient descent
optimization problem for updating F and Q; which ensure that
the non-negative constraint holds for each update. Hoyer
(2002) extended the MU to incorporate the sparseness con-
straint described in Equation 15 for Q: For a.0; the regulari-
zation parameter is used to reduce noise, especially induced by
the uncertainty of low-depth NGS data, in the estimated admix-
ture proportions by enforcing sparseness in the solution. An
iteration of using the MU rules is then described as follows:

bFðtþ1Þ ¼ bFðtÞ5 bPT bQðtÞ

bFðtÞbQðtÞ  T bQðtÞ; (16)

bQðtþ1Þ ¼ bQðtÞ
5

P̂F̂
ðtþ1Þ

bQðtÞbFðtþ1Þ  TbFðtþ1Þ þ a
: (17)

where5 represents element-wise multiplication, and the di-
vision operator is element-wise as well.

However, MU has been shown to have a slow convergence
rate, especially for dense matrices, and our approach is there-
fore to accelerate MU by combining two different techniques.
We propose an algorithm of combining the acceleration scheme
described by Gillis and Glineur (2012) with the asymmetric
stochastic gradient descent algorithm (ASG-MU) of Serizel
et al. (2016) for updating F and Q in a fast approach. The
acceleration scheme of Gillis and Glineur (2012) updates each
matrix F and Q a fixed number of times at a lower computa-
tional cost without losing the convergence properties of MU.
We simply incorporate this acceleration scheme inside
ASG-MU that works by randomly assigning the columns of
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P into a set of Bmini-batches, which are then updated sequen-
tially in a permuted order to improve the convergence rate and
performance ofMU (Serizel et al. 2016). After each update, we
truncate the entries of both F and Q to be in range ½0; 1� and
normalize the rows of Q to sum to one. The concept of com-
bining an acceleration scheme with a stochastic gradient de-
scent approach for MUhas also been explored in Kasai (2017).

The algorithm is iterated until the admixture proportions
has converged. Convergence is defined as when the RMSD of
estimated admixture proportions of two successive iterations
are smaller than a value f (1:03 1024). The RMSD of itera-
tion t þ 1 is given as,

RMSD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
nK

Xn
i¼1

XK
k¼1

�
q̂ðtþ1Þ
ik 2q̂ðtÞik

�2vuut : (18)

The a parameter enforcing sparseness in the estimated solu-
tion ofQ is arbitrarily specified. However the use of the likeli-
hood measure in the NGSdamix (Skotte et al. 2013) model
can be used to determine the a parameter fitting the dataset.
The likelihood measure is defined as:

L
�bQ;bF� ¼

Yn
i¼1

Ym
s¼1

X2
g¼0

P
�
Xis

��Gis ¼ g
�
P
�
Gis ¼ g

���p̂is

�
; (19)

where p̂is ¼
PK

k¼1q̂ik f̂ sk: Based on the fast estimation of ad-
mixture proportions using our NMF algorithm, an appropri-
ate a can easily be found by scanning a specified interval in an
automated fashion based on the likelihood measure. This can
be performed without sacrificing significant runtime com-
pared to NGSadmix due to already having estimated the in-
dividual allele frequencies for a particular K.

Implementation

Both presented methods have been implemented in a Python
framework named PCAngsd. The framework is freely avail-
able at http://www.popgen.dk/software/.

The memory requirements of PCAngsd is OðmnÞ as the
entire matrix of genotype likelihoods needs to be stored in
memory for both methods. The most computationally expen-
sive step is the estimation of individual allele frequencies and
covariancematrix

	O�
m2n

�

. However, a fast SVDmethod for

only computing the top D eigenvectors, implemented in the
Scipy library (Jones et al. 2014) using ARPACK (Lehoucq
et al. 1998) as an eigensolver, has been used to speed up
the iterative estimations of the individual allele frequencies.
PCAngsd is also multithreaded to take advantage of several
cores, and the backbone of the framework is based on Numpy
data structures (van der Walt et al. 2011) using the Numba
library (Lam et al. 2015) to speed up bottlenecks with just-in-
time (JIT) compilation.

Simple simulation of genotypes and sequencing data

To test the capabilities of our two presented methods,
we simulated low-depth NGS data and generated genotype

likelihoods. Allele frequencies of the reference panel of the
Human Genome Diversity Project (HGDP) (Cann et al. 2002)
were used to generate a total of 380 individuals from three
distinct populations (French, Han Chinese, Yoruba) includ-
ing admixed individuals in �0.4 million SNPs across all
autosomes. As the allele frequencies are known for each
population, the genotypes of each individual can be sampled
from a binomial distribution for each diallelic SNP, using the
population-specific allele frequency or an admixed allele fre-
quency as parameter. No linkage disequilibrium (LD) was
simulated. The genotypes are therefore known and are used
in the evaluation of our methods in our low-depth scenarios.
The number of reads in each SNP were sampled from a Pois-
son distribution with a mean parameter resembling the aver-
age sequencing depth of the individual, and the genotypewas
used to sample the number of derived alleles from a binomial
distribution using the sampleddepth as parameter. The average
sequencing depth of each individual was sampled uniformly
random from a range of ½0:5; 5�: Sequencing errors were in-
corporated by sampling each read with a probability e ¼ 0:01
of being an error. The genotype likelihoods were then finally
generated from the probability mass function of a binomial
distribution using the sampled parameters and e. This approach
of genotype likelihood simulation has previously been used in
Kim et al. (2011), Skotte et al. (2013), and Vieira et al. (2013).

A complex admixture scenario was constructed to test the
capabilities of our methods; 100 individuals were sampled
directly fromeachof thepopulation-specific allele frequencies
(nonadmixed), while 50 individuals were sampled to have
equal ancestry from each of the three distinct populations
(three-way admixture). Finally, 30 individuals were sampled
from a gradient of ancestry between all pairs of the ancestral
populations (two-way admixture).

1000 Genomes low-depth sequencing data

We also analyzed human low-coverage NGS data of 193 in-
dividuals from the 1000 Genomes Project Consortium et al.
(2010, 2012). The individuals were from four different pop-
ulations consisting of 41 from CEU (Utah residents with
Northern and Western European ancestry), 40 from CHB
(Han Chinese in Beijing), 48 from YRI (Yoruba in Ibadan),
and 64 individuals from MXL (Mexican ancestry in Los
Angeles), representing an admixed scenario of European and
Native American ancestry. The individuals from the low-cov-
erage datasets have a varying sequencing depth from 1.53 to
12.53 after site filtering. An advantage of using the low-
coverage data of the 1000 Genomes Project data are that
reliable genotypes are available that can be used for valida-
tion purposes.

SNP calling and estimation of genotype likelihoods of
the 1000 Genomes dataset was performed in ANGSD
(Korneliussen et al. 2014) using simple read quality filters.
A significance threshold of 1:03 1026 was used for SNP call-
ing alongside a MAF threshold of 0.05 to remove rare vari-
ants. A total number of 8 million variable sites across all
autosomes was used in the analyses. The full ANGSD
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command used to generate the genotype likelihoods is pro-
vided in the supplemental material.

Waterbuck low-depth sequencing data

Lastly, an animal dataset (nonmodel organism) as also in-
cluded in our study. A reduced low-depth NGS dataset of the
waterbuck (Kobus ellipsiprymnus) originating from C. Pedersen
et al. (University of Copenhagen, unpublished data) was ana-
lyzed. The dataset consists of 73 samples that were sampled at
five different sites in Africa with a varying sequencing depth
from 2.23 to 4.73 aligned to 88,935 scaffolds. The dataset
was reduced to only include sampling sites with .10 samples
such that the inferred axes of genetic variation will reflect true
population structure. As performed for the 1000Genomes data-
set, genotype likelihoods were estimated in ANGSD with the
same SNP and MAF filters. A total number of 9.4 million SNPs
across the autosomes of the waterbuck was analyzed in this
study.

Data availability

The authors affirm that all data necessary for confirming the
conclusions of the article are present within the article, fig-
ures, and tables. Thewaterbuck dataset analyzed in our study
ispubliclyavailable in theEuropeanNucleotideArchive (ENA)
repository (PRJEB28089). Supplemental material available at
Figshare: https://doi.org/10.25386/genetics.6953243.

Results

For the simulated and 1000 Genomes datasets, results esti-
mated in PCAngsd on low-depth NGS data were evaluated
against the results estimated from genotype data, as well as
naively called genotypes from genotype likelihoods. The
model in Equation2wasused to performPCA,whileADMIXTURE
was used to estimate admixture proportions on the “true”
genotype datasets. The performance of PCAngsd was also
compared to existing genotype likelihood methods, with
the ngsTools model (Equation 3) for performing PCA, and
NGSadmix (Equation 19) for estimating admixture propor-
tions. In all the following cases of admixture plots estimated
by PCAngsd, we used B ¼ 5; and a was chosen as the one

maximizing the likelihood measure described above (Equa-
tion 19), also shown in Supplemental Material, Figure S5.

RMSDwas used to evaluate the performances of both NGS
methods for estimating admixture proportions in terms of
accuracy:

RMSD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
nK

Xn
i¼1

XK
k¼1

�
qðgenoÞik 2qðNGSÞik

�2vuut ; (20)

where qðgenoÞik and qðNGSÞik represent the estimated admixture
proportion for individual i in ancestral population k from
known genotypes and NGS data, respectively. The accuracy
of the inferred PCA plots of both NGS methods was also
compared to the PCA plots of known genotypes for the sim-
ulated and 1000 Genomes datasets using RMSD. However, a
Procrustes analysis (Wang et al. 2010; Fumagalli et al. 2013)
had to be performed prior to the comparison as the direction
of the principal components can differ based on the eigende-
composition of the covariance matrices.

All tests in this study were performed server-side using
32 threads (Intel Xeon CPU E5-2690) for both PCAngsd and
NGSadmix.

Simulation

The results of performing PCA on the simulated dataset based
on frequencies from three humanpopulations are displayed in
Figure 1, where we simulated unadmixed, two-way admixed
and three-way admixed individuals. The MAP test reported
two significant principal components, which was also
expected for individuals simulated from three distinct popu-
lations. The inferred principal components clearly show the
importance of taking individual allele frequencies into ac-
count in the probabilistic framework. Here, PCAngsd was
able to infer the population structure of individuals from
distinct populations and admixed individuals nicely, as also
verified by a Procrustes analysis obtaining a RMSD of
0.00121, when compared to the PCA inferred from the true
genotypes. There is clear bias in the results of the ngsTools
model, where the patterns represent sequencing depth rather
than population structure, as seen in Figure S1. The individ-
uals are acting as a gradient toward the origin due to their

Figure 1 PCA plots of the top two principal components in the simulated dataset consisting of 380 individuals and 0.4 million variable sites. The left-
hand plot shows the PCA performed on the known genotypes using Equation 2. The middle plot shows the PCA performed by PCAngsd, and the right-
hand plot displays the PCA performed by the ngsTools model (Equation 3).
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varying sequencing depth. The biased performance of
ngsTools was also reflected in the corresponding Procrustes
analysis, with a RMSD of 0.0174.

To ensure that the individual allele frequencies estimated
using PCAngsd are representative estimates, we compared
them to the allele frequencies of the HGDP reference panel
from which the genotypes of each individual has been sam-
pled. Sampling errorswere thereforenot taken into account in
the comparison.Theestimates obtained fromNGSadmixwere
also compared. The estimates of PCAngsd obtain a RMSD
value of 0.0330, and the estimates of NGSadmix a value of
0.0327 based on low-depth NGS data. The results of PCAngsd
are displayed in Figure S9.

The estimated admixture proportions of the simulated
dataset are displayed in Figure 2. PCAngsd estimated the
admixture proportions well with a RMSD of 0.00476 com-
pared to the ADMIXTURE estimates of the known geno-
types, but was, however, outperformed by NGSadmix with
a RMSD of 0.00184. For the 380 individuals and 0.4 million
SNPs using K ¼ 3; PCAngsd had an average runtime of only
2.9 minwhile NGSadmix had an average runtime of 7.9 min
(Table 1).

1000 Genomes

We also applied the methods of PCAngsd to the CEU (Euro-
pean ancestry), CHB (Chinese ancestry), YRI (Nigerian
ancestry), and MXL (Mexican ancestry) populations of the
low-coverage 1000 Genomes dataset. TheMAP test indicated
evidence of three significant principal components, meaning
that the Native American ancestry explains enough genetic
variance in the dataset to represent an axis of its own. The
results of the PCA are displayed in Figure 3. As was also seen
for the simulated dataset, PCAngsd is able to cluster all indi-
viduals almost perfectly, while the ngsTools model is only
able to capture some of the same population structure pat-
terns with some of the populations looking admixed. Its re-
sults are still biased by the variable sequencing depth, as also
seen in Figure S2. The RMSD values of the Procrustes anal-
yses verify the observations, where PCAngsd has a RMSD of
0.00182 compared to ngsTools with a RMSD of 0.0075.

The admixture plots are displayed in Figure 4. was is not
able to outperform NGSadmix in terms of accuracy; however,
it as still able to estimate a very similar result. PCAngsd has
some issues with noise in its estimation, but is, however,
able to reduce it with the use of the sparseness parameter,
a ¼ 1500: The likelihood measure in Equation 19 was used
to easily find an optimal a, as seen in Figure S10. PCAngsd

estimates the admixture proportions with a RMSD of 0.0108
compared to NGSadmix with a RMSD of 0.007148. The av-
erage runtime for 193 individuals and 8 million SNPs using
K ¼ 4 was 27.3 min, for PCAngsd, and 7.1 hr for NGSadmix,
making PCAngsd .153 faster than NGSadmix while both
performing PCA and estimating admixture proportions.

Waterbuck

Lastly, we analyzed the low-depth whole genome sequencing
waterbuck dataset consisting of 73 individuals from five
localities. The MAP test reported four significant principal
components explaining the genetic variation in the dataset,
which also fits with having five distinct waterbuck sampling
sites. The PCA plots are visualized in Figure 5, where the top
four principal components for each method are plotted. Once
again, PCAngsd is able to cluster the populations much better
than the ngsTools model; however, the effect is not as appar-
ent as for the other datasets. Interestingly, populations can
switch positions between the two methods, as seen with
Samole on the second principal component, and Samburu
and Matetsi on the third principal component.

As a few clusters are not sowell defined, theywill affect the
admixture plots seen in Figure 6, where the increased level of
noise is hard to remove without also affecting the true ances-
try signals. Still, PCAngsd is capturing the same ancestry
signals as NGSadmix with the use of the sparseness parameter.
It is worth noting that an admixed individual of Ugalla and
QENP was captured in both PCA and admixture estimation of
PCAngsd, as also verified by the NGSadmix method. The run-
time for the waterbuck dataset consisting of 73 samples and
9.4 million SNPs using K ¼ 5 was an average of 14.5 min for
PCAngsd, while NGSadmix had an average runtime of 3.2 hr,
thus making PCAngsd .133 faster.

Naively called genotypes

We lso inferred population structure from naively called
genotypes of the simulated and 1000 Genomes datasets,
and the results are visualized in Figures S7 and S8. Genotypes
were called by choosing the genotypes with the highest ge-
notype likelihoods. No filters were applied in the genotype
calling, since Skotte et al. (2013) showed that naively called
genotypes had higher accuracy of inferred admixture propor-
tion when no filters were used. The Procrustes analyses re-
port RMSD values of 0.0123 and 0.00310 for performing PCA
on the simulated and the 1000 Genomes dataset, respectively
(cf. RMSD values of 0.00121 and 0.00182 using PCAngsd).
Here, the naively called genotypes performed slightly better

Table 1 Average runtimes of 10 initializations for both PCAngsd and NGSadmix

Dataset n m K PCAngsd NGSadmix (min) Depth (3)

Simulated 380 0.4 million 3 2.9 min (2.1 min) 7.9 0:525
1000 Genomes 193 8 million 4 27.3 min (19.5 min) 424.9 1:5212:5
Waterbuck 73 9.4 million 5 14.5 min (9.3 min) 192 2:224:7

The runtimes reported for PCAngsd include reading of data and estimation of covariance matrix and admixture proportions, while runtimes listed in parentheses only include
estimation of admixture proportions, when parsing previously estimated individual allele frequencies. All tests have been performed server-side using 32 threads.
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than ngsTools in both cases, but the results were still biased
by sequencing depth. ADMIXTURE estimates admixture pro-
portions from the called genotypes, with RMSD values of
0.00995 and 0.00865 for the two datasets, respectively, thus
performing slightly better than PCAngsd for the 1000 Ge-
nomes dataset.

Discussion

We have presented two methods for inferring population
structure and admixture proportions in low-depth NGS data,
and both methods have been implemented in a framework
named PCAngsd. We developed a method to iteratively esti-
mate individual allele frequencies based on PCA using ge-
notype likelihoods in a heuristic approach. We connected
principal components to admixture proportions such that
we are able to infer and estimate both in a very fast approach,
making it feasible to analyze large datasets.

Based on the results when inferring population structure
using PCA, it is clear that the increased uncertainty of low-
depth sequencing data biases the clustering of populations
using the ngsTools model, which also takes genotype un-
certainty into account. Contrary to PCAngsd, population
structure is not taken into account when using the posterior
genotype probabilities to estimate the covariance matrix. The
ngsTools model uses population allele frequencies as prior
information for all individuals, such that individuals are
assumed to be sampled froma homogeneous population. This
assumption is, of course, violated when individuals are sam-
pled from structured populations with diverse ancestries.
Missing data are therefore modeled by population allele
frequencies that resembleanaverageacross theentire sample,
which is similar to setting standardized genotypes to 0 in the
estimation of the covariance matrix for genotype data. As an
effect of this, the low-depth individuals are modeled by
sequencing depth instead of population structure. These

Figure 2 Admixture plots for K ¼ 3 of
the simulated dataset where each bar
represents a single individual and the
different colors reflect each of the K
components. The first plot is the admix-
ture proportions estimated in ADMIX-
TURE using the known genotypes, which
we use as the ground-truth in our simula-
tion studies. The second plot shows ad-
mixture proportions estimated using
PCAngsd with parameter a ¼ 0 and the
bottom plot using NGSadmix.

Figure 3 PCA plots of the top two principal components for the 1000 Genomes dataset with 193 individuals and 8 million variable sites. The left-hand
plot is based on the reliable genotypes of the overlapping variable sites in the low depth NGS data, the middle plot is performed by PCAngsd and the
right-hand plot is performed by the ngsTools model.
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results may lead tomisinterpretations of population structure
or admixture only due to low and variable sequencing depth.
But the bias is not seen for individuals with equal sequencing
depth, as shown in Figure S4 for the ngsToolsmodel. Here, all
individuals have been simulated with an average sequencing
depth of 2.53, such that individuals will inherit approximately
the same amount of missing data. However, PCAngsd is able
to overcome the observed bias of low and variable sequenc-
ing depth by using individual allele frequencies as prior in-
formation, which leads to more accurate results in all datasets
of the study, as missing data are modeled accounting for
inferred population structure. The assumption of conditional
independence between individuals in the estimation of the
covariance matrix (Equation 10) also holds for structured pop-
ulations by conditioning on individual allele frequencies.

The number of significant eigenvectors used in the esti-
mation of individual allele frequencies is determined by the
MAP test. TheMAP test is performed on the covariancematrix
estimated from the ngsToolsmodel. Thus, in cases of complex
population structure, and low and variable sequencing depth,
it is possible that the MAP test will not find a suitable number
of significant eigenvectors to represent thegenetic variationof
the dataset. It could, therefore, be more relevant to use prior
information regarding the number of eigenvectors needed for
the dataset instead. However, for each of the cases analyzed in
this study, the MAP test inferred the expected number of
significant eigenvectors to describe the population structure.

PCAngsd is able to approximate the results ofNGSadmix to
a high degree when estimating admixture proportions using
solely the estimated individual allele frequencies. However,
although PCAngsd is not able to outperform NGSadmix in
terms of accuracy, it is able to capture the exact same ancestry
patterns as the clustering-based methods in a much faster
approach, as shown by the runtimes of eachmethod. Another

advantage of PCAngsd is that the estimated individual allele
frequencies need to be computed only once for a specific K,
thus multiple different random seeds can be tested in the
same run for an even greater speed advantage over NGSadmix,
as the iterative estimation of individual allele frequencies is
the most computational expensive step in PCAngsd. A proper
a value, controlling the sparseness enforced in the estimated
admixture proportions, can also be found through an auto-
mated scan implemented in our framework based on the
likelihood measure of NGSadmix. PCAngsd is therefore an
appealing alternative for estimating admixture proportions
for low-depth NGS data as convergence and runtime can be
a problem for a large number of parameters in NGSadmix.
PCAngsd was only seen to converge to a single solution for all
our practical tests, where we used five batches for all analyses
(B ¼ 5).

Both methods of the PCAngsd framework rely on an rep-
resentative set of individual allele frequencies, which we
model using the inferred principal components of the SVD
on the genotype dosages. Thenumber of individuals represent-
ing each population or subpopulation is essential for inferring
principal components that describe true population structure,
as each individual will contribute to the construction of these
axesofgeneticvariation.Thisparticulareffect canbeseen in the
PCAresults of thewaterbuckdatasetwhere thepopulations are
described only by a low number of individuals, such that some
of the clusters are not as well defined as for the other datasets.
The admixture proportions estimated from the waterbuck
dataset are therefore affected as well, which can be seen by
the additional noise in the admixture plots.

The PCAngsd framework may be able to push the lower
boundaries of sequencing depth required to perform popula-
tion genetic analyses on NGS data in large-scale genetic
studies. This is also demonstrated by downsampling the

Figure 4 Admixture plots for K ¼ 4 of
the 1000 Genomes dataset, where each
bar represents a single individual and
the different colors reflect each of the
K components. The first plot is the ad-
mixture proportions estimated in AD-
MIXTURE using the reliable genotypes,
the second plot shows admixture pro-
portions estimated in PCAngsd with pa-
rameter a ¼ 1500; and the last plot is
the admixture proportions estimated in
NGSadmix.
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1000 Genomes dataset in Figures S5 and S6, which display
the robustness of PCAngsd in fairly low sequencing depth.
However when down-sampling to only 1% of the reads, the
PCA and admixture results become very noisy. PCAngsd also

demonstrates an effective approach for dealing with merged
datasets of various sequencing depths, as missing data will be
modeled by population structure. Further, the estimated in-
dividual allele frequencies open up the development and

Figure 5 PCA plots of the top four principal components for the waterbuck dataset with 73 individuals and 9.4 million variable sites. The first row
displays the plots of the first and second principal components for PCAngsd and the ngsTools model, respectively, while the second row displays the
plots of the third and fourth principal components.

Figure 6 Admixture plots for K ¼ 5 of
the waterbuck dataset where each bar
represents a single individual and the
different colors reflect each of the K
components. The first plot is the admix-
ture proportions estimated in PCAngsd
with parameter a ¼ 5000; and the sec-
ond plot shows the admixture propor-
tions estimated in NGSadmix.
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extension of population genetic models based on a similar
probabilistic framework, such thatpopulation structure canbe
taken into account in heterogeneous populations.
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