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ABSTRACTWe construct genomic predictors for heritable but extremely complex human quantitative traits (height, heel bone density,
and educational attainment) using modern methods in high dimensional statistics (i.e., machine learning). The constructed predictors
explain, respectively, �40, 20, and 9% of total variance for the three traits, in data not used for training. For example, predicted
heights correlate �0.65 with actual height; actual heights of most individuals in validation samples are within a few centimeters of the
prediction. The proportion of variance explained for height is comparable to the estimated common SNP heritability from genome-wide
complex trait analysis (GCTA), and seems to be close to its asymptotic value (i.e., as sample size goes to infinity), suggesting that we
have captured most of the heritability for SNPs. Thus, our results close the gap between prediction R-squared and common SNP
heritability. The �20k activated SNPs in our height predictor reveal the genetic architecture of human height, at least for common
variants. Our primary dataset is the UK Biobank cohort, comprised of almost 500k individual genotypes with multiple phenotypes. We
also use other datasets and SNPs found in earlier genome-wide association studies (GWAS) for out-of-sample validation of our results.
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TO the extent that DNA controls the nature of an organism,
one may hope to predict that nature from the information

in the genetic code alone. For the first time, we have datasets
describing large numbers of humans, including both their
individual traits and their unique genotypes. In this paper,
we describe the construction of genomic predictors that cap-
ture significant portions of the variation of a number of
complex traits.

In the paper, we use the following terminology, explained
here for convenience. Heritability refers to the fraction of
variance of a quantitative trait that is under genetic control.
Broad sense heritability refers to the sumof all genetic effects,
including nonlinear effects such as dominance or gene–gene
interactions. Additive heritability refers to linear effects that
can be added up: i.e., it assumes each genetic variant has an
independent effect on the trait (which could, of course, be
zero), and all of these are summed together. We restrict our

attention to additive effects in this paper, and furthermore
the datasets we analyze are restricted to common SNPs (i.e.,
single nucleotide variants that occur at typically the percent
level ormore in the general population). Hence, we are build-
ing predictors that can, at best, capture all of the additive
heritability, due to common SNPs, for a given trait.

Recent estimates (Yang et al. 2011) suggest that common
SNPs (i.e., describing variants found in at least a percent or so
of the population) account for significant heritability of com-
plex traits such as height, heel bone density, and educational
attainment (EA). Large genome-wide association studies
(GWAS) of these traits have identified many statistically as-
sociated SNPs at genome-wide significance ðp, 53 1028Þ
(Styrkarsdottir et al. 2008; Okbay et al. 2016; Marouli et al.
2017; Morris et al. 2017; Visscher et al. 2017). However, the
total variance accounted for by these SNPs is still a small frac-
tion of the trait heritability and of the proportion of variance
that could be captured by regression on common SNPs as sug-
gested by SNPheritability estimates (de los Campos et al.2015).

The simplest hypothesis explaining this (so far) unaccounted-
for heritability is that previous studies have not had enough
statistical power to identify most of the relevant SNPs, due to
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their small effect size, low minor-allele frequency (MAF), or
both. In this letter, we provide evidence in support of this hy-
pothesis by constructing genomic predictors capturing much of
the estimatedSNPheritability.Wemakeuse of a newly available
large data set (the UK Biobank 500k genomes release) and new
computational methods.

Association studies (GWAS) focus on reliable (high-
confidence) identificationofassociatedSNPs. InaGWAS,SNPs
are analyzed one at a time, and statistical tests are applied to
determine whether variation in the state of the SNP is asso-
ciated to a slightly elevated or decreased value of the trait
(e.g., individual height). Emphasis is placed on finding true
positives—i.e., SNPs that are statistically associated to the
trait. False negatives—SNPs that are not found to be associ-
ated at sufficiently high confidence, even though a future,
better-powered, GWAS might eventually identify them—

are not the main concern. In contrast, genomic prediction
based on whole genome regression methods (de los Campos
et al. 2010) seeks to construct the most accurate predictor of
phenotype. The predictor is constructed by optimizing simul-
taneously over all SNPs, and the optimization tolerates pos-
sible inclusion of a small fraction of false-positive SNPs in the
predictor set. This is essentially amachine learning approach:
we extremize a global objective function (such as the pre-
diction error computed on a validation set) over a large set
of model parameters. The ultimate test in this approach is
out-of-sample validation: testing the predictor on a group of
individuals not used in training/optimization, and (ideally)
perhaps even from altogether different environmental or
geographical backgrounds.

We refer to “commonSNPheritability” as the total additive
heritability that is accounted for by common SNPs. The part

of the “missing heritability” problem that is impacted by our
results is the gap between variance accounted for by known
associated SNPs and the expected common SNP heritability
(i.e., estimated using genome-wide complex trait analy-
sis (GCTA)—a method for estimating the total variance
accounted for by common variants). In the case of height,
this gap is largely closed by our results since the squared-
correlation captured by our predictor is close to the total
estimated common SNP heritability of �0.5. The total com-
mon SNP heritability of the molecular markers used to build
the predictor can be interpreted as an upper bound to the
variance that could be captured by the predictor—i.e., the
predictor cannot do better than the total amount of heritabil-
ity captured by the available SNPs. Similarly, the variance
captured by the predictor can be regarded as a lower bound
on the heritability of the trait accounted for by the common
SNPs used in the predictor. Note, we do not claim to resolve
the entire missing heritability problem, which is the gap be-
tween total variance accounted for by all identified loci and
broad sense heritability.

While identification of GWAS SNPs is accomplished by
single SNP regression, construction of a best predictor is a
global optimization problem in the high dimensional space of
possible effect sizes of all SNPs. In this letter we use L1-
penalized regression (LASSO or compressed sensing) to ob-
tain our predictors. This method is particularly effective in
cases where only a small subset of variables have nonzero
effect on the predicted quantity (i.e., the effects vector is
sparse, or approximately sparse). In earlier work (Vattikuti
et al. 2014) it was shown that matrices of human genomes
are good compressed sensors, and that they are in the uni-
versality class of Gaussian randommatrices. The L1 algorithm

Figure 1 Correlation between actual and
predicted heights as a function of the number
of SNP hits activated in the predictor. While
difficult to visually separate, each line repre-
sents the training of a predictor using 453k
individuals. Correlation is computed on five
separate nonoverlapping sets of 5k individu-
als not used in training. The phase transition
region (roughly, 10, 2 lnðlÞ,12) corre-
sponds to rapid growth in correlation on this
graph, with number of hits growing from
near 0 to .5000. The correlation and penal-
ization values given in the lower righthand
corner are the average of a set of LASSO
runs; each run generates a slightly different
value (even, a slightly different beta vector).
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exhibits phase transition behavior (i.e., a sharp change in
performance) as the sample size and penalization parameter
are varied (i.e., crossing the phase boundary). This behavior
can be used to optimize the penalization as a function of
sample size, as we explain. Technical details are provided
in section L1-penalized regression of the Appendix.

Beyond the theoretical considerations given above, the
practical outcome of our work is to significantly improve
accuracy in genomic prediction of complex phenotypes. Using
these predictors, one can, for example, reliably identify out-
liers in the population based on DNA alone. The activated
SNPs in the predictors (i.e., those that have been assigned
nonzero effect size by the LASSO algorithm) are likely to be
associated with the phenotype, although they may not reach
genome-wide significance in ordinary regression analysis.
While there may be some contamination of false positives
among these SNPs, one can nevertheless infer properties of
the overall genetic architecture of the trait (e.g., distribution
of effect sizes with MAF).

Methods

Our main dataset is the July 2017 release of nearly 500k UK
Biobank (UKBB) genotypes and associated phenotypes
(Bycroft et al. 2017; UK Biobank 2017). We restrict our
analysis to self-reported Europeans (in the UKBB terminol-
ogy, British, Irish, and Any Other White) and check, using
SNP-derived principal components, that population stratifi-
cation has a negligible effect on our results. See appendix
Sections UKBB Dataset QC–Coordinate Descent for more
detailed description of data, quality control (QC), algo-
rithms, and computations.

We compute an estimator b
!*

for the vector of linear ef-
fects, b

!2 ℝp; using L1-penalized regression (LASSO)
(Tibshirani 1996). (Throughout, n represents number of
samples and p number SNPs under consideration.) This cor-
responds to minimizing the objective function below (pheno-
types y! are age and gender adjusted; both y! and genotype
values X are standardized).
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The resulting effects vector b

!*
defines a linear predictive

model, which captures a large portion of the heritable genetic
variance.

In our procedure, afirst screening based on standard single
marker regression was performed on the training set to reduce
the set of candidate SNPs from 645,589 SNPs that passed QC
(Appendix UKBB Dataset QC and L1-penalized regression) to
the top p ¼ 50k and 100k by singlemarker regression P-value.

Data availability

The data analyzed in this paper are from the UK Biobank and
ARIC (Atherosclerosis Risk in Communities Study). We are

Figure 2 Correlation between actual and
predicted heights as a function of L1 penali-
zation l. Each line represents the training of a
predictor using 453k individuals. Correlation
is computed on 5k individuals not used in
training. The correlation and penalization val-
ues given in the lower righthand corner are
the average of a set of LASSO runs; each run
generates a slightly different value (even, a
slightly different beta vector).
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unable to directly share this data with others. Interested re-
searchers are directed to UKBiobank (http://www.ukbiobank.
ac.uk/) and ARIC (https://www2.cscc.unc.edu/aric/desc) for
access.

Results

Figure 1 displays results from a typical LASSO run for height.
Five nonoverlapping sets of 5k individuals each were held
back from LASSO training using the top 100k candidate
SNPs. For each value of the L1 penalization l, the resulting
predictor b

!* is applied to the genomes of the holdout
sets and the correlation between predicted and actual height
is computed. A phase transition (region of rapid variation in
results) is expected and occurs at roughly 10, 2 lnðlÞ,12:
The penalization is reduced until the correlation is maxi-
mized. In Figure 1, the correlation is shown as a function of
number of SNPs assigned nonzero effect sizes (i.e., activated)
by LASSO. In the phase transition regime, where correlation
rapidly increases, the number of activated SNPs grows rapidly
from about zero to 7k. Each of the five colored curves in the
figure corresponds to a training run on 453k individuals, with
a different 5k held back (and slightly different training set)
for each run. The phase transition is shown in terms of the
penalization 2lnðlÞ in Figure 2.

Figure 3 shows the correlation between predicted and
actual phenotypes in a validation set of 5000 individuals
not used in the training optimization described above—this
is shown both for height and heel bone mineral density. The
horizontal axis shows the number of individuals used in the
training set, and the error bars reflect 1 SD uncertainty esti-
mated from five replications. The correlation obtained indicates

convergence to an asymptotic value of somewhat ,0.7
(corresponding to roughly 50% of total variance) for height,
and perhaps 0.45 for heel bone mineral density. Figure 4
shows a scatterplot (each point is an individual) of predicted
and actual height for 2000 individuals (roughly equal num-
bers of males and females) not used in the training. The
actual heights of most individuals are within �3 cm of the
predicted value. In the LASSO training (see Appendix sec-
tions L1-penalized regression and Coordinate Descent for more
details) individuals are z-scored according to sex (i.e., rela-
tive to the M or F mean and SD), whereas in Figure 4 the
actual (not z-scored) heights are shown for each individual.
The correlation between predicted and actual heights in this
figure is .0.7 because of differences between the two sexes.
The predictor is equally accurate when applied to males or
females (error bars are similar, as is correlation), once the
z-scoring is inverted (i.e., using M/F means and SDs). We
have checked this by running the predictor on all-male and
all-female groups—specifically, a predictor generated using
the top 100,000 SNPs achieved a maximum correlation
r ¼ 0:6526 among the entire holdback set (both sexes) while
the same predictor achieved correlations rM ¼ 0:6411 and
rF ¼ 0:6662 among solely M/F groups in the holdback set.

The corresponding result for EA does not indicate any
approach to a limiting value. Using all the data in the sample,
we obtain maximum correlation of �0.3, activating �10k
SNPs. This compares favorably with results in Selzam et al.
(2017). Presumably, significantly more or higher quality data
will be required to capture most of the SNP heritability of this
trait.

The number of activated SNPs in the optimal predictors for
height andbonedensity is roughly20k. Increasing thenumber

Figure 3 Correlation between predicted
and actual height as number of individuals
n in training set is varied. p ¼ 50k candidate
SNPs used in optimization. Fit lines of the
form ðcorr:Þ � n=nþ b are included to aid
visualization.
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of candidate SNPs used from p ¼ 50k to p ¼ 100k increased
themaximum correlation of the predictors somewhat, but did
not change the number of activated SNPs significantly.

Yang et al. (2010) provided the first GCTA estimates for
the heritability of height h2G � 0:45—a result reproduced by
others (Kim et al. 2017), and improved upon in more recent
calculations: specifically, Rawlik et al. (2016) uses the UK
Biobank and achieves h2G � 0:53 for height. There has been
debate in the literature over the statistical properties of
GREML (genome-wide restricted maximum likelihood) esti-
mates of SNP heritability, and it is not clear that standard
estimation methods yield reasonably unbiased estimates even
with large sample size (Lee and Chow 2014; de los Campos
et al. 2015; Gamazon and Park 2016; Kumar et al. 2015, 2016;
Yang et al. 2016). It is possible (although we take no position
on the question here) that GCTA estimates of SNP heritability
should only be used as a rough guide, but these results suggest
that for height h2G � 0:452 0:55 as a reasonable expectation.
Independent of GCTA analyses, one can still determine a lower
bound on the heritability of a trait over a specific set of geno-
mic variants simply by building a predictor (Makowsky et al.
2011) to determine how much variance can be accounted for.
The ability to predict based on genotype must have its basis in
heritability, hence the lower bound.

For height we tested out-of-sample validity by building a
predictor model using SNPs whose state is available for both
UKBB individuals (via imputation) and on the Atherosclerosis
Risk in Communities Study (ARIC 1989) individuals (the
latter is a US sample). This SNP set differs from the one used
above, and is somewhat more restricted due to the different
genotyping arrays used by UKBB and ARIC. Training was
done on UKBB data and out-of-sample validity tested on
ARIC data. A �5% decrease in correlation results from the

restriction of SNPs and limitations of imputation: the corre-
lation fell to �0.58 (from 0.61) while testing within the
UKBB. On ARIC participants, the correlation drops further
by�7%,with a correlation of�0.54. Only this latter decrease
in predictive power is really due to out-of-sample effects. It is
plausible that if ARIC participants were genotyped on the
same array as the UKBB training set, there would only be a
�7% difference in predictor performance. An ARIC scatter-
plot analogous to Figure 4 is shown in the Appendix Out-of-
sample validation. Most ARIC individuals have actual height
within 4 cm or less of predicted height.

We also checked (see Appendix Confounding variables:
age, sex, and family structure) that familial relationships in
UKBB do not have an important impact on our results. LASSO
training was done both on the full set of data and on a smaller
data set where all first degree cousin or stronger relations
were removed (kinship .0.10). After filtering for kinship
on the calls, this left 423,510 individuals for height and
382,727 individuals for heel bone density. This unrelated
dataset was used for model training using random sets of
100k, 150k, . . ., 400k individuals, and there was no discern-
ible difference in the results between using a training set
drawn from the set of 423,510 kinship-filtered individuals
and individuals from the unfiltered set.

The genetic architecture of a height model is displayed in
Figure 5, which shows the effect size (minor allele) and lo-
cation of each activated SNP. The horizontal axis represents
the SNP position in the genome, if each chromosome (1–22)
were laid end to end to form a continuous linear region. The
specific height predictor from which these SNPs are taken
was built from 50k candidate SNPs and achieves a correlation
between actual and predicted height of�0.61. The activated
SNPs seem to be uniformly distributed across the genome.

Figure 4 Actual height (centimeter) vs.
predicted height (centimeter) using
2000 randomly selected individuals with
a roughly even male–female ratio, held
back from predictor training. Error bars
indicate 6 1 SD range computed using
larger validation set. (No corrections of
actual height for age or gender were
made; see Appendix L1-penalized regres-
sion and Coordinate Descent for details
of predictor training).

Accurate Genomic Prediction of Height 481



There is significant overlap between regions of the genome
near previously known SNPs and regions identified by our
algorithm (see Comparison to GWAS and LD between activated
predictor SNPs and GIANT SNPs in the Appendix). Note, our
activated SNPs are roughly uniformly distributed over the
entire genome, and number in the many thousands for each
trait. This means that many of our SNPs, including some of
those that account for the most variance, are in regions not
previously identified by earlier GWAS.

We explore the relationship of our results to GWAS results
in more detail in sections Comparison to GWAS and LD be-
tween activated predictor SNPs and GIANT SNPs of the Appen-
dix. As mentioned, it is possible in principle that some
fraction of the SNPs activated in our predictor are actually
false positives (i.e., are not actually associated with the trait).
However, the overall statistical overlap between our acti-
vated SNPs and known GWAS loci is very high for the SNPs
that account for the most variance in our predictor. For ex-
ample, among the top 100 activated SNPs in our height pre-
dictor (ranked by variance accounted for),�85%are in direct

LD (correlation) of 0.4 or higher with a genome-wide signif-
icant ðp, 1028Þ GIANT 2014 SNP, and �90% are in LD
(correlation) of 0.4 or higher with some combination of ge-
nome-wide significant GIANT 2014 SNPs. The typical corre-
lation among ALL �20k activated LASSO SNPs to some best
linear combination of GIANT 2014 SNPs is �0.4 (see figures
in sections Comparison to GWAS and LD between activated
predictor SNPs and GIANT SNPs of the Appendix.

Even those activated SNPs that are not in LD with known
GIANT SNPs could be correlated to SNP(s) that fall below the
GIANT genome-wide significance threshold, but nevertheless
have an effect on height. In other words, due to the fact that
not all height SNPs have been discovered by GIANT, it is not
possible to conclude from the analysis described above that
any specific activated SNP in our predictor is in fact a false
positive. GIANT (Wood et al. 2014) identified� 700 variants
clustered in 423 loci (not all of these are effectively indepen-
dent variants), but this is probably only a fraction of all height
associated variants. SNPs activated by LASSO might be cor-
related to linear combinations of SNPs below the p, 1028

Figure 5 Effect size (minor allele) for
each activated SNP in a predictor model.
The horizontal axis represents the SNP
position in the genome, if chromosomes
(1–22) were connected end to end to
form a continuous linear region. Acti-
vated SNPs are distributed roughly uni-
formly throughout the genome. The
correlation value given in the upper left-
hand corner is particular to a specific
LASSO run. Each run generates a slightly
different value (even, a slightly different
beta vector). There are several gaps
where no SNPs are activated – this is
due to lack of coverage on the SNP array.
For instance, the largest gap occurs on
chromosome 9, where there exists a �18
million base-pair gap between SNPs (out
of a total �138 million chromosome
9 base-pairs).

Table 1 A summary of the mean maximum correlation (and SD among runs) achieved between measured/predicted for each phenotype
through LASSO

Phenotype SNP-set
SNPs used
in LASSO Test set

Prediction correlation
(SE)

UKBB calls top-50k UKBB 0.616 (0.013)
Height UKBB calls top-100k UKBB 0.639 (0.017)

UKBB imputed in common with ARIC top-50k UKBB 0.580
UKBB imputed in common with ARIC top-50k ARIC 0.536

Heel bone density UKBB calls top-50k UKBB 0.449 (0.015)
EA UKBB calls top-50k UKBB 0.272 (0.022)

For height, LASSO runs were done using the top 50,000/,100,000 GWAS SNPs and also using a SNP set which overlaps with both the UKBB imputed SNPs and ARIC SNPs—
this predictor was tested both in holdback sets from the UKBB and on the ARIC dataset (in and out of sample). EA, Educational attainment; UKBB UK Biobank; ARIC:
Atherosclerosis Risk in Communities Study; LASSO: L1-penalized regression.
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GIANT significance threshold, but which nevertheless con-
tribute to total variance. Similarly, inclusion of more actual
height variants into the GIANT set from which linear combi-
nations are drawn could increase the max correlation to any
given LASSO predictor SNP.

In any case, one can conclude that the vast majority of
highly ranked predictor SNPs are linked to GIANT SNP(s)
known to be associated with height.

We summarize average correlations achievedbypredictors
for various phenotypes in Table 1. Averages here are com-
puted over five runs over mostly overlapping training sets;
they differ by the previously mentioned 5k holdout sets. Ad-
ditionally, when using a different SNP set, a new set of five
runs is performed. For instance, after selecting imputed
UKBB SNPs which overlap with ARIC SNPs (called from the
array), a new set of LASSO predictors and correlation values
was generated.

Finally, we compare our LASSO results to a more straight-
forward method that relies on single SNP linear regression
followed by SNP selection to construct a predictor. (Earlier
work using results from the GIANT 250k analysis achieved
predictive variance �15% (Wood et al. 2014)). Using the
same UKBB dataset, we first rank all SNPs (i.e., nonimputed
SNPs that are directly called by the array) by P-value. We
then select a subset of SNPs to use in the predictor as follows.
(This is necessary because of the redundancy of correlated
SNPs in many regions of the genome). Starting with the most
significant SNP, we scan down the list by P-value, discarding
any SNPs that are within a distance w=2 base-pairs of a SNP
we have already chosen for the predictor. This produces a
subset constructed from the most significant (by P-value)
SNPs but with no two SNPs closer than w=2 in distance.
When w is small, �100 kbp, this may result in .20k SNPs,
in which case we keep only the top 20k. (This is to maintain
consistency with our LASSO predictor, which typically acti-
vates �20k SNPs). Using these filtered subsets of SNPs, we
build a predictors two different ways: (1) use the estimated
effect sizes from single-marker regression (as used in Wood
et al. 2014), and (2) perform a multi-marker ordinary least-
squares (OLS) fit to determine effect sizes for each SNP
(LASSO reduces to multi-marker OLS in the limit of zero
penalization). The results are given in Table 2 below. The

best predictors constructed in this manner achieve correla-
tion �0.55, which is impressive, but significantly inferior to
the LASSO predictors. This is not surprising, since LASSO
does a more sophisticated optimization of which SNPs to
activate in the construction of the predictor. Note that, while
in agreement with the results presented in Wood et al.
(2014), method (1) predictors (i.e., taking effects values
from the single-marker regression) underperform compared
with multi-marker OLS. This is because multi-marker OLS
takes into account possible correlations between SNPs in dif-
ferent windows, whereas effect sizes estimated from single-
marker regression does not. See Appendix Comparison to
GWAS for a comparison of different methods, and a demon-
stration of LASSO preferring uncorrelated SNPs.

Discussion

Until recently, most work with large genomic datasets has
focused on finding associations between markers (e.g., SNPs)
and phenotypes (Makowsky et al. 2011). In contrast, we fo-
cused on optimal prediction of phenotypes from available
data. We show that much of the expected heritability from
common SNPs can be captured, even for complex traits af-
fected by thousands of variants. Recent studies using data
from the interim release of the UKBB reported prediction
correlations of �0.5 for human height using roughly 100k
individuals in the training (Kim et al. 2017). These studies
forecast further improvement of prediction accuracy with in-
creased sample size, which we have confirmed here.

We are optimistic that, given enough data and high quality
phenotypes, results similar to those for height might be
obtained for other quantitative traits, such as cognitive
ability or specific disease risk. There are numerous dis-
ease conditions with heritability in the 0.5 range, such as
Alzheimer’s, type I diabetes, obesity, ovarian cancer, schizo-
phrenia, etc. (SNPedia 2017). Even if the heritable risk for
these conditions is controlled by thousands of genetic vari-
ants, our work suggests that effective predictors might be
obtainable (i.e., comparable to the height predictor in Figure
4). This would allow identification of individuals at high risk
from genotypes alone. The public health benefits are poten-
tially enormous.

Table 2 Summary of the mean maximum correlation (and SD among runs) achieved between measured/predicted height using
windowed predictors (windowed = select the most significant SNP among those in a region)

Window size (kbp) List size Number SNPs included GWAS OLS

1000 4,026 (4) 4,026 (4) 0.375 (0.007) 0.465 (0.009)
500 7,975 (9) 7,975 (9) 0.358 (0.010) 0.496 (0.010)
200 19,516 (14) 19,516 (14) 0.344 (0.010) 0.535 (0.006)
150 25,758 (21) 20,000 0.343 (0.010) 0.545 (0.010)
100 37,839 (14) 20,000 0.340 (0.012) 0.556 (0.012)
50 71,869 (40) 20,000 0.341 (0.010) 0.580 (0.009)

Correlations should be compared with LASSO results in Table A1. The two methods used are called GWAS (use effect sizes from single SNP regression results), and OLS (using
multi-SNP regression on windowed SNPs). Note that, while in agreement with the results presented in Wood et al. (2014), GWAS underperforms compared with OLS since it
does not take correlations between SNPs into account beyond windowing. SNP: Single nucleotide polymorphism; OLS ordinary least-squares; LASSO: L1-penalized re-
gression; GWAS: genome-wide association studies.
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We can roughly estimate the amount of case-control data
required to capture most of the variance in disease risk. For a
quantitative trait (e.g., height) with h2 � 0:5; our previous
simulations (Vattikuti et al. 2014) predict that the phase
transition in LASSO performance occurs at n � 30s; where
n is the number of individuals in the sample and s is the
sparsity of the trait (i.e., number of variants with nonzero
effect sizes). For case-control data, we find n � 100s (where
n means number of cases with equal number controls) is
more than sufficient. Thus, using our methods, analysis of
�100k cases together with a similar number of controls
might allow good prediction of highly heritable disease risk,
even if the genetic architecture is complex and depends on a
1000 or more genetic variants.
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Appendix

Methods

UKBB dataset QC
In July 2017, the UK Biobank (Bycroft et al. 2017; UK Biobank 2017) released a set of 488,377 genotyped individuals that were
genotyped using two Affymetrix platforms—�50,000 samples on the UK BiLEVE Axiom array and the remainder on the UK
Biobank Axiom array. The initial genotype information was collected for 488,377 individuals for 805,426 SNPs and then
subsequently imputed. Quality Control was done on the unimputed data by: (1) removing SNPs which had missing call
rates .3%, (2) removing individuals which had missing call rates .10%, and, so as not to deal with very rare variants, (3)
removing SNPs which had minor frequencies,0.1%. The resulting genetic data contained 645,589 SNPs and 488,371 individ-
uals. This set was then further filtered for self-reported Europeans (in the UKBB terminology, British, Irish, and Any OtherWhite)
for whom the necessary phenotype measurements were available: for height, the number of remaining individuals was 457,484;
for heel bone mineral density there were 413,444 individuals; and for EA, there were 455,637 individuals. We performed
additional training runs using only individuals who both self-identify as European ancestry and also are so identified using
the top six PCA vectors from UKBB population structure. This reduced set includes 407,849 individuals, and the predictor results
are very similar to the case of 400k self-identifiedEuropeans. From this,we conclude that population stratification has a negligible
effect on our predictor construction: specifically, using the procedure of setting aside a holdback set and selecting the top 50,000
SNPs we observe an average maximum correlation of r ¼ 0:6273ð0:0168Þ between holdback sets and genetic score.

As a further checkof the effect of population stratificationonprediction results,we tested to seewhetherwe could account for
a nontrivial proportion of variance using the top principal components of population structure. Using calls from the UKBB SNP
array, we select �50,000 SNPs, which are roughly evenly separated on the genome and construct the top 10 principal
component directions in SNP-space. This is done by constructing the LD matrix, 1=NX9X;, where N is the number of samples
in a training set and Xij ¼ ðGij 2mjÞ=ðpjð12pjÞÞ1=2:Here,Gij is the genotype and pj areminor allele frequencies. We then project
each individual in the training set onto the principal components and perform a multivariable OLS against height to obtain a
predictor based on principal components of population structure, bPC: Amongst five separate validation sets, the predictor
achieved a correlation of only 0:04860:024 with height. This shows that any possible population stratification effects con-
tribute a negligible amount to the total prediction accuracy.

The imputed data set was generated using the set of 805,426 raw markers using the Haplotype Reference Consortium and
UK10K haplotype resources. After imputation and initial QC, there were a total of 92,060,613 SNPs and 487,411 individuals.
From this imputed data, we further excluded SNPs and samples that had missing call rates of .3% and also removing SNPs
with minor allele frequency (MAF),0.1%. For out-of-sample validation of height, we extracted SNPs which survived the prior
quality control measures, and are also present in a second (American) dataset from the Atherosclerosis Risk in Communities
Study (ARIC 1989). This resulted in a total of 632,155 SNPs and 464,192 samples. All quality control steps, except for the
imputation performed by the UK Biobank, were performed using version 1.9 of the Plink software (Chang et al. 2015).

Confounding variables: age, sex, and family structure
All traits for self-identified Europeans were adjusted on the basis of age and sex. The phenotypes for self-reported Europeans
were adjusted by z-scoring the phenotypes amongst all individuals of the same sex. To correct for the effects of societal changes
(“Flynn Effects”), a univariate linear regression was performed on z-scored phenotypes using year-of-birth as the dependent
variable. The adjusted phenotype was set equal to the residual of the z-scored phenotype and the regression line. Before
making these corrections, it was shown that the mean phenotypic value was indeed increasing with year-of-birth—this was
seen in all three phenotypes: height, heel bone mineral density, and EA.

The adjustment parameters for the phenotypes are given in Table A.1. The phenotypes are first centered and scaled using the
mean and SD for each sex (i.e., standardized), then the adjusted phenotype is fit to a linear function of year of birth (YOB)
y ¼ b0 þ bYOB � ðYOBÞ þ e When fitting based on year of birth, only cohorts between 1938 and 1968 were included, as the
cohorts outside of this range were small in number. Finally, the linear trend was subtracted from the z-scored phenotypes to
form the adjusted phenotype used in training of all models.

Relatedness calculationswereprovidedwith theUKBBdataset inorder toaccount for family structureandcryptic relatedness.
There were 107,163 familial relationships identified amongst UKBB participants which were at the level of third cousins or
higher and, due to the large number of relationships, filtering out these individuals results in a nontrivial decrease in the size of
data available formodel selection. To investigate the relevance of this issue, LASSO trainingwas done both on the full set of data
and on a smaller data set where all first degree cousin or stronger relations were removed (kinship.0.10). After filtering for
kinship on the calls, this left 423,510 individuals for height and 382,727 individuals for heel bone density. This unrelated
dataset was used for model training using random sets of 100,000; 150,000 . . ., 400,000 individuals and there was no
discernible difference in the results between using a training set drawn from the set of 423,510 kinship-filtered individuals
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and individuals from the unfiltered set. Therefore, we do not believe that the familial relationships have an important impact
on our results.

L1-penalized regression
Consider the regression problem in generality. We have n observations of the phenotype, yI;with I ¼ 1; . . . ; n as the vector y!:

The genotype data are encoded in the n3 p design matrix XIj with j ¼ 1; . . . ; p: Each entry XIj is the number of copies of the most
frequentminor allele of the jth SNP for the Ith person, and thus takes values 0, 1, or 2. After initial QC,missing values aremean-imputed.

We use a standard linear model for the dependence of y on the SNP data xj: That is, we assume a relationship of the form

yI ¼ y0 þbb!� x!I þ eI; (A1)

where the errors, eI; are assumed to be (identically and independent) normally distributed with unknown variance se: The
errors, eI; receive contributions from potential environmental effects, gene–gene nonlinear effects, and gene–environment
nonlinear effects. For discussion of methods to recover nonlinear effects, see Ho and Hsu (2015).

We compute an estimator b
!* for the vector of linear effects,

b
b
!2 ℝp, using L1-penalized regression (LASSO) (Tibshirani

1996). This corresponds to minimizing the objective function (after standardizing y! and X)

b
!* ¼ argmin

b
!2ℝp

Ol

�
y!; X; b

!�
; Ol

�
y!; X; b

!�
¼ 1

2

������ y!2X b
!������2 þ nl

������b!������
1
; (A.2)

where l is a penalty (hyper-)parameter and the L1-norm is defined to be the sum of the absolute values of the coefficients

������b!������
1
¼

Xp
j¼1

��bj
��:

(We use k � k with no subscript to denote the standard L2-norm.) The extra factor of n in the second term is a convention that
factors out the explicit sample size scaling of the penalization. The first term is the square of the L2-norm of the residual.

The first term is the standard OLS loss function. The effect of the second term is to regularize the regression problem by
favoring sparse solutionswith the nonzero coefficients shrunk toward 0. This seems appropriate for genomic problems, sincewe
expect that, for any given phenotype, most SNPs have no effect. Biasing the nonzero coefficients toward 0 reduces variance and
improves the expected fit for small sample size.

Figure A1 Actual height (centimeter) vs.
predicted height (centimeter) using 2000
randomly selected individuals (roughly
equal numbers of males and females;
no corrections for age or sex) from the
ARIC dataset. Error bars indicate 6 1 SD
range computed using larger validation
set.
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Even for n � p; LASSO can obtain an accurate b
!

under the right conditions: the effects vector must be sparse and the
heritability of the trait must be sufficiently high (equivalently, the amount of noise variance is bounded). For fixed s2

e and
sparse effects vector, there is a critical sample size n* (depending onse and the sparsity of the trait), abovewhich one expects to
get good recovery of b

!
in terms of the L2 error. A phase transition at n � n* has been demonstrated numerically for real and

simulated genomic data in Vattikuti et al. (2014).
For our specific calculations, we use the following cross-validation procedure:

1. Break the data into training sets, and validation sets.
2. Perform a standard single-marker GWAS on the training sets only, and rank the SNPs by P-value.
3. To ease the computational burden, restrict the calculation to a fixed number of lowest P-value SNPs on each training set.

Replace any missing SNP values by the SNP-mean for the training data.
4. Perform LASSO on the standardized training data, scanning a range of values for the penalty l that passes through the

phase transition region of rapid variation in results.
5. Choose the l that has the maximum correlation on the validation set, which was held back from training.
6. Finally, evaluate performance of optimal predictor b* on out-of-sample test sets, when available.

Let us note that one could be concerned about reporting results on a validation set used to tune hyper-parameters; however,
one expects any overtraining in fitting this single parameter to be insignificant. This is borne out by specific investigations of the
authors using a second holdout set, and moreover by the model’s performance on out-of-sample test data not used in any
previous step of the analysis.

Coordinate descent
Most algorithms for minimizing the objective function (A.2) use (some variation of) coordinate descent (Friedman et al. 2007,
2010).1The basic form of the algorithm is as follows. Proceeding from an initial guess b

!
0;we cycle through the p “coordinates”

sequentially, minimizing O with respect to each bj (holding others fixed). (Angle brackets denote sample averaging.) To that
end, note that

@O
@bj

¼ n

2
4�x2j �bj þ

X
k 6¼j

hxjxkibk 2 hxjyi þ lsgnðbjÞ
3
5 ¼ 0: (A.3)

Figure A2 Matching between top SNPs
activated in predictor model ordered by
variance accounted for (x-axis) and SNPs
identified previously by GIANT 2014 GWAS
(height). Fraction of the top LASSO SNPs
which have a match in GIANT is shown
on y-axis. Matching window size w given
in base pair.

1We use a custom implementation in Julia (Bezanson et al. 2012) using safe screening
ideas (El Ghaoui et al. 2012; Liu et al. 2014; Fercoq et al. 2015; Malti and Herzet
2016).
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Thus, the updated coefficient should satisfy

b*
j ¼

1�
x2j
�
2
4hxjyi2X

k 6¼j

hxjxkibk 2 lsgn
�
b*
j

�35: (A.4)

To solve for b*
k, one should determine the l ¼ 0 solution. If it is positive (negative), then guess that sgnðb*

j Þ should be positive
(negative) and subtract (add) the l term. If the sign flips, then the solution is spurious, and the optimal solution is at b*

j ¼ 0:
(To see this, note that for b*

j ¼ 0þ the derivative is positive, and for b*
j ¼ 02 the derivative is negative.)

Introduce the “soft thresholding function”

Sðz; gÞ ¼ sgnðzÞmaxðjzj2g; 0Þ: (A.5)

Figure A4 Matching between top SNPs
activated in predictor model ordered by
variance accounted for (x-axis) and SNPs
identified previously by GEFOS GWAS
(Heel Bone Density). Fraction of the top
LASSO SNPs which have a match in
GEFOS is shown on y-axis. Matching win-
dow size w given in base pair.

Figure A3 Matching between top SNPs
activated in predictor model ordered by
variance accounted for (x-axis) and SNPs
identified previously by SSGAC GWAS
(EA). Fraction of the top LASSO SNPs
which have a match in SSGAC is shown
on y-axis. Matching window size w given
in base pair.
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Then, the update for the jth component of b
!

is

b*
j ¼

1�
x2j
� S

0
@hxjyi2

X
k 6¼j

hxjxkibk; l

1
A: (A.6)

The basic coordinate descent algorithm is as shown in Alg. 1.

Figure A6 The LASSO algorithm is
used to construct a predictor from
the most significant GIANT SNPs,
nearly all of which can be found
among UKBB imputed SNPs. UKBB
phenotypes are used as before. The
specific predictor used for this graph
achieves a correlation of 0.59. GIANT
P-values of SNPs are displayed on the
x-axis, and the average individual var-
iance explained by SNPs within each
of 1000 bins is computed and dis-
played on the y-axis.

Figure A5 The LASSO algorithm is
used to construct a predictor from
the most significant GIANT SNPs,
nearly all of which can be found
among UKBB imputed SNPs. Specifi-
cally, we took the top 50k SNPs
which are in both the GIANT SNP
set and the UKBB imputed SNP set,
ordered by GIANT P-value. UKBB
phenotypes are used as before. The
specific predictor used for this graph
achieves a correlation of 0.59 with
height. The y-axis displays the frac-
tion of the total variance accounted
for by all activated LASSO SNPs with
GIANT P-value less than that given on
the x-axis. For example, if we take
only GIANT SNPs with p≲1026 (in
their analysis), and add up the indi-
vidual variance accounted for by each
SNP, we get � 0:2: This is 80% of the
total sum of individual variances
accounted for by each activated SNP
in the LASSO predictor.
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Algorithm 1. Basic coordinate descent algorithm for LASSO:
Data. XjI and yI with j ¼ 1; . . . ; p and I ¼ 1; . . . ; n.
Input. Penalty parameter l, tolerance e, and (optionally) initial guess b

!
0.

Output. b
!

solving LASSO optimization problem within convergence tolerance e.

b
!
)b

!
0

repeat

b
!

0)b
!

Figure A7 Distribution of LD R2 be-
tween SNP and nearest neighbor (by lo-
cation on genome), where both are the
among the top 50k GWAS hits ranked by
P-value.

Figure A8 Distribution of LD R2 be-
tween SNP and nearest neighbor (by lo-
cation on genome), where both are
activated in the LASSO predictor (22k).
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for j in f1; . . . ; pg do

bj)
1�
x2j
� S

0
@hxjyi2

X
k 6¼j

hxjxkibk; l

1
A

Figure A10 Rolling average over 100 SNPs of Max-
imum/Multiple Correlation between LASSO and GI-
ANT SNPs.

Figure A9 Maximum and Multiple Correlation with GIANT SNPS ðp, 1028Þ for 100 top LASSO SNPs ranked by variance accounted for.
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end.
until. ðb!2b

!
0Þ2 , e2

return.b
!

Out-of-sample validation
Model (i.e., predictor) construction was performed by implementing LASSO on the UK Biobank data. In order to validate
models and check against overtraining, a second dataset is needed in order to test the results. We (1)withheld a small subset of
UKBB individuals from the initial training for in-sample validation, and (2) applied the model to individuals from a completely
different dataset (ARIC) for out-of-sample validation. In-sample validation was done by withholding a predetermined number
of randomly selected individuals from the UK Biobank data before P-value cuts were applied to SNPs. The remaining individ-
uals were used for LASSO training and the resulting model was applied to the individuals initially held back to check in-sample
validity.

Out-of-sample validation is similar, except that we used a set of common SNPs for which values can be imputed on the UKBB
individuals and are also known for ARIC individuals. Initial training of themodelwas performed usingUKBB individuals, but its
validitywas then testedon theARICdata.Results using theunimputeddataset reached correlationof�0.61when testingwithin
the UKBB. After selecting SNPs in common with ARIC, the correlation fell to �0.58 while testing within the UKBB, and
achieved a correlation of �0.54 on ARIC participants. The ARIC results are shown in Figure A1 and Table 1. Actual heights
of most individuals in the ARIC validation set are within 4 cm or less of the predicted height. We expect the performance loss
from 0.58 to 0.54 can be explained by the different environments (which can couple to genetic variation) and different allele
frequencies between the two populations.

The ARIC dataset (ARIC 1989) was composed of 12,772 Caucasian and African-American individuals who were genotyped
on the Affymetrix 6.0 chipwith 841,820 SNPs. This was filtered to keep only self-reported Caucasian individuals and SNPswith
MAF.1% andmissing call rates,5%with a final sample size of 9618 individuals with 705,956 SNPs. Filtering to only SNPs in
common with the UKBB imputed data reduced the number of SNPs to 632,155.

Figure A11 The fraction of top 100 LASSO
SNPs (ranked by variance) with Maximum/
Multiple Correlation to GIANT SNPs ðp,1028Þ
above a threshold given by the by the x-axis
value. The solid line represents Maximum
Correlation and the dashed line represents
the Multiple Correlation.
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Comparison to GWAS
We compare our activated predictor SNPs to known hits from GWAS collaborations studying the same phenotypes
(Styrkarsdottir et al. 2008; Okbay et al. 2016; Marouli et al. 2017; Morris et al. 2017). Specifically we compare our results
for height with those of the GIANT collaboration, for EAwith SSGAC, and for Bone Density with GEFOS. We ordered activated
SNPs (i.e., those assigned nonzero effect size b by the LASSO algorithm) by individual variance explained for a single SNP, Vi;

Vi ¼ 2nð12 nÞb2
I ; (A.7)

where n is the MAF. We then scanned down this list and looked for a proxy match by distance in the corresponding dataset.
For GIANT, we took the results published online (GIANT Consortium data files 2017) and extracted SNPswith p, 1026 and

p, 1028: When coarse grained into 1 Mbp regions, there were 423 independent loci with at least one SNP at p, 53 1028:

For SSGAC, we used the published results (Social Science Genetic Association Consortium: Data 2017) and kept SNPs with
p, 1026; a total of 316. These cluster in 74 independent regions.

For GEFOS (UKBB eBMDGWASData Release 2017 (GEFOS) 2017), we kept all SNPswith p, 1028;which account for�20
regions.

The results are displayed in Figures A.2, A.3, and A.4. They show significant overlap between regions of the genome near
previously knownSNPs and regions identified by our algorithm.However, our activated SNPs are roughly uniformly distributed
over the entire genome, and number in themany thousands for each trait. This means that some of our SNPs, including some of
those that account for the most variance, are in regions not previously identified by earlier GWAS. Again, these could be false
positives. The top SNPs by variance in our predictors tend to overlap strongly with the loci (regions) identified in earlier GWAS.

As a further check of our predictors against earlier results, we select the top 100k SNPs ranked by P-value in the 2014 GIANT
GWAS, almost all of which (.92%) have exact matches to imputed SNPs in UKBB data. We ran the LASSO algorithm on this
specific SNP set using UKBB phenotype data, following our usual procedure (i.e., five runs with different 5000 individual
holdout sets each time). This amounts to a test of our method specifically using (almost all of) the top GIANT SNPs. We obtain
an average correlation between sex-age adjusted phenotype and predicted phenotype of 0.574 amongst the five different runs.
(Each run has different training and holdback sets, and so returns slightly different predictor and resulting correlation. The

Figure A12 The fraction of top 1000
LASSO SNPs (ranked by variance) with
Maximum/Multiple Correlation to GIANT
SNPs ðp, 1028Þ above a threshold given
by the x-axis value. The solid line repre-
sents Maximum Correlation and the
dashed line represents the Multiple
Correlation.
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average correlation that the resulting predictors achieve in the validation test is 0.574.) This slight reduction in correlation is
due, at least in part, to imperfect imputation (we obtain the best results when using the calls on the array, with no imputation),
which we observed before in our ARIC out-of-sample test. However, to compare with specific SNPs for which GIANT P-values
are known we were forced to use imputed results.

In Figure A5, we plot the fraction of total variance accounted for using Equation (A.7) (vertical axis) vs. SNP P-values
according to the GIANT GWAS. We see that�80% of the total variance accounted by the predictor is due to SNPs with GIANT
P-value below 1026: In Figure A6, we break the horizontal axis into 1000 equal bins (by P-value range), and plot the average
variance accounted for the by SNPs in each bin. This distribution is strongly peaked, with lowest GIANT P-value SNPs
accounting for much more variance on average than less GIANT significant SNPs. These graphs provide evidence that the
LASSO predictor, when constructed by design from knownGIANT SNPs, tends to utilize themost significant (by GIANTGWAS)
SNPs to capture most of the predictive variance.

The LASSO algorithm favors sparsity: it only activates SNPs in the predictor when they increase its accuracy, net of the L1
penalty. This leads to a set of activated SNPs that are relatively uncorrelated, since activating only one of a pair of highly
correlated SNPs captures most of the predictive power from the pair without incurring the larger penalty that would come from
activating both SNPs. This is illustrated in Figures A.7 and A.8, using height as the phenotype. The first, Figure A7, shows the
distribution of LD R2 between nearest neighbor SNPs (by location on the genome) among the top 50k SNPs ranked by P-value.
The second, Figure A8, displays the LD distribution between nearest neighbors of SNPs activated in the predictor (i.e., selected
by LASSO). As evident from the graphs, the GWAS SNPs include a nontrivial fraction of SNPs that are in high LD with their
nearest neighbors, while this feature is absent in the LASSO results.

LD between activated predictor SNPs and GIANT SNPs
Weanalyzed the correlation between activated predictor SNPs (rankedby variance accounted for) andgenome-wide significant
ðp, 1028Þ GIANT 2014 SNPs (henceforth, simply GIANT SNPs). For each activated predictor SNP, we computed two quan-
tities: Max-Correlation (maximum correlation between the predictor SNP and any GIANT SNP) and Multi-Correlation (max-
imum correlation between the predictor SNP and any combination of GIANT SNPs). The Multi-Correlation statistic is
computed using least squares optimization: for a given target SNP used in our predictor, we find the linear combination of
GIANT SNPs that best predicts its state, and the Multi-Correlation statistic is simply this correlation.

Figure A13 The fraction of top 10,000
LASSO SNPs (ranked by variance) with
Maximum/Multiple Correlation to GIANT
SNPs ðp,1028Þ above a threshold given by
the x-axis value. The solid line represents
Maximum Correlation and the dashed line
represents the Multiple Correlation.
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The results are shown in Figures A9–A13. Figures A9 and A11 shows the correlations for the top 100 LASSO SNPs while
Figures A10, A12, and A13 show how the correlation with GIANT varies amongst the less significant LASSO SNPs.

For example, among the top 100 activated SNPs in our height predictor (ranked by variance accounted for), �85% are in
direct LD of 0.4 or higher with a genome-wide significant ðp, 1028Þ GIANT 2014 SNP, and �90% are in LD of 0.4 or higher
with some combination of genome-wide significant GIANT 2014 SNPs. Of the top 1000 activated SNPs in our predictor,�60%
are in LD of 0.4 or higher with some combination of genome-wide significant GIANT 2014 SNPs.

Figure A15 Number of SNPs with posi-
tive (red) and negative (blue) minor allele
effect sizes. Curves are constructed by
fitting a power law in MAF. The correla-
tion value given in the upper righthand
corner is particular to a specific LASSO
run; each run generates a slightly differ-
ent value (even, a slightly different beta
vector).

Figure A14 The (A) Maximum and (B) Multiple Correlation between GIANT SNPs with the bottom 10,000 LASSO SNPs and 10,000 SNPs selected at
random computed as a rolling average over 100 SNPs. Note that in both cases the least significant LASSO SNPs show a tighter correlation than randomly
selected SNPs.
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Even those activatedSNPs that arenot in LDwith knownGIANTSNPs couldbe correlated to SNP(s) that fall below theGIANT
genome-wide significance threshold, but nevertheless have an effect on height. In otherwords, due to the fact that not all height
SNPs have been discovered byGIANT, it is not possible to conclude from the analysis described above that any specific activated
SNP in our predictor is a false positive. GIANT (Wood et al. 2014) identified� 700 variants clustered in 423 loci (not all of these
are effectively independent), but this is probably only a fraction of all height associated variants. SNPs activated by LASSO
might be correlated to linear combinations of SNPs below the p, 1028 GIANT significance threshold, but which nevertheless
contribute to total variance. Similarly, inclusion of more actual height variants into the GIANT set from which linear combi-
nations are drawn could increase the max correlation to any given LASSO predictor SNP.

In any case, one can conclude that the vastmajority of highly ranked predictor SNPs are linked to GIANT SNP(s) known to be
associated with height.

In Figures A.9, A.10, and A.13 we observe that the multiple correlation for any single LASSO SNP with GIANT SNPs has a
nonzero minimum – i.e., the multiple correlation does not fall below �0.2 for any LASSO SNP. The multiple correlation floor
can be understood in the context of regressing a dependent variable on a large number of independent variables. If all the
regressor variables are independent, then the multiple correlation will be roughly equal to the L2-norm of the individual
correlations between the dependent variable and each regressor. One finds that each individual correlation scales as 1=

ffiffiffi
n

p
with

n being the number of samples. With p regressors, we expect the multiple correlation to scale as
ffiffiffiffiffiffiffiffi
p=n

p
; this gives a nonzero

baseline to the multiple correlation, explaining the qualitative behavior in the plots.
To answer the question of whether the LASSO SNPs aremore correlated to the top GIANT SNPs than just randomly selected

SNPs, we repeat the LD analysis with randomly selected SNPs. In Figure A14, we plot the rolling average of the maximum and
multiple correlation of GIANT SNPs with the lowest ranked 10,000 LASSO SNPs and with 10,000 randomly selected SNPs.
While the multiple correlation is low compared to the most significant LASSO hits (see Figure A10), we can see that even the
least significant LASSO SNPs are more correlated to GIANT than what one would expect from random chance alone. The floor
for multiple correlation of randomly selected SNPs with the 20,000 GIANT SNPs can be seen clearly in this plot. The gap
between the LASSO and random SNPs signifies a level of correlation with GIANT better than random chance. It is important to
note that the set of GIANT SNPs we refer to here have p, 1028: There are likely manymore height-associated SNPs that do not
reach this significance in GIANT. The elevated multiple correlation between our LASSO SNPs and the p, 1028 GIANT SNPs is
only partial indication of (i.e., lower bound on) their actual association with height.

Distribution of effect size sign
Figure A15 shows number of activated SNPs by sign of effect of the minor allele and MAF. The height of each bar represents the
number of positive or negative effect SNPs in a MAF bin of width 0.005. The specific height predictor from which these SNPs
are taken was built from 50k candidate SNPs and achieves a correlation between actual and predicted height of �0.61. The
curves, which are meant to aid visualization, are constructed by fitting a power law nðnÞ ¼ an2b to the range n 2 ð0:025; 0:3Þ
where n is MAF and nðnÞ is the number of nonzero effects. We exclude the smallest values of MAF because of incom-
plete discovery of SNPs in that region. The 6 distributions are nearly symmetrical (aþ ¼ 31:07; bþ ¼ 0:6553;
a2 ¼ 31:96; b2 ¼ 0:6404), even at very small MAF. There does not appear to be a statistically significant deviation from
random assignment of signs—the minor allele of an activated SNP is equally likely to increase or decrease height.

Table A1 Parameters used to z-score phenotypes and adjust for birth year ðb0;bYOBÞ
Height (cm) Heel bone density ðg=cm2Þ) Education (years)

Mean (male) 175.8 0.57 15.3
Mean (female) 162.7 0.51 14.6
SD (male) 6.77 0.15 5.13
SD (female) 6.12 0.12 5.08
Intercept ðb0Þ 247.1 230.8 255.6
Slope ðbYOBÞ 0.024 0.016 0.028

Accurate Genomic Prediction of Height 497


