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The patterns and mechanisms of collective decision making in
humans and animals have attracted both empirical and theoret-
ical attention. Of particular interest has been the variety of social
feedback rules and the extent to which these behavioral rules
can be explained and predicted from theories of rational estima-
tion and decision making. However, models that aim to model
the full range of social information use have incorporated ad hoc
departures from rational decision-making theory to explain the
apparent stochasticity and variability of behavior. In this paper I
develop a model of social information use and collective decision
making by fully rational agents that reveals how a wide range
of apparently stochastic social decision rules emerge from funda-
mental information asymmetries both between individuals and
between the decision makers and the observer of those decisions.
As well as showing that rational decision making is consistent
with empirical observations of collective behavior, this model
makes several testable predictions about how individuals make
decisions in groups and offers a valuable perspective on how we
view sources of variability in animal, and human, behavior.

agent-based model | collective behavior | rational choice |
social information | utility

Collective decision making is a ubiquitous task for social ani-
mal species, including humans (1). Whether deciding where

to forage, which nest site to choose, or when to move, indi-
vidual decisions are greatly informed by observing the choices
that others make. As recently as 2008, Ward et al. (ref. 2, p. 1)
were able to state that “little is known about the mechanisms
underlying decision-making in vertebrate animal groups.” Since
then, however, a large literature has explored the rules govern-
ing social information use in collective decisions across various
taxa, for example in insects (3), fish (2, 4), birds (5, 6), and mam-
mals (7, 8), including primates (9) and humans (10, 11). What
links decision making in all of these groups is the presence of
social reinforcement, with individuals demonstrating a strong
preference for an option chosen by others, which increases with
the number of others who have selected it. This reinforcement
can be expressed as a social response function—the probabil-
ity of selecting a given option conditioned on the number of
other individuals that have previously chosen it. A large degree
of variation has been observed in these social response func-
tions, ranging from linear relationships (e.g., refs. 3 and 12)
to strongly nonlinear “quorum” rules (13), where the appar-
ent attractiveness of an option appears to increase exponentially
with the number of individuals choosing it, before saturating
as this number passes a quorum level. In addition to varia-
tion between taxa, studies have also highlighted how the same
species can exhibit different patterns of collective behavior
under different laboratory or field conditions (14–17), high-
lighting the potential importance of context-dependent social
responses.

Complementing these empirical studies, mathematical the-
ories have been developed to explain why these social deci-
sion rules take the form observed. For example, Easley and
Kleinberg (18) proposed a toy model for understanding collec-
tive decision making in a group of rational agents. This model,
illustrated by the example of an individual selecting a restaurant
for a meal, demonstrated how easily an unbreakable consensus

decision could emerge, once the cumulative social information
provided by past choices outweighs any new quality signal that
an uncommitted individual might receive. More recent work has
attempted to build a fully descriptive model of such collective
decision making by considering the purportedly rational beliefs
and decisions of agents exposed to the social information pro-
vided by choices of others (19, 20), and the studies have been
successful in reproducing the observed response functions in a
variety of taxa including insects (20), fish (19–21), and birds
(5, 6). Recent extensions of these models have also consid-
ered how social responses might vary as a result of changes in
environmental context (22).

However, while these models have had success in reproduc-
ing the observed features of collective decisions, this has been at
the cost of internal consistency as theories of rational behavior.
An agent’s decision involves two components: (i) an estimation
stage, where the focal agent forms beliefs about the quality of
its options, and (ii) a decision rule, which specifies how the
agent acts based on those beliefs. In the first stage the mod-
els present a broadly coherent theory of estimation based on
Bayesian updating. However, beliefs are restricted to statements
about whether options are “good” or “bad” [or “best” (19)].
This binary categorization does not fully capture the range of
possibilities that individuals face in expected-utility–maximizing,
rational behavior (23). Choices made under uncertainty are char-
acterized by risk–reward trade-offs, and it is not clear how these
can be translated into a simple good or bad dichotomy or how
decisions should be made on the basis of such a classification.
The second stage of these models, the decision rule, introduces
further departures from rationality. Here agents are assumed
to select options probabilistically based on the results of the
estimation stage. Such nondeterministic behavior is inconsistent
with the idea of individuals as rational agents. This problem
emerges as a result of a confusion regarding the sources of
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observational uncertainty in empirical studies. Because the deci-
sions made are typically not predictable with certainty by an
observer or experimenter, they are themselves deemed to be
stochastic. Instead, this uncertainty can be understood by incor-
porating the viewpoint of the observer into the theory. The
observer makes measurements of the physical and social envi-
ronment that only imperfectly capture the information observed
by the focal decision maker (or not observed, for example in the
case of visual occlusion). From this one can recognize that the
inability of the observer to predict individuals’ decisions arises
from the limited access the observer has to the information driv-
ing those actions, not from fundamentally stochastic behavior by
the agents themselves.

Why should we be concerned about departures from rational-
ity in these models? Given established critiques of rational-agent
models (24, 25), should we not be more concerned about whether
these models are consistent with empirical measurements? To
this objection there are two responses. The first one is that
rational-agent models provide a baseline from which to measure
departures from rationality. These departures are interesting
because they indicate either where an evolutionary process has
been unable to produce an optimal solution or where other fac-
tors, such as cognitive cost, have produced a trade-off. Such
departures can be detected only if we understand what genuinely
rational behavior looks like. The second response concerns the
purported goals of previous work. One can find a reasonable
empirical match to any observed social response by choosing an
appropriate parameterization of a sufficiently flexible mathemat-
ical function. It has been the explicit goal of theoretical work
in this area (19, 20) to understand how these responses emerge
from logical consideration of the individuals’ own estimations
and actions as rational decision makers. My goal here is to fully
explore the consequences of the rationality assumption to show
where data can (and cannot) be explained by this fundamental
principle.

This paper develops a model of collective decision making by
identical, rational agents, based on three fundamental principles:
(i) Individuals behave as expected-utility–maximizing agents,
based on their own beliefs about the world; (ii) each individual’s
beliefs are generated from the public and private information
that it has access to, using Bayesian probability updating; and (iii)
empirical observation of individuals’ actions is undertaken by an
observer that has its own private information as well as the public
social information on which to base predictions and interpreta-
tions of individual behavior. The resulting model reproduces the
key successful aspects of previous research, while making addi-
tional, testable predictions about social information use that are
not accounted for in existing theory.

Theory
Consider the classic paradigm of a group faced with a sequential,
binary decision. That is, a sequence of n identical individu-
als choose between option A and option B and can see the
choices made by those ahead of them. Such a context is well
approximated empirically by, for example, Y-maze experiments
(e.g., refs. 2 and 26) where individuals are asked to choose
between two competing arms of a maze. I develop a mathe-
matical framework for calculating the optimal choice for each
individual, based on private information that the individual alone
observes and public information constituted by the observable
choices made by others. I also derive mathematical expressions
for the probability that an outside observer (such as an experi-
mental scientist) will observe an individual making a particular
choice, conditioned on what that observer can know about the
system and the focal individual. As noted above, incorporat-
ing the observer explicitly is key to understanding the source
of observational uncertainty in a fundamentally deterministic
model.

Rational Choice. I start from the assumption that each of the two
options has a true utility, UA for option A and UB for option B.
These utilities may also be understood as fitness consequences
of the decision in terms of evolutionary adaptation (27). Since
the individuals are assumed to be identical, these utilities are the
same for all. These true utilities are unknown, but each individ-
ual, i ∈ 1, . . . ,n , can estimate the utility of each choice based
on the specific information, Ii , that it possesses. Following the
rules of Bayesian-rational decision making (23), I assert that indi-
vidual i will choose option A if and only if the expected utility
of A is greater than that of B, according to i ’s estimation. Let
x =UA−UB be the true difference in utilities; then

P(i→A|Ii) =

{
1, if

∫∞
−∞ xp(x |Ii)dx > 0

0, otherwise , [1]

where p(x |Ii) is a probability density representing individual i ’s
personal belief about x .

Private and Public Information. What information does individ-
ual i have? I assume that Ii is composed of two parts, private
and public. First, there is direct sensory information that i can
perceive from the two options. For example, a foraging indi-
vidual may perceive differing food odors from A and B, or a
prey animal may see differing patterns of shadows that sug-
gest one choice is more likely to lead to a predator. This is the
individual’s private information. Second, if i > 1, then individ-
ual i can see the choices made by any other individual j , where
j < i . This is public information—it is available to all individu-
als who still wait to make their choice. In common with previous
work (19, 20) I make the important assumption that the choices
of others provide information about the relative utilities of A
and B, but do not influence the true values of these utilities.
That is, an option does not become good simply because others
have chosen it. In making this assumption I exclude phenom-
ena such as predation–dilution effects (28), where the presence
of conspecifics is itself desirable, or foraging competition (29),
where the presence of other individuals lowers the utility of a
given option.

Prior Belief. Before an individual receives any information
regarding the utility difference, x , I assume that they have no
reason to favor option A or B (any such reason should count as
private information). I ascribe to them a prior belief regarding
the values that x may take and by symmetry center this on zero. I
further assume that by environmental habituation (either genetic
or experience) they have an intrinsic idea of the scale of possi-
ble utility differences between competing choices. In this paper I
assume that prior beliefs follow a normal distribution, and with-
out loss of generality we can measure utilities in units that set this
variance of this distribution to one:

p(x ) =
1√
2π

exp(−x2) =φ(x ). [2]

Hereafter I use φ(x ) to refer to the standard normal distribution
density function. Throughout this paper I assume that infor-
mation and expectations about the environment are normally
distributed. This assumption is likely to hold well for low-level
sensory information such as detecting food or predators, but
may be less appropriate for more cognitively advanced tasks.
The model development detailed here can be followed for any
alternative distribution of interest.

Private Information. Individual i has access to private information
that gives a noisy estimate of x . This may be via visual, olfac-
tory, or other sensory stimuli, but here I model this as an abstract
quantity, ∆i , that is generated stochastically by the environment
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based on the real utility difference x , and a noise variance ν2

due to both the latent sources of environmental noise (e.g., air
currents disrupting olfactory gradients) and limitations of an
individual’s sensory apparatus. Mathematically, ∆i is normally
distributed with mean x and variance ν2:

p(∆i |x ) =φ((∆i − x )/ν). [3]

Individual i revises its belief about x in the light of its private
information using Bayes’ rule:

p(x |∆i)∝ p(∆i |x )p(x )

∝φ((∆i − x )/ν)φ(x ).
[4]

Consider the case of the first decision maker, i = 1. This indi-
vidual has no public, social information to draw on, and bases
the estimate of x entirely on its private information, ∆1. For the
purposes of making a rational decision, the important quantity
for the individual to evaluate is the sign of the expected utility
difference, E(x |∆1):

E(x |∆1) =

∫ ∞
−∞

xp(x |∆i)dx

∝
∫ ∞
−∞

xφ((∆1− x )/ν)φ(x )dx .

[5]

It is clear that E(x |∆1)> 0 if and only if (iff) ∆1> 0 and there-
fore that the sign of individual 1’s private information dictates
which option it will choose.

Social Information. Having determined that the first decision
maker uses the sign of its private information to make a choice,
I now consider the case of the second and subsequent decision
makers. Individual 2 begins its estimation of x in the same man-
ner as individual 1, by updating its original prior belief (which is
identical for all agents), using its own private information, ∆2:

p(x |∆2)∝φ((∆2− x )/ν)φ(x ). [6]

What information does the choice of individual 1 provide to indi-
vidual 2? Since the choice of individual 1 does not change the
true utilities of the options, its choice can influence the estima-
tion of individual 2 only by giving information about the private
information that individual 1 received. If individual 1 were to
communicate its private information directly to individual 2, then
the second individual could update its belief based on these new
data. However, imagine that individual 1 has chosen option A.
Individual 2 does not know what private information individual
1 has received, but can only infer from the observed resulting
choice that ∆1> 0. Therefore, individual 2 must consider all pos-
sible values of the ∆1 that the first individual may have observed,
weighted by probability, and adjust its belief accordingly. Let
C1 = 1 indicate that individual 1 chose option A (and conversely
C1 =−1 for option B); then

p(x |C1 = 1, ∆2)∝ p(x |∆2)P(C1 = 1 | x )

∝ p(x |∆2)P(∆1> 0 | x )

∝φ((∆2− x )/ν)Φ(x/ν)φ(x ),

[7]

where Φ(z ) =
∫ z

−∞ φ(t)dt is the cumulative distribution function
of the standard normal distribution. Similarly, if individual 1 had
chosen B, then individual 2 would make the estimation

p(x |C1 =−1, ∆2)∝φ((∆2− x )/ν)Φ(−x/ν)φ(x ). [8]

The decision of individual 2 is now governed by its expected value
of x . Define ∆∗2 such that

E(x |C1, ∆∗2) = 0

⇒
∫ ∞
−∞

xφ((∆∗2 − x )/ν)Φ(C1x/ν)φ(x )dx = 0.
[9]

Individual 2 will now choose option A iff ∆2>∆∗2, implying that
E(x |C1, ∆2)> 0.

Subsequent Decisions. To complete our view of how social infor-
mation is used we need to consider the viewpoint of the third
individual (assuming n > 2). This individual must consider not
only the decisions made by individuals 1 and 2 in conjunc-
tion with its own private information, but also the order in
which these decisions were made. As with all individuals, I
begin by updating the universal prior, using individual 3’s private
information:

p(x |∆3)∝φ((∆3− x )/ν)φ(x ). [10]

Individual 3 can also update its belief based on the choice of
individual 1, in exactly the same manner as individual 2:

p(x |C1, ∆3)∝φ((∆3− x )/ν)Φ(C1x/ν)φ(x ). [11]

Now individual 3 needs to update its belief based on the decision
made by individual 2, C2:

p(x |C1,C2, ∆3)∝P(C2 | x ,C1)p(x |C1, ∆3). [12]

To evaluate the first term on the right-hand side, individual
3 needs to adopt the viewpoint of individual 2 and calculate
the critical value ∆∗2 based on C1. Then, from individual 3’s
perspective, the probability of choice C2 is

P(C2 = 1 | x ,C1) =P(∆2>∆∗2 | x )

= Φ((x −∆∗2)/ν).
[13]

Similarly, P(C2 =−1 | x ,C1) = Φ(−(x −∆∗2)/ν). Hence, indi-
vidual 3 updates its belief based on C2 to

p(x |C1,C2, ∆3)∝φ((∆3− x )/ν)Φ(C1x/ν)

×Φ(C2(x −∆∗2)/ν)φ(x ).
[14]

As with individual 2, we can thus evaluate a critical value, ∆∗3,
defined by∫ ∞
−∞

xφ((∆∗3 − x )/ν)Φ(C1x/ν)Φ(C2(x −∆∗2)/ν)φ(x )dx = 0.

[15]

Individual 3 will now choose option A iff ∆3>∆∗3. By iteratively
proceeding in a similar fashion we can determine the belief of
individual i , based on its private information and the observed
choices of previous individuals, C1, . . . ,Ci−1,

p(x |C1, . . . ,Ci−1, ∆i)∝φ((∆i − x )/ν)φ(x )

×
i−1∏
j=1

Φ(Cj (x −∆∗j )/ν),
[16]

and ∫ ∞
−∞

xp(x |C1, . . . ,Cj−1, ∆∗j )dx = 0, [17]

and I define ∆∗1 = 0.
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Observation. So far I have discussed how each individual uses
private and public information to make a rational, expected-
utility–maximizing decision. Now I consider the perspective as
an observer of this process. As an observer, one is able to
observe the same public, social information available to the indi-
viduals themselves—the sequence of decisions. However, the
observer’s viewpoint differs in two ways. First, the observer
has no access to the private information of any individual.
Second, the observer may have knowledge about the true envi-
ronmental conditions. For example, the observer may have
designed an experiment such that x =UA−UB = 0, e.g., a Y
maze with symmetrical arms. Furthermore, especially in a lab-
oratory setting, the observer may have altered the environment,
such that noise levels differ from those that the individuals are
habituated to.

Assume that true values of x and ν2 and also the noise vari-
ance of the experimental environment, η2, are known. How can
we calculate the probability that individual i will make a specific
choice? First, we can follow the calculations above for that indi-
vidual, to determine the critical value ∆∗i , based on the observed
previous decisions. We can then evaluate the probability, con-
ditioned on the known x and η2, that individual i ’s private
information will exceed this value:

P(Ci = 1 | x , η,C1, . . .Ci−1) =P(∆i >∆∗i | x , η)

= Φ((x −∆∗i )/η).
[18]

Although this equation provides the probability that the ob-
served decision will be a particular option, it implies no nonde-
terministic behavior; the uncertainty encoded by the probability
is purely a consequence of the observer not sharing the same
information as the focal decision maker. Note that the infor-
mation provided by C1, . . .Ci−1 is encoded in the calculated
value of ∆∗i . Since each critical value depends iteratively on those
before, this is determined by the order of decisions made, as well
as the aggregate numbers choosing A and B.

Unordered Social Information. Observers not only have differ-
ing information from the individuals under observation, they
also make choices about how to measure and record behav-
ior. As an example of this, the majority of previous studies
have largely ignored the precise order of previous decisions
made when measuring social responses. For comparison with
this previous work, we can consider what we, the observer,
would predict about the decision of individual i , conditioned
on knowing only the number of previous individuals choosing
A (nA) and B (nB ). This requires us to consider the set of
all possible sequences, C, that obey the result in nA,nB and
to sum over the probability that each of these is the sequence
that led to the current arrangement. This summation, combined
with the decision rule for each specific sequence derived above,
then gives the probability that the next choice will be either
A or B, conditioned on this unordered observation of social
information:

P(Ci |nA,nB , x , η) =
∑
C

P(Ci | x , η,C1, . . .Ci−1)

×P(C1, . . .Ci−1 | x , η).

[19]

Note that this calculation assumes that the individuals them-
selves are aware of the order in which decisions were made, but
that the observer has been unable to record these or has chosen
not to do so.

Conflicting Information. Several experimental studies have inves-
tigated scenarios where a conflict is introduced between an indi-

vidual’s private and social information, to identify the relative
strengths of the two factors. For example, in such an experiment
each individual may be trained in advance to associate food with
one of two or more different colors or patterns. Individuals with
different trained associations are then placed in a group and pre-
sented with a decision where each option has a color or pattern
signal (e.g., ref. 30).

This scenario can be simulated by giving each agent pri-
vate information drawn from a mixture of two conflicting
distributions,

p(∆i | x ) =
1

2
[φ((∆i − z/2)/η) +φ((∆i + z/2)/η)], [20]

where z is the magnitude of the conflict in information, and η is
again the experimental noise level. These two parameters indi-
cate respectively how strong the training has indicated the utility
difference is (e.g., the amount or quality of food provided) and
the reliability of the signal (e.g., whether the food was always
provided in the same quantities). With each individual’s private
information drawn from this mixture distribution, a simulation of
the group’s aggregate behavior can follow as above. It should be
noted here I am still assuming that the individual decision mak-
ers have identical utility functions; the conflict between them is
solely on the level of the information they have received and not
one of differing preferences.

Results
In this section I consider a variety of possible experimental and
field study scenarios that illustrate the key predictions of the
model.

Role of Environmental Signal-to-Noise Ratio. I begin by consider-
ing an experimental field study in the habitual environment of
the decision makers. In this case the decision makers’ previous
experience gives them reliable prior information about typical
signal and noise levels in their environment, while the observer
can experimentally control the true utilities of possible choices.
I analyzed the expected behavior when the decision makers are
confronted with a symmetrical binary choice in which the true
utility difference is zero: UA−UB = 0. I calculated the prob-
ability that the next decision maker would choose option A,
conditioned on different previous decision sequences, and for a
range of environmental noise/signal ratios. This analysis, illus-
trated in Fig. 1, shows that environmental noise levels have little
effect on the predicted choice probabilities, displaying only a
slight inflection at a ratio of one. This result can be understood
intuitively by noting that higher ambient noise levels reduce the
reliability of both private and public information—the decision
maker should trust its own information less, since it may result
from noise, but should also recognize that the decisions of oth-
ers are also more likely to be incorrect. These two effects almost
perfectly balance in this analysis for a wide range of possible
noise/signal ratios. Since the environmental noise/signal ratio has
little effect on behavior, I set it to a value of ν= 1 henceforth for
simplicity.

Observed Social Interaction Rules. My model gives the probability
that a focal individual will make a given choice conditioned on
any ordered sequence of previous decisions. However, in prac-
tice researchers either are often unable to observe this precise
sequence or choose to ignore the details of the order in which
decisions were made, focusing instead only on the number of
individuals who have previously chosen A or B in aggregate. To
make comparisons between the theory developed here and pre-
vious work, I therefore calculated the expected observations on
this aggregated level by considering all possible sequences of pre-
vious choices that could have led to an aggregate state nA,nB
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Fig. 1. Consistency of predicted decisions across environmental noise/signal
ratios, for a range of possible observed past decision sequences. Each line
is labeled with the corresponding sequence of past decisions, from left to
right. The black line shows cases with one previous decision maker, blue
lines cases with two, and red lines cases with three, respectively.

(Eq. 19). To illustrate the predicted observations a researcher
would make in such an experiment, we consider two hypothetical
experiments, each with 10 individuals and in which the ambi-
ent noise level matches that of the habitual environment. The
first experiment uses symmetric options (x =UA−UB = 0). The
predicted observations made in these experiments are shown
in Fig. 2. Fig. 2A shows the probability that a focal decision
maker will choose option A, conditioned on known nA and
nB . Contour lines of equal probability show a radial pattern
that is suggestive of Weber’s law of relative differences (31).
To illustrate this further, Fig. 2B shows how the probability of
choosing option A varies with the relative proportion of previ-
ous decisions: nA/(nA +nB ). We see that the results averaged
over all possible sequences (red circles) show a very close linear
trend. However, this apparently simple relationship results from
the weighted average of sequence-specific probabilities, shown
with black circles, where larger points indicate more probable
sequences. Evaluating the probability of generating each possi-
ble sequence of decisions, we can determine the probability for
the final value of nA after all decisions have been made (Fig. 2C).
This exhibits the classic U-shaped distribution that is character-
istic of observations in many collective decision-making studies
(e.g., ref. 13). At first glance this result conflicts with the pattern
in Fig. 2B—a sequence of decisions made according to Weber’s
law would be expected to result in a uniform distribution of equal
probabilites for final values of nA (32). This apparent contradic-
tion is resolved by noting that the linear relationship in Fig. 2B
does not hold as a decision rule in its own right, but only as the
average behavior aggregated over many possible sequences of
decisions using the true behavioral rules shown in Eqs. 16 and 17.
This highlights how apparently straightforward analysis of empir-
ical data may lead to erroneous conclusions about underlying
behavioral mechanisms.

In addition to a symmetric experimental setup, I also consider
a hypothetical experiment in which one option is objectively bet-
ter than the other, for example through the presence of food

(e.g., ref. 33) or the absence of a predator (e.g., ref. 26). In this
example I assume that option A is better and set x =UA−UB =√

2/π. This value is equivalent to the average absolute differ-
ence in utilities in the habitual environment and thus represents
a “typical” decision for the agents to make. I made predictions
of the observed decisions made by 10 agents as in the symmetric
case, the results of which are shown in Fig. 2 D–F. In this case we
see that, as expected, decisions systematically favor the higher-
utility option. As above, the decisions observed as a function of
nA and nB hide a broader variety of social contexts defined by
the ordering of decisions (Fig. 2E).

Context Specificity. The hypothetical experiment above was
assumed to take place in an environment where noise levels
were the same as the decision makers’ habitual experience. I
showed that this habitual noise level did not in itself have a
strong influence on predicted decisions—individuals habituated
to noisy environments should be no more or less likely follow
one another in their own environment than those from less
noisy habitats. But what if individuals are removed from their
own habitat and placed in an unfamiliar environment? As an
example, consider collecting fish which usually shoal in some-
what murky and strongly odored rivers or lakes and placing
these in clear water in a uniform, plastic experimental arena
(e.g., refs. 13, 26, 34–36, and many others). What impact might
this change have on their behavior? One possibility is that a
severe change of environment may lead to erratic or patholog-
ical behavior as a result of distress or disorientation, which I do
not account for here. Another possibility is that the fish continue
to follow social interaction rules that have evolved to be near
optimal in their own habitat, without accounting for the changed
context.

In the relatively sterile laboratory conditions, the ambient lev-
els of noise such as stray odors may be far lower than in the wild.
In combination with a symmetrical experimental setup as above
(UA =UB ), this means that an individual fish is less likely to
observe private information of a sufficient magnitude to contra-
dict the apparent social information provided by its conspecifics
and will therefore be more inclined to aggregate with and fol-
low these other individuals than it would in the wild. Conversely,
a strongly lit laboratory environment may introduce a greater
intensity of visual noise simply by virtue of the greater overall
intensity of visual stimulation. I explicitly calculate the effect that
experimental noise has using Eq. 18, varying the ratio between
experimental and habitual noise levels. That is, I assume that
the agents continue to act rationally in the belief that noise lev-
els remain at those of their habitual environment, while in fact
the noise levels depart from this baseline. As shown in Fig. 3,
I find as expected that lower experimental noise levels increase
the tendency to follow the majority (Fig. 3 A and B), resulting in a
greater aggregate consensus (Fig. 3 E and F). Higher noise levels
reduce the weight of social information (Fig. 3 C and D) and thus
prevent consensus from emerging (Fig. 3 G and H). Conversely
this means that for a given experimental noise level, individu-
als from noisier habitual environments are expected to aggregate
more strongly and behave more socially than those from habitats
with less noise.

Dynamic Social Information. As noted previously, the predictions
my model makes about the decision a focal individual will make,
conditioned on the available public information, depend strongly
on the precise order in which previous decisions were made. To
investigate this further, I now focus on the relative importance
of the most recent decision in particular. Using Eqs. 16–18, I
calculated the probability, in a symmetric experimental setup,
that a focal individual will choose option A, conditioned on pre-
vious sequences of decisions of the form C = {−1,−1, . . . , 1},
that is, sequences in which the most recent previous decision
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Fig. 2. Results of two hypothetical studies of collective decision making. (A–C) Predicted observations made from a symmetric experimental setup (x = 0).
(D–F) Predicted observations from an experiment in which option A is superior by an amount typical in the habitual environment (x =

√
2/π). (A and D) The

probability, from the perspective of an external observer, that a focal agent will choose option A, conditioned on the number of agents, nA, nB, previously
choosing options A and B, respectively. (B and E) The probability of the focal agent selecting option A against the proportion of previous agents selecting A.
Red circles indicate the average across all possible sequences of previous choices, while black circles indicate probabilities conditioned on specific sequences
(discretized to intervals of 0.05), with larger points indicating more likely sequences. The average trend shows the relationship that would be observed in
an experiment where sequence information was discarded. (C and F) The probability of possible aggregate outcomes, defined as the number of agents in
total that will select option A, showing the high probability of consensus decisions and of collectively choosing the higher-utility option in the asymmetric
scenario.

was option A, after a series of individuals choosing B. In most
models such sequences—with many individuals choosing B and
only one choosing A—would result in a high probability that the
focal individual would choose B, following the majority. By con-
trast, as shown in Fig. 4, I predict that the focal individual is
most likely to choose A, regardless of the weight of the majority
for B. While longer series of earlier choices for B do make the
probability to select A somewhat lower, this nonetheless always
remains above 0.5. This result might initially appear counterin-
tuitive: Why should the social information provided by a large
majority of other individuals be outweighed by one recent deci-
sion? However, this neatly illustrates the consequences of taking
seriously the idea of identical, rational agents. The focal indi-
vidual, observing the most recent decision, must conclude that
the individual making that decision has observed private infor-
mation which is sufficient to outweigh all of the previous public
social information. The focal individual cannot observe this pri-
vate information directly, but since the agents are identical, it can
infer that had it seen this information itself, it would have made
the same decision. Therefore, it must conclude, before observing
its own private information, that the available public information
is now in favor of A. Since, in a symmetric implementation of the
model with UA =UB , the focal individual’s private information is

equally likely to favor either choice, the observational prediction
is that the most recent decision will be followed on the majority
of occasions, regardless of the overall number of previous choices
made for either option.

Conflicting Information. I considered a scenario of 10 individu-
als that receive conflicting private information according to Eq.
20. I evaluated the probability of each possible aggregate out-
come at each of 20 different magnitudes of conflict between
z = 0 and z = 10 and five different experimental noise levels of
η= 1/3, 2/3, 1, 3/2, and 3. The results, shown in Fig. 5, show
the degree of group consensus for each scenario, between zero
(individuals split between two options equally) and one (all indi-
viduals choosing the same option). As already shown above,
consensus is not guaranteed even when conflict is zero, and nois-
ier experimental setups tend to reduce consensus. Increasing
the magnitude of conflict decreases the expected degree of con-
sensus. With sufficient conflict consensus breaks down entirely
and each individual simply follows its own private information,
leading to consensus values in line with those expected from a
binomial distribution (dashed line in Fig. 5). For high noise con-
ditions the decline of consensus is gradual from an initially low
value, whereas in low noise conditions there is a clearer transition

E10392 | www.pnas.org/cgi/doi/10.1073/pnas.1811964115 Mann

http://www.pnas.org/cgi/doi/10.1073/pnas.1811964115


EC
O

LO
G

Y
A

PP
LI

ED
M

A
TH

EM
A

TI
CS

from consensus to independent decision making. When training
information is highly reliable compared with that found in the
habitual environment (η= 1/3), this transition is very sharp, and
the intermediate range between full consensus and completely
independent decisions is very narrow.

Discussion
I have developed a model of collective animal decision making
based on perfectly rational individual decisions by identical indi-
viduals in the context of private and public information. Using
this model I have explored the consequences of rational decision
making, from the perspective of an observer who also has only
partial information about individuals under observation. The
results shown here demonstrate fundamental similarities both
to earlier models of collective decision making and to the key
features of observed behavior across a variety of taxa (20).

Formulating this model focused attention on the underappre-
ciated role of the observer and experimental context in under-
standing why animals under study make particular observed
choices. Specifically, I have shown that even when agents them-
selves are purely rational (and therefore act deterministically
on their own information), their actions appear random to the
observer as a result of the agents’ private information. Further-
more, the observer potentially influences both the behavior of
the individuals under study (through control of experimental
conditions) and the interpretation of behavior observed (through
the choice of what to measure). Both of these aspects of obser-
vation are underappreciated in the collective behavior literature
and are potentially responsible for a substantial proportion of
the variance in empirical observations. It should be noted that
this perspective does not imply that the actual process being
observed is dependent on the observer. Two different observers
making measurements of the same experiment will observe the
same decisions being made, but they may come to different con-
clusions depending on what they know about the experimental
setup and what they choose to measure.

This model predicts that the decision-making process is con-
text specific. To the degree that laboratory conditions represent
a lower noise environment than in the wild, I anticipate that
observed social tendencies will be more pronounced than in
the wild. In human behavior, this offers an explanation for why
individuals exposed to social information in laboratory experi-
ments exhibit stronger effect sizes than those exposed in more
naturalistic environments (16); the laboratory environment is
subject to less spurious information that can contradict the social
information presented. A recent study of context-dependent
collective behavior in sticklebacks also found that these fish
were more cohesive in featureless environments than those with
more distractions such as food or plant cover. The model also
offers an ecological explanation for the differing social behaviors
observed in different species in similar contexts. For example,
Aron et al. (37) found that Argentine ants (Linepithema humile)
showed a stronger preference for social information over pri-
vate information compared with garden ants (Lasius niger) and
reflected that this may be explained by the differing ecology of
these two species: Argentine ants are restless migrators feed-
ing on novel food sources (a high noise/signal environment),
while garden ants are sedentary and feed on well-established
food sources (a low noise/signal environment). In similar lab-
oratory conditions, L. humile therefore arguably experiences a
greater reduction in noise relative to its habitual environment,
leading to a prediction of stronger social behavior. Similarly,
Wright et al. (38) found that wild-strain zebrafish exhibited
a stronger shoaling tendency than laboratory-strain specimens
when both were tested in the same laboratory environment.
This was attributed to differences in predation risk but could
also reflect informational differences in each strain’s habitual
environment.

One should, therefore, be careful when interpreting differ-
ences in laboratory behavior between species from different
environments, as this may betoken differing contrasts between
the laboratory and the wild, rather than different habitual levels

Fig. 3. The effect of varying the experimental noise level. (A–D) The social response function for hypothetical experiments with noise levels in the ratios
η= 1/3, 2/3, 3/2, and 3 relative to those of the habitual environment. As in Fig. 2, red circles indicate the average observed response, while black circles
indicate specific sequences of past decisions, with size indicating the relative probability of each sequence. (E–H) The corresponding proportions of aggregate
outcomes for each experimental noise level. Social response and aggregate cohesion are stronger in experiments with noise levels lower than those of the
habitual environment (η < 1) and correspondingly weaker in experiments with greater noise levels (η > 1).
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Fig. 4. Predicted probability for a focal individual to choose option A, con-
ditioned a sequence of past decisions of the form B,. . ., B,A, evaluated for
a range of experimental to habitual noise ratios (η). In all cases the proba-
bility to choose A remains above 0.5, regardless of the size of the majority
choosing B.

of sociality. With the development of increasingly advanced
tracking technology, researchers have recently reoriented toward
studying animal behavior in the wild (39–41) and to studying
human social behavior outside of the laboratory (42–44). This
study supports this trend; collective behavior in the wild may
vary significantly from that in the laboratory, and understand-
ing natural behavior thus requires studying the animals in their
habitual environment. An interesting corollary of this finding
is that social behavior may be expected to change and become
more apparently rational in the laboratory over time in cogni-
tively plastic species such as humans, as they habituate to the
new environment. Indicative results of such an effect in a related
domain have been shown for example by Burton-Chellew, Nax,
and West (45), who found that initially “irrational” prosocial
behavior by players in a public goods game become more “ratio-
nally” self-serving as the game was repeated many times under
the same laboratory conditions. Whether or not similar plasticity
is seen in the laboratory use of social information is worthy of
further study.

I also investigated how context specificity affects behavior
when individuals are given conflicting information, for example
through training before the experiment. I found that in labo-
ratory conditions where complete consensus decision making is
the norm (low noise relative to the habitual environment), the
reaction of individuals to conflicting information is predicted
to be strongly nonlinear with respect to the magnitude of the
conflict, with a sharp transition between consensus and indepen-
dent decision making. However, this transition, which might be
observed as a critical threshold in the laboratory, would be less
clearly observed in more natural conditions (η= 1), where the
model predicts a more gradual decline in the degree of consen-
sus achieved as the magnitude of conflict is increased. Again,
this highlights how behaviors observed in laboratory experiments
may not be directly translatable to wild behavior. Furthermore, I
have shown that collective decision making with conflicting infor-
mation depends on both the magnitude and the reliability of the
information individuals receive, whereas previous studies have

often treated these distinct informational features ambiguously
in force-based models of collective decision making (e.g., refs. 46
and 47).

Comparing the model predictions and experimental studies
highlighted a further important data analysis consideration. I
measured how individual decisions varied in the context of how
many others had previously chosen different options, but with-
out any information about the sequence of those choices. In
the symmetric case, agents exhibited an apparent social interac-
tion that depended linearly on the number of other individuals
choosing either option—a Weber’s law response function. The
linearity of this relationship is apparently at odds with the
strong tendency to consensus at the aggregate level. Perna et
al. (3) noted the same apparent conflict in their experimental
study of trail formation in ants. They proposed that the con-
flict could be resolved through the introduction of stochastic
noise in the decision-making process. In contrast, I have shown
that this conflict can be be resolved within a rational model
by focusing on the importance of ordering in the sequence of
previous decisions. The sequence of decisions has often been
ignored in previous work or relegated to additional material
not central to the study’s key insights; this model forces us to
recognize the central place that ordering has in understand-
ing rational social behavior. As shown by Perna, Grégoire, and
Mann (48), inferred social responses depend intimately on how
social context and behavior are measured. The results shown
here should reiterate that so-called “model-free” data-driven
analysis (49) is an illusion—even when no model is specified,
it is implicit in the choices made by researchers regarding what
to measure.

Looking more closely at the effect of ordering also revealed
testable predictions about the use of social information for which
few existing data are available. Specifically, the model predicts
that social information associated with the most recent deci-
sion makers should have an overwhelming impact on the focal
agent. Excluding their own private information, focal agents
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Fig. 5. The average degree of consensus (|nA− nB|/(nA + nB)) in groups
when individuals receive conflicting information, as a function of the mag-
nitude of information conflict and the experimental noise level (η). The
dashed line shows the expectation from a binomial distribution where each
individual chooses independently.
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should always conclude that the total social information favors
the most recent decision made, precisely because they must
believe that, as identical rational agents, they would have made
the same decision given the same information. From an obser-
vational perspective this means that we should expect to see the
most recent decision being more predictive of the next decision
than the aggregate numbers of previous choices. To the best of
my knowledge no experiment has previously tested this specific
hypothesis. However, some suggestive evidence of such an effect
has been seen in at least one previous study (50), where deci-
sions by humbug damselfish to switch between two coral regions
were best predicted by the most recent movement of a conspe-
cific. Preferential following of recent decision makers may also
help to explain the sensitivity of groups to changes of movement
by relatively few initiators and the corresponding prevalence of
“false alarms” in groups of prey animals (51). However, reli-
ably inferring such a behavioral rule from observational data
is difficult—potentially unknown information driving the most
recent decision maker’s choice may also be influencing the focal
individual. The prediction that the most recent decisions provide
the most salient social information could be tested experimen-
tally by inducing a conflict between the most-recently observable
decision and the majority of previous decisions, for example

through the use of artificial substitute conspecifics (e.g., refs. 52
and 53).

A model of rational behavior should not be mistaken for a
detailed understanding of biological cognition: Behavior results
from biological processes that are subject to evolutionary pres-
sure and physical constraints, and understanding these biological
mechanisms will be important in gaining further understanding
of how animals cognitively represent and process social infor-
mation (54). Real-world animal species, including humans, only
approximate perfect rationality (24, 55) and typically only in
contexts in which adaptation has taken place. Nonetheless, the
results of this study serve an important purpose. Assumptions of
rationality and optimality are an important tool in understand-
ing adaptive behavior. These assumptions, when posited (19, 20),
should be followed to their logical conclusion. Otherwise, it is
impossible to determine, by comparing predictions and empirical
data, whether or not observed behavior supports them. Precisely
because departures from rationality are of such profound inter-
est to biologists, economists, and psychologists, it is important to
be precise in identifying what those departures are.
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