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Background. Transmission is driving the global drug-resistant tuberculosis (TB) epidemic; nearly three-quarters of drug-resis-
tant TB cases are attributable to transmission. Geographic patterns of disease incidence, combined with information on probable 
transmission links, can define the spatial scale of transmission and generate hypotheses about factors driving transmission patterns.

Methods. We combined whole-genome sequencing data with home Global Positioning System coordinates from 344 partici-
pants with extensively drug-resistant (XDR) TB in KwaZulu-Natal, South Africa, diagnosed from 2011 to 2014. We aimed to deter-
mine if genomically linked (difference of ≤5 single-nucleotide polymorphisms) cases lived close to one another, which would suggest 
a role for local community settings in transmission.

Results. One hundred eighty-two study participants were genomically linked, comprising 1084 case-pairs. The median distance 
between case-pairs’ homes was 108 km (interquartile range, 64–162 km). Between-district, as compared to within-district, links 
accounted for the majority (912/1084 [84%]) of genomic links. Half (526 [49%]) of genomic links involved a case from Durban, the 
urban center of KwaZulu-Natal.

Conclusions. The high proportions of between-district links with Durban provide insight into possible drivers of province-wide 
XDR-TB transmission, including urban–rural migration. Further research should focus on characterizing the contribution of these 
drivers to overall XDR-TB transmission in KwaZulu-Natal to inform design of targeted strategies to curb the drug-resistant TB 
epidemic.
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Drug-resistant tuberculosis (TB) is a global crisis, causing an 
estimated 1.2 million cases each year [1]. Extensively drug-re-
sistant TB (XDR-TB) has now been reported from 123 coun-
tries and is associated with mortality rates of 50%–90% [2–4]. 
Although drug-resistant TB strains are initially created by selec-
tion of drug-resistant mutants during treatment (acquired resis-
tance), recent studies show that the majority of drug-resistant 
TB cases now arise due to transmission of already drug-resis-
tant strains [5, 6]. This shift makes clear the urgent need for 
interventions to prevent transmission.

Molecular epidemiology studies have consistently shown that 
close contacts account for only a minority of secondary TB cases 
in settings with high TB incidence, suggesting that a substan-
tial proportion of transmission may occur as a result of “casual” 

contact in the community [7–11]. Although modeling and social 
mixing studies support this hypothesis and point to public trans-
portation, schools, and workplaces as likely transmission sites, this 
has not been demonstrated directly [12–14]. Understanding the 
role of contacts proximate to or distant from the home can gener-
ate hypotheses about the modes of contact driving transmission. 
The advent of bacterial whole-genome sequencing (WGS) offers 
new opportunities to identify TB cases that are likely to be linked 
through transmission, by discriminating between TB isolates at 
the level of single-nucleotide polymorphisms (SNPs). Isolates 
from different patients that differ by small numbers of SNPs 
are considered likely to represent a transmission event. Recent 
studies have employed WGS to identify probable transmission 
events, map chains of transmission in TB outbreaks, and describe 
the burden of TB disease due to recent infection as compared to 
reactivation [10, 15–20]. However, WGS has been underutilized 
to describe broader, population-level patterns of transmission in 
TB-endemic settings.

The spatial scale of disease transmission can provide insight 
into the settings and, by extension, the modes of contact that 
contribute to transmission. Tuberculosis transmission requires 
air exchange—and therefore close proximity—between an 
infectious and susceptible person. The nature and location of 
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these interactions define the relevant geographic scale for per-
son-to-person interactions resulting in transmission [21, 22]. 
For example, short distances between transmission-linked cases 
may indicate that local contacts in, or close to, the household 
are most important in transmission. Alternatively, transmission 
links found across longer distances may indicate that long-dis-
tance contacts, may play an important role in disseminating 
disease. Previous geospatial analyses in TB have focused on 
the spatial distribution of cases, rather than the spatial scale of 
transmission links. Combining geospatial analysis with WGS 
data has the potential to provide more comprehensive informa-
tion about the dynamic process of disease transmission.

We combined Mycobacterium tuberculosis (Mtb) WGS and 
geographic data to (1) evaluate the spatial scale of XDR-TB 
transmission in KwaZulu-Natal, South Africa, and (2) quantify 
the proportion of transmission occurring within and between 
municipal districts in KwaZulu-Natal. Understanding the spa-
tial scale and patterns of TB transmission can identify specific 
geographic areas and demographic groups that contribute to 
ongoing transmission and toward which interventions can be 
targeted.

METHODS

Setting

South Africa has among the highest rates of TB globally, with 
59% of TB patients coinfected with human immunodeficiency 
virus (HIV) [1, 23]. KwaZulu-Natal province, which comprises 
11 districts and has a population of 10.3 million, has the high-
est TB and XDR-TB burden (3 per 100 000) in South Africa 
[24–26]. The most populous district, eThekwini, is home to 
the city of Durban, a common destination for employment 
and educational opportunities. The population in KwaZulu-
Natal is highly mobile; a recent study found that more than 
a third of the population had changed residence in the past 
2 years [27].

Study Design and Procedures

The Transmission of HIV-Associated XDR-TB (TRAX) study 
is a cross-sectional study that enrolled culture-confirmed 
XDR-TB patients diagnosed from 2011 to 2014 in KwaZulu-
Natal. Detailed methods of the TRAX study have been pre-
viously published [5]. In brief, we identified XDR-TB cases 
through the single referral laboratory that conducts drug-sus-
ceptibility testing for all public healthcare facilities in KwaZulu-
Natal. All participants provided written informed consent; for 
deceased or severely ill participants, consent was obtained from 
next of kin.

We interviewed participants and performed medical record 
review to collect demographic information and medical his-
tory. Participants reported the locations of residences, schools, 
employment, hospital admissions, and other congregate loca-
tions frequented in the 5  years preceding XDR-TB diagnosis. 

A  Global Positioning System (GPS) coordinate location was 
collected at the location of each participant’s home residence.

Whole-Genome Sequencing

The diagnostic XDR Mtb isolate was obtained for all participants 
and recultured on Löwenstein–Jensen slants. We conducted 
population sweeps, extracted genomic DNA, and prepared 
sequencing libraries using Nextera DNA kits (Illumina). Raw 
paired‐end sequencing reads were generated on the Illumina 
(MiSeq) platform and aligned to the H37Rv reference genome 
(NC_000962.3) using the Burrows–Wheeler Aligner. All iso-
lates had reads covering >99% of the reference genome, and 
the lowest mean coverage depth for any isolate was 15×. SNPs 
were detected using standard pairwise resequencing techniques 
(Samtools version 0.1.19) against the reference and filtered for 
quality, read consensus (>75% reads for the alternate allele), and 
proximity to indels (>50 bp from any indel). SNPs in or within 
50  bp of hypervariable PPE/PE gene families, repeat regions, 
and mobile elements were excluded [28]. Alignment files can 
be found at the National Center for Biotechnology Information 
Bioproject PRJNA476470.

Statistical Analysis

We defined a genomic link as a pair of XDR-TB cases (“case-
pair”) with ≤5 SNP differences between their Mtb sequences 
[20, 29, 30]. We mapped and calculated median geographic dis-
tance between the home residences of genomically linked cases 
using the sp and geosphere packages in R 3.4.1 software [31, 32].

We stratified distances between genomically linked cases by 
sex, given historically distinct migratory behavior among male 
and females in sub-Saharan Africa. We also stratified by HIV 
coinfection, since the influence of HIV on the susceptibility, 
progression, and transmissibility of TB remains uncertain [9, 
29, 33–35]. Last, we stratified by strain type, by comparing pairs 
of the most common Mtb strain type in KwaZulu-Natal, LAM4, 
with other strain types. We conducted our analysis at varying 
SNP thresholds (≤3 SNPs, ≤1 SNP) to assess the robustness of 
results to this choice.

To describe patterns of transmission by district of residence, 
we classified each case according to the district of their home 
residence and calculated the proportion of between- and with-
in-district genomic links for all districts. We also calculated the 
proportion of pairs in each district with links to the urban dis-
trict of eThekwini.

Sensitivity Analysis of Differential Enrollment in TRAX by District

To assess whether our results were sensitive to differen-
tial enrollment of XDR cases by district, we compared our 
results to those we might have observed had we enrolled all 
diagnosed cases. We used the complete register of diagnosed 
XDR-TB cases from the referral laboratory to calculate the 
fraction of diagnosed cases from each district that partic-
ipated in TRAX (enrollment fraction). For within-district 
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links, we adjusted the number of genomic links by a fac-
tor of the inverse enrollment fraction. For between-district 
links, we adjusted the number of links using the mean of the 
inverse enrollment fractions for both districts. We compared 
the proportions of within- and between-district links calcu-
lated using these enrollment fractions to the proportions we 
observed.

As cases from rural areas may have reduced access to 
high-quality healthcare services, we hypothesized they may be 
underdiagnosed, and thus less likely to be enrolled, compared 
to cases from the urban eThekwini district [36, 37]. To examine 
the effect of this potential source of bias, we varied our assump-
tions about the extent of this overenrollment (assuming the 
enrollment fraction was anywhere from 20% to 40% higher in 
eThekwini than in other districts) and repeated our analysis of 
between- and within-district links.

Ethical Considerations

The study was approved by the institutional review boards of 
Emory University, Albert Einstein College of Medicine, and the 
University of KwaZulu-Natal, and by the Centers for Disease 
Control and Prevention’s National Center for HIV/AIDS, Viral 
Hepatitis, STD, and TB Prevention.

RESULTS

Between 2011 and 2014, we screened 521 of 1027 (51%) cul-
ture-confirmed XDR-TB patients diagnosed in KwaZulu-Natal 
and enrolled 404 (78% of screened) (Figure 1). TRAX partici-
pants were similar to all diagnosed XDR-TB cases in terms of 
age (P =  .52), sex (P =  .76), and district of diagnosing facility 
(P = .70). Among the 404 participants, 234 (58%) were female, 
with a median age of 34  years (interquartile range [IQR], 
28–43  years). Three hundred eleven (77%) participants were 
HIV infected, of whom 236 (76%) were on antiretroviral ther-
apy and 155 (50%) were virologically suppressed at enrollment 
(viral load <400 copies/mL) (Table  1). Half (n  =  204 [50%]) 
of participants reported living in urban subdistricts, and 133 
(33%) participants lived in eThekwini district. Mobility of 
TRAX participants was high, with 89 (22%) participants report-
ing living at a different residence than their current residence in 
the previous 5 years; 41 (46%) of those residences were in a dis-
trict other than their current residence. Interdistrict movement 
was also common; of those participants that reported spending 
>2 hours per week at congregate locations (n = 254), 93 (37%) 
named a congregate location in a different district than their 
current residence.

Diagnosed XDR TB cases
n = 1027 Reasons for not screening

Not contacted, n = 506

Reasons for nonenrollment:
Refused, n = 67
Not reachable, n = 29
Deceased or severely ill, no family
member, n = 8
Family did not consent, n = 5
Residence outside KZN, n = 2
Other, n = 6

Reasons for missing sequencing:
No isolate available, n = 8
Failed SNP quality filters, n = 52

Screened
n = 521 (51%)

Enrolled in TRAX
n = 404 (39%)

WGS available
n = 344 (85% of enrolled)

58 996 total pairs

≤5 SNPs
n = 182

1084 pairs

≤3 SNPs
n = 116

240 pairs

0 or 1 SNPs
n = 24

18 pairs

Figure  1. Study flowchart. Abbreviations: KZN, KwaZulu Natal; SNP, single-nucleotide polymorphism; TRAX, Transmission of HIV-Associated XDR-TB study; WGS, 
whole-genome sequencing; XDR-TB, extensively drug-resistant tuberculosis.
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Mycobacterium tuberculosis isolates from 344 (85%) partic-
ipants passed all sequencing quality filters and were available 
for analysis, creating a total of 58 996 unique case-pairs. Cases 
with WGS were similar to all enrolled cases (Table 1). Among 
these case-pairs, 1084 (1.8%) differed by ≤5 SNPs, indicating 
a genomic link; these case-pairs involved 182 unique partici-
pants (Figure 1). Among these 182 cases, the median number of 
genomic links per case was 6 (IQR, 2–17), with 63 (35%) par-
ticipants having >10 genomic links (Supplementary Figure 1). 
These 182 participants reported residences across all 11 districts 
in KwaZulu-Natal province, and were demographically similar 
to nonlinked cases (Tables 1 and 2; Figure 2).

Geographic Distance Between Genomically Linked Participants

Among the 1084 genomically linked case-pairs, the homes of 3 
(0.3%) case-pairs were within 1 km of one another, 12 (1%) were 
within 5 km of one another, and 29 (3%) were within 10 km of 
one another. The majority of case-pairs’ homes (871 [80%]) were 
≥50 km apart, and the homes of more than half (589 [54%]) of 
case-pairs were >100 km apart. The median distance between 
the home residences of genomically linked cases was 108 km 

(IQR, 64–162 km). This distance was similar when we increased 
the stringency of the threshold for genomic links: Among pairs 
with <3 SNPs, the median distance was 117 km (IQR, 67–162 

Table  1. Characteristics of Participants in the Transmission of Human Immunodeficiency Virus–Associated Extensively Drug-Resistant Tuberculosis 
(TRAX) Study Cohort, and Comparison to Subset With Whole-Genome Sequencing Results and With Genomic Links—KwaZulu-Natal Province, South Africa

Characteristic
TRAX Cohort

(n = 404)
Cases With WGS 

(n = 344) P Valuea
Genomically Linked Cases  

(≤5 SNPs) (n = 182) P Valueb

Demographic characteristics

 Female sex  234 (58) 202 (59) .44 111 (61) .37

 Age, y, median (IQR) 34 (28–43) 34 (29–43) .19 34 (29–44) .97

  0–15 16 (4) 12 (3) .21 9 (5) .47

  16–34 207 (51) 171 (50) 88 (48)

  35–54 150 (37) 134 (39) 71 (39)

  ≥55 31 (8) 27 (8) 14 (8)

 Monthly household income, South African rand

  <500 139 (34) 120 (35) .36 64 (35) .27

  500–2500 186 (46) 153 (44) 83 (46)

  >2500 79 (20) 71 (21) 35 (19)

Clinical characteristics

 Current or former smoker 39 (10) 35 (10) .47 18 (10) .98

 Diabetes 23 (6) 22 (6) .15 10 (5) .47

 HIV infected 311 (77) 266 (77) .70 145 (80) .27

  Receiving ART 236 (76) 204 (77) .49 108/145 .32

  CD4 count, cells/μL, median (IQR) 340 (117–431) 240 (111–425) .26 233 (104–316) .54

  Virologic suppression (<400 HIV RNA copies/mL) 155 (50) 134 (39) .56 74 (41) .49

 Cough

  Patients with cough 333 (82) 284 (83) .87 147 (81) .35

  Median duration of cough (wk) 8 (4–12) 8 (4–12) .22 8 (4–12) .39

 Sputum smear positive for AFB 270 (67) 235 (68) .31 118 (65) .16

 Previous treatment for any TB 291 (72) 247 (72) .81 127 (70) .38

 Previous treatment for MDR-TB 124 (31) 105 (31) .86 45 (25) .01

Data are presented as No. (%) unless otherwise indicated.

Abbreviations: AFB, acid-fast bacilli; ART, antiretroviral therapy; HIV, human immunodeficiency virus; IQR, interquartile range; MDR, multidrug-resistant; SNP, single-nucleotide polymorphism; 
TB, tuberculosis; TRAX, Transmission of HIV-Associated XDR-TB study; WGS, whole-genome sequencing.
aP values compare cases with WGS (n = 344) to all TRAX participants (n = 404).
bP values compare linked cases (n = 182) to all cases with WGS (n = 344).

Table 2. Geographic Distribution of Extensively Drug-Resistant Tuberculosis 
Cases, by District

District
No.

(% of Total)
Population,  
Thousands

Genomically Linked
(% of Total)

Amajuba 4 (1.2) 500 (4.9) 1 (0.5)

eThekwini 115 (33) 3400 (33) 53 (29)

iLembe 11 (3.2) 607 (5.9) 7 (4)

Sisonke 4 (1.2) 461 (4.5) 3 (2)

Ugu 32 (9.3) 722 (7.0) 14 (8)

Umgungundlovu 37 (10.8) 1018 (10) 26 (14)

Umkhanyakude 19 (5.5) 626 (6.1) 9 (5)

Umzinyathi 53 (15.4) 510 (5.0) 37 (20)

Uthukela 15 (4.4) 669 (6.5) 9 (5)

Uthungulu 30 (8.7) 908 (8.8) 16 (9)

Zululand 24 (7.0) 840 (8.2) 7 (4)

Total 344 10 261 182

Population by district and percentage of cases in each district with at least 1 genomic link. 
Population statistics sourced from the Statistics South Africa 2011 Census (http://www.
statssa.gov.za/).

http://academic.oup.com/jid/article-lookup/doi/10.1093/infdis/jiy394#supplementary-data
http://www.statssa.gov.za/
http://www.statssa.gov.za/
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km); among pairs with <1 SNP difference, the median distance 
was 127 km (IQR, 59–152 km) (Figure 3). The median distance 
between case-pairs homes’ was >95 km for all strata of sex, HIV 
status, and strain type (Supplementary Table 1).

Because some cases had multiple genomic links, we determined 
whether cases with distant links also had links close to home. We 
selected the geographically closest link for each case. Among the 
182 cases involved in genomically linked case-pairs, 20 (11%) cases 
lived within 5 km of their closest link, 40 (22%) lived within 10 km, 
68 (37%) lived >50 km from their closest geographic link, and 22 
(12%) lived >100 km from their closest link. The median distance 
to the closest geographic link was 32 km (Supplementary Figure 2).

Within- and Between-District Links

Overall, 16% of genomic links were among case-pairs resid-
ing within the same district (172/1084), while 84% (912/1084) 
of genomically linked case-pairs lived in different districts of 
KwaZulu-Natal province (Figure  4; Table  3). Three districts 
had no within-district genomic links (Amajuba, iLembe, and 
Sisonke), and eThekwini had the highest proportion of with-
in-district links (17%). Proportions of within- and between-dis-
trict links were similar when the SNP threshold was reduced to 
<3 SNPs and <1 SNP (Supplementary Table 2).

Approximately half (n  =  526 [49%]) of all case-pairs were 
linked to the urban district of eThekwini. In every district 

except for 2 (Sisonke and Amajuba), the plurality of genomic 
links included a case that lived in eThekwini (Figure 4; Table 3; 
Supplementary Table 3). eThekwini district had the highest pro-
portion (20%) of links with Umzinyathi.

At the individual case level, nearly a third of genomically 
linked cases (53 [29%]) lived in the metropolitan district of 
eThekwini. Of note, 37 of these 53 (70%) cases were genomi-
cally linked to at least 1 other case within eThekwini, and nearly 
all (n  =  51 [96%]) were genomically linked to at least 1 case 
outside of eThekwini. Among the 129 cases who lived outside 
of eThekwini, approximately half (n  =  59 [46%]) had at least 
1 genomic link within their home district. Nearly all (n = 127 
[96%]) had at least 1 genomic link outside their home district, 
and 76 (61%) of those cases had at least 1 genomic link with a 
case in eThekwini.

Adjustment for Differential Enrollment by District

Enrollment fractions, based on the total number of diagnosed 
cases in each district, ranged from 0.22 in Sisonke and Amajuba 
to 0.50 in Umkhanyakude. Adjusting for enrollment, the pro-
portion of within- and between-district links was 15% and 85%, 
respectively, which is nearly identical to the proportions in the 
unadjusted analysis. District-specific proportions of within- 
and between-district links were also similar to the unadjusted 
proportions (Supplementary Table  4). When we varied the 
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Figure 2. Black dots indicate locations of reported home residences of TRAX cases who are genomically linked; grey dots indicate those not genomically linked. The eleven 
districts of KwaZulu-Natal are labeled. The most populous district in KwaZulu-Natal is eThekwini, which includes the city of Durban. Note: As of 2015, Sisonke district is 
known as Harry Gwala district and as of 2016, Uthungulu district is known as King Cetshwayo district. 

http://academic.oup.com/jid/article-lookup/doi/10.1093/infdis/jiy394#supplementary-data
http://academic.oup.com/jid/article-lookup/doi/10.1093/infdis/jiy394#supplementary-data
http://academic.oup.com/jid/article-lookup/doi/10.1093/infdis/jiy394#supplementary-data
http://academic.oup.com/jid/article-lookup/doi/10.1093/infdis/jiy394#supplementary-data
http://academic.oup.com/jid/article-lookup/doi/10.1093/infdis/jiy394#supplementary-data
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proportion of cases enrolled in eThekwini relative to other dis-
tricts (assuming enrollment was up to 40% higher in eThekwini 
than in other districts), eThekwini still accounted for the plural-
ity of links in all but 2 districts.

DISCUSSION

We aimed to define the spatial scale and identify geographic pat-
terns of XDR-TB transmission in KwaZulu-Natal, South Africa. 
We found that genomically linked pairs of XDR-TB cases gen-
erally lived far apart, and that the majority (84%) of genomic 
links were between cases who lived in different districts. Nearly 
half of all genomically linked case-pairs involved a case in eThe-
kwini district. Taken together, this evidence suggests that move-
ment across districts, as well as into and out of eThekwini, may 
play a central role in the dissemination of XDR-TB across the 
province.

The median geographic distance between genomically 
liked cases was 108 km, which is remarkably high consider-
ing that TB cases with genetically similar strains have been 

found to be geographically clustered in other settings [38, 
39]. We found similarly high geographic distances at more 
stringent thresholds of 3 and 1 SNPs. Although there is no 
universal SNP threshold for defining a direct transmission 
link, there is general agreement that the threshold should 
be tailored to local TB epidemiology [40, 41]. Furthermore, 
we also examined median distance by strain type, given that 
the genomic epidemiology of XDR-TB in KwaZulu-Natal 
is dominated by a single, highly clonal strain (LAM4) [42]. 
The median distance between genomically linked cases was 
similarly high among pairs of cases with the LAM4 strain 
and among non-LAM4 pairs. Although the LAM4 strain 
accounted for the majority of genomic links in our study, the 
phenomenon of the predominance of an individual clone is 
common in other settings with a high prevalence of drug-re-
sistant TB [43, 44].

The high proportions of between-district links and links 
with eThekwini suggest that cross-district movement, and per-
haps movement into and out of eThekwini, plays a central role 
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in patterns of XDR-TB transmission in KwaZulu-Natal. While 
previous studies have shown concentrations of TB cases in urban 
areas, suggesting that these settings are conducive to transmis-
sion, they have not examined the role of urban settings in driving 
transmission patterns and incidence in broader geographic areas 
[13, 45]. Although our convenience sample of XDR-TB cases 
diagnosed during the study period (n = 404 [39%]) does not pro-
vide a complete set of transmission links, we performed several 

analyses to assess the robustness of our results to potential selec-
tion bias. First, the demographic characteristics of TRAX cases 
were similar to all diagnosed cases in terms of age, sex, and the 
district of diagnosing facility. Second, our bias analysis showed 
that the proportions of between-district links and links with 
eThekwini remained high under scenarios of differential enroll-
ment by district. Last, given that most cases of TB progress to 
active disease within 2 years of infection, it is likely that we cap-
tured the majority of relevant transmission links among TRAX 
cases, and that these links reflect larger transmission patterns in 
KwaZulu-Natal [46].

Collectively, these findings provide insight into possible 
drivers of XDR-TB transmission in KwaZulu-Natal. Human 
movement and migration can transport pathogens across long 
distances, resulting in transmission that occurs far from an indi-
vidual’s home. Cyclical migration between rural and urban areas 
for employment is common in South Africa and in other rap-
idly developing countries, and effectively creates “bridge” pop-
ulations between urban and rural areas. This type of migration, 
which has previously been linked to HIV transmission, could 
also be driving TB transmission [33]. As such, it could explain 
both the large distances between the homes of genomically 
linked cases and the fact that cases were more likely to be linked 
to eThekwini district than to another case in their home district.
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Figure 4. The proportion of genomic links between each district out of the total number of links involving that district is represented by the color of the line. Amajuba 
district, which had only one genomic link, was excluded from this analysis.

Table 3. Proportions of Within- and Between-District Genomic Links (≤5 
Single-Nucleotide Polymorphisms) in KwaZulu-Natal

 District
Total 
Links

Within-District  
Links, No. (%)

Between-District  
Links, No. (%)

Links With  
eThekwini,  

No. (%)

Amajuba 1 0 (0) 1 (100) 0 (0)

eThekwini 526 91 (17) 435 (83) …

iLembe 32 0 (0)  32 (100) 10 (31)

Sisonke 61 0 (0) 61 (100) 12 (20)

Ugu 236 12 (5) 224 (95) 75 (32)

Umgungundlovu 313 23 (7) 290 (93) 100 (32)

Umkhanyakude 97 1 (1) 96 (99) 25 (26)

Umzinyathi 334 32 (10) 302 (90) 104 (31)

Uthukela 160 7 (4) 153 (96) 45 (28)

Uthungulu 171 5 (3) 166 (97) 50 (29)

Zululand 65  1(2) 64 (99) 14 (22)
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In addition to migration for employment, individuals may 
move between districts for other reasons. A  previous analysis 
of TRAX participants showed that 36% of cases who were diag-
nosed with XDR-TB in eThekwini lived in a different district, 
indicating that travel from rural to urban areas for healthcare is 
common [47]. Importantly, travel to seek TB diagnosis and treat-
ment is likely to coincide with an individual’s infectious period, 
potentially providing abundant opportunities for transmission. 
Interdistrict travel, be it for employment, healthcare, or other rea-
sons, expands the geographic range of settings that are relevant 
for transmission. Indeed, almost a quarter of congregate loca-
tions reported by TRAX participants were outside of their home 
district, further suggesting that many locations that are potential 
settings of exposure or transmission may be distant from home.

There are several limitations to this study. Underdiagnosis of 
XDR-TB remains a challenge in resource-limited settings where 
insensitive diagnostic tools are commonly used and limited lab-
oratory capacity curbs access to comprehensive drug suscepti-
bility testing. As a result, transmission patterns observed among 
diagnosed cases provide only a limited characterization of prov-
ince-wide patterns. In this study, however, we employed WGS to 
identify case-pairs with a high likelihood of transmission based on 
stringent SNP thresholds. The spatial scale we observed suggests an 
important role of migration, even if intermediate cases in the trans-
mission chain were not diagnosed or enrolled in TRAX. Second, 
we captured participants’ homes as only 1 location. In a setting like 
KwaZulu-Natal where migration is common, individuals may have 
multiple “current” or recent residences, all of which may be possible 
locations of TB exposure and transmission. Thus, the 22% of cases 
that reported living in a different residence in the past 5 years may 
represent a lower bound on the proportion of cases that occupy 
multiple residences throughout the year. Future studies should 
aim to understand the role of cyclical migratory patterns and mul-
tiple residences in defining the settings relevant for TB exposure 
and transmission. Last, “mixed” infections, or genetically distinct 
populations within the same host, present potential challenges for 
inferring transmission based on a single Mtb isolate [48]. Yet, we do 
not expect mixed infections to be differential with respect the loca-
tion of participants’ homes, suggesting that our results are robust to 
the potential effects of within-host bacterial heterogeneity.

Evidence that the drug-resistant TB epidemic is increasingly 
attributable to transmission of drug-resistant strains has high-
lighted the importance of understanding transmission patterns 
to prevent incident cases [5, 6, 49, 50]. Despite the challenges 
of measuring transmission, the use of next-generation bacterial 
sequencing technologies brings us a step closer to understand-
ing the settings and modes of contact sustaining TB trans-
mission in high-burden settings. By defining the spatial scale 
of transmission, we provide preliminary data about transmis-
sion patterns and lay the foundation for further studies that 
more explicitly examine associations between casual contact 
in urban settings, migratory behavior, and the ongoing spread 

of XDR-TB. Ultimately, this knowledge can inform the devel-
opment of tailored prevention strategies that target geographic 
areas and demographic groups that contribute disproportion-
ately to transmission.
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