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Abstract

Data analysis used for biomedical research, particularly analysis involving metabolic or signaling 

pathways, is often based upon univariate statistical analysis. One common approach is to compute 

means and standard deviations individually for each variable or to determine where each variable 

falls between upper and lower bounds. Additionally, p-values are often computed to determine if 

there are differences between data taken from two groups. However, these approaches ignore that 

the collected data are often correlated in some form, which may be due to these measurements 

describing quantities that are connected by biological networks. Multivariate analysis approaches 

are more appropriate in these scenarios, as they can detect differences in datasets that the 

traditional univariate approaches may miss. This work presents three case studies that involve data 

from clinical studies of autism spectrum disorder that illustrate the need for and demonstrate the 

potential impact of multivariate analysis.
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1. Introduction

Statistical analysis is a critical component for supporting any finding—whether from a 

clinical trial or other data collection. While there are numerous types of scenarios where 

such an analysis may need to be applied, two expository examples are: (1) when a clinical 

trial tests measurements from two or more populations, such as healthy versus diseased or 

placebo versus treatment; or (2) when a patient’s blood sample is analyzed and the measured 

values are compared against reference ranges for a healthy individual. In both cases, the 

analysis is typically performed by comparing the representative value of one specific 

measured quantity against the same measured quantity of others, and this comparison is 

typically done for each measured quantity. However, such an approach will ignore 

correlations that may exist between the different measured quantities. If the measured 

quantities are representative of activity in a biological network where components are 

connected via reactions, interactions, or regulatory effects, such as in metabolic or signaling 

pathways, then traditional univariate approaches will potentially misrepresent the true 

behavior of the system under investigation. Multivariate analysis can address this 

shortcoming and, more accurately, it can be used to elucidate the characteristics of a 

biological network.

The value of considering multiple quantities simultaneously is recognized in the medical and 

biomedical communities, as demonstrated by the use of measurement ratios for univariate 

statistical analysis. The ratio of S-adenosylmethionine (SAM) to S-adenosylhomocysteine 

(SAH), for example, is used as an indicator of DNA methylation capacity [1]. Kidney 

functioning can be assessed with the ratio of blood urea nitrogen to creatinine in the plasma 

[2]. Furthermore, the ratio of total cholesterol to high-density lipoprotein cholesterol is used 

to provide an assessment of cardiovascular health [3]. Using ratios or observing the 

statistical distribution of ratios, instead of analyzing the separate values individually, can be 

advantageous as the interactions between different biological components may then be 

considered. However, the ability to take correlations of a larger number of measurements 

into account, without needing to specify the relationships, would be of even greater benefit. 

Multivariate statistical methods, such as Fisher Discriminant Analysis (FDA) [4] and its 

nonlinear extension, Kernel Fisher Discriminant Analysis (KFDA) [5], are promising 

options as they can address the aforementioned drawbacks of univariate analytical 

approaches.

This paper provides three case studies that compare the results obtained from univariate and 

multivariate statistical analyses of data from clinical studies. These case studies illustrate the 

benefits of using multivariate techniques over their univariate counterparts. While one must 

be careful when drawing conclusions from specific case studies about a more general 

setting, this work is nevertheless intended to highlight examples of advantages that can be 

gained by using multivariate analysis techniques, especially in cases where biological 

networks are involved.
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2. Preliminary Information

2.1. Univariate Statistical Analysis

Univariate analyses are those aiming to summarize the characteristics of a single variable. 

These produce the statistics commonly reported in scientific literature, including the mean, 

standard deviation, and quantiles. When comparing a single measurement between two 

study populations, such as placebo and treatment groups, the two-sample t-test can be used 

to test for a significant difference in the group means, provided that the measurement is 

normally distributed in both groups [6]. Alternatively, the Mann-Whitney U test allows one 

to test for a significant difference in medians between two identical, but shifted, distributions 

[7].

2.2. Multivariate Statistical Analysis

Multivariate analysis involves the investigation of multiple variables simultaneously and 

encompasses a number of techniques that can be used to model data arising from complex 

systems. Such techniques take on a variety of forms and are used for a number of different 

tasks. For example, analyses of variance models [8] are commonly used to test the effects of 

multiple categorical factors on a measured response variable. The support vector machine 

[9] is a popular option for the supervised classification of groups of data consisting of a 

number of measurements. Additionally, hierarchical clustering [10] can be used for cluster 

analysis, while partial least squares regression [11] offers an approach for parameter 

estimation. Multivariate methods are often implemented in machine learning tasks in which 

models are developed with existing data and then used to predict new data. FDA is a useful 

method for maximizing separation between two or more groups of data samples [4] and is 

most appropriate when the input variables are continuous and normally distributed [12].

The input of FDA is a set of data samples X, where each sample x is a vector containing a 

fixed number of measurements. With a two-class problem (again consider the placebo versus 

treatment example), a subset of these samples X1 belongs to one class while the remaining 

subset of samples X2 belongs to the other class. The purpose of FDA is to calculate the 

projection vector w, which transforms each x to a single score variable t, that best separates 

the samples in X1 and X2. Separability is quantified by J, the ratio of the between-class 

scatter to the within-class scatter, and w is chosen to maximize this quantity [4]. Figure 1a 

summarizes this linear transformation performed in FDA as applied to individual samples.

The principle of KFDA is similar to that of FDA, except that KFDA is capable of modeling 

nonlinear relationships between input variables rather than just linear ones. Before 

calculating a projection direction w to best separate X1 and X2, KFDA first applies a 

nonlinear transformation to each x, expressed as f = φ(x), to map each to a higher-

dimensional variable space f. Since the explicit mapping of φ(x) is not known, an implicit 

mapping can be defined such that the inner product between any two φ(x) is a Mercer kernel 

[5]. In a two-class problem, all f belonging to one class make up F1 while the f in the other 

class comprise F2. The vector w that best separates F1 and F2 is then determined, with the 

linear projection t = w·f capturing nonlinear relationships in the original variable space of x. 

Like FDA, nonlinear KFDA also aims to maximize the value of J. A schematic of the 
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operations involved in KFDA is provided in Figure 1b. It should also be noted that the radial 

basis function, a commonly-used kernel, will be used in this work.

3. Advantages of Multivariate Approaches for Biological Network Analysis

Three case studies are presented in this section that illustrate some benefits of using 

multivariate approaches to analyze biological networks. The focus of these case studies is on 

folate-dependent one-carbon metabolism (FOCM) and transsulfuration (TS), two metabolic 

pathways with critical roles in the human body (Figure 2). FOCM, which occurs in every 

cell type [13], is involved with the epigenetic control of gene expression through DNA 

methylation [14]. The TS pathway, initiated by the conversion of homocysteine to 

cystathionine, is found in the liver, kidney, pancreas, small intestine, and brain, and 

contributes to the management of intracellular oxidative stress [15,16]. The FOCM and TS 

pathways are connected and together form an important juncture in the larger metabolic 

networks of human cells.

FOCM and TS are believed to be closely intertwined with genetic and environmental factors 

associated with autism spectrum disorder (ASD) predisposition [17] and therefore are often 

the focus of clinical studies investigating metabolic abnormalities in ASD [18–20]. These 

studies have found the ratio of S-adenosylmethionine (SAM) to S-adenosylhomocysteine 

(SAH) [21] to be reduced in individuals with ASD compared to neurotypical (NT) peers, 

which suggests a reduced DNA methylation capacity. The same studies have determined an 

increased proportion of oxidized to reduced glutathione [22], an important antioxidant, to 

indicate an irregular balance between oxidants and antioxidants (redox status) in ASD.

The case studies that follow will highlight three unique aspects of multivariate analysis. 

First, the utility of incorporating multiple measurements for assessing network activity will 

be demonstrated using a general example. Second, advantages of using multivariate over 

univariate methods to analyze FOCM/TS metabolite data will be studied in the context of 

ASD classification. Third, the ability of nonlinear multivariate approaches to uncover 

relationships that linear analyses cannot describe will be explored, with a focus on 

measurements of toxic metals from the urine of individuals with ASD.

3.1. Advantages of Using Multiple Correlated Measurements for Diagnosis: A General Case

Consider a subset of reactions in FOCM associated with DNA methylation to be represented 

by the model in Figure 3. This model is taken to describe FOCM activity in liver cells. The 

metabolic reactions are assumed to proceed according to mass action kinetics and the 

reaction rates are thus proportional to the concentrations of the substrates, similar to the 

FOCM/TS model design used in a previous study [23]. In this model, methionine is 

delivered to liver cells at the rate vin. Methionine is converted to SAM at a rate v1 by 

methionine adenosyltransferase enzymes. SAM is then converted to SAH by 

methyltransferase enzymes at the rate v2, or is depleted by other reactions and excreted at a 

rate described by vdeplete. Finally, SAH is converted to other FOCM products at a rate vout.

Recall that a reduced SAM/SAH ratio has been observed in individuals with ASD and 

indicates a lowered capacity for DNA methylation. In the context of the metabolic model, 
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this implies one of five scenarios: (1) reduced SAM and relatively normal SAH; (2) 

relatively normal SAM and elevated SAH; (3) both reduced SAM and elevated SAH; (4) 

elevated SAM and further elevated SAH; or (5) reduced SAH and further reduced SAM. In 

each scenario, the measurement of both SAM and SAH is required to make an informed 

assessment about DNA methylation capacity. Therefore, measuring SAM or SAH alone will 

not provide sufficient information to form meaningful conclusions about methylation status.

For example, suppose a patient has significantly increased vin, which can be due to a number 

of reasons. All modeled metabolite concentrations (methionine, SAM, SAH) will then 

increase with time, along with their associated reaction rates. Clinical measurement of SAH 

sometime afterwards will indicate an elevated concentration of SAH, and following scenario 

(2) or scenario (3) the unwary clinician might conclude that the patient has a decreased 

SAM/SAH ratio. However, with an additional measurement of SAM it would be discovered 

that the SAM concentration is also elevated and the SAM/SAH ratio is relatively unchanged. 

The only way to verify this is to incorporate multiple measurements into the diagnosis and 

obtain a bigger picture of the network being studied.

A potential alternative to this multivariate approach would be to develop a comprehensive 

network model of the metabolic pathways under investigation and analyze the behavior of 

the network as a whole. While this can provide correlational (and sometimes causal) 

information that a multivariate statistical approach cannot, it also has several drawbacks. For 

one, a network model requires reasonably extensive knowledge of the network’s structure 

and properties, which are not always known, or a very large dataset to construct the 

network’s structure. Understanding the network’s behavior then necessitates that the 

measurements be available for a large number of components of the network, whereas a 

multivariate analysis can be performed with just a subset of these measurements and without 

specifying the relationships between individual components. The presented multivariate 

approach thus offers a simplified, yet effective, representation of the network that can serve 

as a biomarker for the disorder or disease of interest.

3.2. Advantages of Using Multivariate Approaches over Univariate Approaches: 
Application to ASD Classification Using Clinical Measurements of FOCM/TS Metabolites

The purpose of this case study is to illustrate the benefit of incorporating multiple 

measurements, rather than a collection of individual ones, into a procedure for classifying 

two groups of data. To demonstrate this point, data from the Integrated Metabolic and 

Genomic Endeavor (IMAGE) study at Arkansas Children’s Hospital Research Institute [20] 

will be used. The IMAGE study investigates plasma profiles of FOCM and TS metabolites 

in individuals with ASD and how they compare to those of NT individuals. Measurements of 

primary interest in this study are methionine cycle and TS metabolites, as well as DNA 

methylation and oxidative stress markers.

ASD classification has been performed with high accuracy by applying FDA to 

measurements from the IMAGE study [24]. In a multivariate analysis of these data, a subset 

of five measurements was found to provide excellent classification of the ASD and NT 

cohorts. These measurements, which are explained elsewhere in greater detail [20], were: (1) 

the percentage of DNA that is methylated (% DNA methylation), an indicator of epigenetic 
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activity; (2) the concentration of 8-hydroxyguanosine, a marker of oxidative damage in 

DNA; (3) the concentration of glutamylcysteine, the precursor for glutathione; (4) the ratio 

of free oxidized cysteine to free reduced cysteine (free cystine/free cysteine), an indicator of 

extracellular redox status; and (5) the percentage of glutathione molecules that are oxidized 

(% oxidized glutathione).

Table 1 provides descriptive statistics for each of these measurements in the ASD and NT 

cohorts, along with p-values from the two-tailed Welch’s t-test (significance level α = 0.05). 

These numbers indicate a significant difference in the mean between the cohorts for all five 

measurements. To further characterize these differences, the probability density functions 

(PDFs) of each variable were plotted for each group (Figure 4). The differences in means 

between cohorts are apparent in these distributions. However, there is still significant overlap 

of the PDFs, suggesting that these measurements will not allow for an accurate classification 

of a patient when considered individually.

The use of multivariate methods such as FDA can address this issue. Figure 5 shows the 

results of applying FDA to these five measurements using leave-one-out cross-validation 

[25]; this method provides an independent assessment of the model performance by training 

the FDA model on all samples but one, obtaining a projected score for the left-out sample, 

and then repeating this process such that every sample has been left out exactly once. The 

resulting PDFs for the ASD and NT cohorts are well-separated, and when the indicated 

threshold is used for classification, the corresponding Type I and Type II errors are only 

4.8% and 5%, respectively. It must be emphasized that since cross-validation was used in 

this analysis, the problem of potentially overfitting the FDA model by including more 

variables was addressed; these results also indicate the model’s ability to accurately predict 

new data points that were not originally used to develop the model.

In summary, univariate analysis of the five FOCM/TS measurements indicates significant 

differences in the means between the ASD and NT cohorts for each of the measurements. 

However, due to the variance in the measurements, these differences are not sufficiently 

large for purposes of classification. On the other hand, the application of a multivariate 

technique (in this case, FDA) allows us to simultaneously consider all of these 

measurements and determine a pattern in the data that can accurately predict if 

measurements come from a participant in the ASD or NT cohort.

3.3. Advantages of Nonlinear Approaches over Linear Approaches: Application to ASD 
Classification Using Clinical Measurements of Urine Toxic Metals

This final case study examines how nonlinear multivariate methods can uncover 

relationships among measurements that linear methods are unable to capture. The 

advantages of these nonlinear approaches have previously been shown using measurements 

of urine toxic metals that were collected as part of the Comprehensive Nutritional and 

Dietary Intervention Study at Arizona State University [26]. These data are again considered 

here.

Recall that the TS pathway is responsible for the synthesis of glutathione, which plays a 

major role in the regulation of oxidative stress. One use of glutathione is to aid with the 
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removal of unwanted substances, such as toxic metals, from the body by binding them and 

subsequently facilitating excretion. Most of the excretion is done via feces [27], although 

other routes such as excretion via urine can also play a role [28]. Given that children with 

ASD have been found to have reduced levels of glutathione [18], it is likely that their toxic 

metal excretions will be different from those of their neurotypical peers. Thus, urine toxic 

metals can potentially be used as an indicator of FOCM and TS abnormalities in patients 

with ASD.

Descriptive univariate statistics for measurements of three urine toxic metals collected in the 

Comprehensive Nutritional and Dietary Intervention Study [26] are given in Table 2. It 

should be noted that each measurement is normalized by the amount of creatinine to address 

the varying dilution of each urine sample. Among these urine toxic metals, none had means 

that were significantly different between the ASD and NT cohorts when evaluated with the 

two-tailed Welch’s t-test (significance level α = 0.05). This univariate analysis suggests little 

to no separability between the ASD and NT groups based on these three measurements.

Applying FDA to these data does not produce any substantial separation between cohorts 

either (Figure 6). The PDFs resulting from leave-one-out cross-validation overlap almost 

entirely, with the corresponding Type I error at 50% and Type II error also at 50%. Using a 

linear multivariate approach thus does not offer any additional insights for classification. 

This is not unexpected, as the results of the univariate analysis also showed minimal 

differences between the ASD and NT measurements. However, there may be nonlinear 

relationships present that neither univariate nor linear multivariate techniques can describe.

Using nonlinear KFDA with these three urine toxic metal measurements improves the 

classification significantly, as seen in Figure 7. The PDFs after leave-one-out cross-

validation with KFDA produce Type I and Type II errors of 29% and 28%, respectively. 

These results are notably better than those obtained from the linear analysis, though still far 

from being usable as a diagnostic tool. This inability to accurately classify the two cohorts 

highlights that KFDA will not detect strong differences between groups of data that are very 

similar, as is the case with the three urine toxic metal measurements presented here. It is 

nevertheless important to note that the nonlinear approach was still able to identify certain 

differences in the patterns in the data between groups that the linear analysis missed. This 

example highlights that a univariate or a linear approach being unable to find differences 

between two groups does not mean that differences may not exist. This is especially so for 

more complex relationships between variables that may be present in biological networks.

4. Conclusions

Statistical analysis is an integral part of any clinical trial and is also critical for evaluating 

medical laboratory test results. While the current state of practice in many areas of 

biomedical research involving metabolic or signaling pathways is to use univariate statistical 

analysis to evaluate one measurement at a time (across a cohort where this is applicable), 

this approach is sub-optimal when the measured quantities are correlated in some form, as is 

the case when they are connected via a biological network. This work included three case 

studies involving clinical data to demonstrate that significant advantages can be gained from 
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using multivariate statistical analysis on these types of data. It is the opinion of the authors 

that multivariate analysis techniques should be more broadly considered for measurements 

taken from biological networks.
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Figure 1. 
Schematics of the transformations used in Fisher Discriminant Analysis (FDA) and Kernel 

Fisher Discriminant Analysis (KFDA): (a) In FDA, the dot product of vector w with data 

sample x is calculated to obtain the projected value t; (b) KFDA first maps each sample x to 

a higher-dimensional space f according to the nonlinear transformation φ(x). The dot product 

of w with f (rather than with x) is then calculated to obtain the projection t.
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Figure 2. 
Diagram of major metabolites and reactions involved in the folate-dependent one-carbon 

metabolism (FOCM) and transsulfuration (TS) pathways. DNA methylation plays an 

important role in epigenetics and glutathione (GSH) is responsible for the clearance of 

environmental toxins.
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Figure 3. 
A simplified representation of a subset of reactions in FOCM responsible for DNA 

methylation.
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Figure 4. 
Probability density functions (PDFs) of five measurements for ASD and NT cohorts from 

the IMAGE study: (a) % DNA methylation; (b) 8-hydroxyguanosine; (c) glutamylcysteine; 

(d) free cystine/free cysteine; (e) % oxidized glutathione. These PDFs are based on the 

standardized values of each measurement (i.e., all samples for a measurement are scaled 

such that the mean value is 0 and the standard deviation is 1).
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Figure 5. 
Multivariate analysis with FDA using five measurements from the IMAGE study (% DNA 

methylation, 8-hydroxyguanosine, glutamylcysteine, free cystine/free cysteine, and % 

oxidized glutathione). The scores are the projected values obtained by leave-one-out cross-

validation with FDA, while the PDFs were obtained by fitting to the scores. The shown 

threshold corresponds to a Type I error of 4.8% and a Type II error of 5%.
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Figure 6. 
Results of classification using linear FDA with three urine toxic metal measurements 

(aluminum, cesium, tungsten) as inputs. FDA scores were from leave-one-out cross-

validation and the PDFs were obtained by fitting to the scores. The Type I and Type II errors 

are both 50%.
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Figure 7. 
Results of classification using nonlinear KFDA with three urine toxic metal measurements 

(aluminum, cesium, tungsten) as inputs. KFDA scores were from leave-one-out cross-

validation and the PDFs were obtained by fitting to the scores. The corresponding Type I 

and Type II errors are 29% and 28%, respectively.
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Table 1

Means and standard deviations of five FOCM/TS measurements for the autism spectrum disorder (ASD) and 

neurotypical (NT) cohorts from the Integrated Metabolic and Genomic Endeavor (IMAGE) study. Reported p-

values were obtained from the two-tailed Welch’s t-test.

Measurement ASD Mean ± SD
n = 83

NT Mean ± SD
n = 76 p-Value

% DNA methylation 3.37 ± 0.87 4.26 ± 0.90 <0.001

8-hydroxyguanosine (pmol/mg DNA) 89.2 ± 27.9 56.7 ± 17.9 <0.001

glutamylcysteine (μM) 1.87 ± 0.46 2.37 ± 0.59 <0.001

free cystine/free cysteine 1.51 ± 0.58 1.06 ± 0.35 <0.001

% oxidized glutathione 0.22 ± 0.07 0.12 ± 0.04 <0.001
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Table 2

Means and standard deviations of levels of three urine toxic metals in the ASD and NT cohorts from the 

Comprehensive Nutritional and Dietary Intervention Study. Metal levels are in units of μg/g of creatinine. 

Reported p-values were obtained from the two-tailed Welch’s t-test.

Measurement ASD Mean ± SD
n = 67

NT Mean ± SD
n = 50 p-Value

Aluminum 9.03 ± 6.55 8.55 ± 11.15 n.s.

Cesium 4.03 ± 1.92 3.74 ± 1.75 n.s.

Tungsten 0.29 ± 0.25 0.29 ± 0.21 n.s.
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