Skip to main content
. Author manuscript; available in PMC: 2019 Nov 2.
Published in final edited form as: Org Lett. 2018 Oct 17;20(21):6845–6849. doi: 10.1021/acs.orglett.8b02975

Table 1.

Reaction optimization.

graphic file with name nihms-993594-f0002.jpg

entry equiv 1 base (equiv) catalyst
mol%
mol% NH2OH•HCI equiv n-BuNH2 solvent time (h) isolated yield
(%)
R = −CH2CH2Ph (a)
1 NaH (2.0) b
2 2.0 TBAF•3H2O (10) CuCl (20) 30 30 DMF 24 0
3 2.0 LiHMDS (2.0) CuCl (20) 30 2 DMF 24 21
4 2.0 LiHMDS (2.0) CuCl (2) 0 2c DMF 24 0
Pd(dba)2 (4)
5 2.0 LiHMDS (2.0) CuCl (20) 30 2 THF 18 14
Pd(dba)2 (4)
6 2.0 LiHMDS (2.0) CuCl (50) 150 10 THF 18 28
7 2.0 LiHMDS (2.0) CuCl (20) 30 10 H2O/THF 18 49
8 2.0 LiHMDS (2.0) CuCl (20) 30 20 H2O/THF 3 80
R = −CH3 (b)
9 2.0 LiHMDS (2.0) CuCl (20) 30 20 H2O/THF 18 44
10 2.5 LiHMDS (2.5) CuCl (20) 30 20 H2O/THF 1 27
11 1.0 LiHMDS (1.0) CuCl (20) 30 20 H2O/THF 1 57
12 1.5 LiHMDS (1.5) CuCl (20) 30 20 H2O/THF 1 69
13 1.5 LiHMDS(1.5) CuCl (40) 60 20 H2O/THF 1 72
a

Elimination conditions: NaH: THF, 0 to 23 °C, 24 h; TBAF•3H2O: DMF, 60 °C, 3 h; LiHMDS: THF, −78 to 0 °C, 1.5 h.

b

Bromoalkyne intermediate 2a was not observed; coupling was not attempted.

c

Et3N used as base instead of n-BuNH2.