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Abstract

Successful language acquisition hinges on organizing individual words into grammatical 

categories and learning the relationships between them, but the method by which children 

accomplish this task has been debated in the literature. One proposal is that learners use the shared 

distributional contexts in which words appear as a cue to their underlying category structure. 

Indeed, recent research using artificial languages has demonstrated that learners can acquire 

grammatical categories from this type of distributional information. However, artificial languages 

are typically composed of a small number of equally frequent words, while words in natural 

languages vary widely in frequency, complicating the distributional information needed to 

determine categorization. In a series of three experiments we demonstrate that distributional 

learning is preserved in an artificial language composed of words that vary in frequency as they do 

in natural language, along a Zipfian distribution. Rather than depending on the absolute frequency 

of words and their contexts, the conditional probabilities that words will occur in certain contexts 

(given their base frequency) is a better basis for assigning words to categories; and this appears to 

be the type of statistic that human learners utilize.
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1. Introduction

Grammatical categories serve as the foundation of natural language structure. An essential 

part of natural language acquisition involves determining the number of grammatical 

categories, assigning words to these categories, and learning the rules for combining these 

categories to produce and comprehend grammatical utterances. A number of hypotheses 

have been proposed to explain the ease with which children accomplish this seemingly 

complex task. Some accounts claim that syntactic categories must be innately defined (e.g., 
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Chomsky, 1965; McNeil, 1966), while others suggest that categories must be acquired from 

cues in the language input (e.g., semantic bootstrapping: Pinker, 1984, 1987; constructivist 

accounts: Tomasello, 2003). In either case, precisely how learners determine the mapping 

between individual words and the underlying grammatical categories remains unclear.

Distributional information is one cue in the language input that has been proposed as the 

solution to this mapping problem (e.g., Harris, 1954; Maratsos & Chalkley, 1980). On this 

account, learners use the fact that words of the same syntactic category tend to appear in 

highly overlapping distributional contexts as a cue to infer the category structure of the 

language. There is a large literature, using both corpus analyses and artificial grammar 

learning paradigms, demonstrating the availability and utility of such distributional 

information for syntactic categorization (e.g., Cartwright & Brent, 1997; Mintz, 2002, 2003; 

Mintz, Newport & Bever, 2002; Redington, Chater & Finch, 1998; Reeder, Newport & 

Aslin, 2013).

While these findings make important contributions toward our understanding of how 

categories may be acquired from distributional information, it is not yet known whether 

these results will scale up to natural language input. Natural languages differ from the 

artificial languages used in these studies in a number of important ways, including the way 

word frequencies are distributed. Most experimental demonstrations of categorization from 

distributional information rely on artificial languages with carefully balanced word 

frequencies within and across categories to eliminate the possibility that learners will rely on 

extremely superficial statistics to extract categories from the input (e.g., lexical bigram 

frequencies). In contrast, however, word frequencies in natural languages are known to 

follow a Zipfian distribution, in which a small number of words occur with very high 

frequency (e.g. boy, car), while many words occur at much lower frequencies (e.g. filibuster) 
(Zipf, 1965).

The implications of a Zipfian distribution would be unimportant if learners’ sensitivity to 

frequency were coarse. However, research on child language acquisition and on adult 

sentence processing has demonstrated that comprehension, production, and learning are all 

sensitive to lexical frequency and to the frequency with which words occur in various 

sentential contexts (e.g., Goodman et al., 2008; Schwartz & Terrell, 1983; Harris et al., 

1988; Blackwell, 2005; Naigles & Hoff-Ginsberg, 1998; Roy et al., 2009; Holmes et al., 

1989; Trueswell et al., 1993; Lapata et al., 1991; Kidd et al., 2006; Theakston et al., 2004). 

Thus whatever the mechanism for acquiring grammatical categories, it must be robust to 

variations in word frequency.

There is some evidence to suggest that a distributional learning mechanism is not only 

sensitive to these frequency variations but may also benefit from them. For example, learners 

are better at acquiring categories (Valian & Coulson, 1998) and learning both adjacent 

(Kurumada, Meylan, & Frank, 2013) and non-adjacent dependencies (Gomez, 2002) from 

distributional cues if the structures they are learning contain some high frequency elements. 

Researchers suggest that high frequency elements may facilitate learning because they 

provide an additional distributional cue to the learner. A number of studies have also found 

that correlated cues are advantageous for distributional learners (e.g. semantic cues: Braine 
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et al., 1990; morphological cues: Brooks, Braine, Catalano, Brody, & Sudhalter, 1993; 

phonological cues: Frigo & McDonald, 1998; Gerken, Gomez,& Nurmsoo, 1999; Gerken, 

Wilson, & Lewis, 2005; Monaghan, Chater, & Christiansen, 2005; Morgan, Shi, & 

Allopenna, 1996; Wilson, 2002; shared features: Gomez & Lakusta, 2004)

Still, the variations in absolute word frequency (or absolute bigram frequency) that natural 

languages contain are not always relevant to determining what lexical category a word 

belongs to. Functional elements, like a and is, differ dramatically in frequency from items in 

lexical categories, like boy and car, and learners may use this dramatic frequency difference, 

along with other cues such as their prosodic and distributional differences, to differentiate 

these two types of categories. However, lexical items within the same category and across 

different lexical categories also differ in frequency. How does the learner determine which of 

these differences are important for categorization? For example, though one might refer to 

milk often and typhoid only rarely, these words enjoy similar syntactic privileges that come 

from belonging to the category Noun. Furthermore, on a distributional learning account, 

learners must be able to apply knowledge they have acquired about syntactic categories from 

frequent words, which they have heard in many contexts, to novel words that they have 

heard in only a few contexts. Upon hearing the sentence I have a mawg in my pocket, 
learners must infer that other noun contexts are grammatical for this newly encountered 

word mawg, such as There are three mawgs over there and That yellow mawg is nice.

Even more complicating, one may not hear words in a particular context just because those 

words are rare (low frequency), or alternatively those contexts might be absent because they 

are ungrammatical for this lexical item. For example, even though it is grammatical to say 

give a book to the library and donate a book to the library, only give the library a book is 

grammatical; the analogous *donate the library a book is ungrammatical.

How, then, do learners handle these variations in word frequency – and their accompanying 

variations in context statistics – as they acquire grammatical categories from distributional 

information? Psycholinguistic evidence shows that learners are sensitive to these frequency 

variations; but in the acquisition of grammatical categories, frequency variations are not 

necessarily a relevant cue to the underlying category structure of a language. How do 

learners preserve their sensitivity to word frequency variation while not being misled into 

putting words with different frequencies into distinct categories or using frequency 

differences to form too many (or too few) grammatical categories?

The primary objective of this paper is to contribute to the literature on distributional learning 

as a mechanism for the acquisition of grammatical categories by examining how learning is 

affected by variations in word frequency that are modeled after those of natural languages. 

In a series of three artificial language learning experiments, we ask whether lexical 

frequency variation within a grammatical category affects learners’ determination of the 

category to which these items belong or their ability to generalize category information to 

novel words. We provide evidence that, despite substantial word frequency variation in the 

language, learners can make use of distributional contexts to acquire a category and can use 

these contexts to determine when it is appropriate to extend category membership to a novel 

word and when it is not.
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To address these questions, we adapt an artificial language paradigm designed by Reeder, 

Newport, and Aslin (2013) and modified here to incorporate variable word frequency. 

Reeder et al. showed that learners can group nonsense words in this language into categories 

and can also generalize syntactic properties of the category to novel words, based on the 

degree to which the surrounding linguistic contexts for those words overlap. After exposure 

to sentences in the language, category membership for individual words in Reeder et al. was 

based on the number of surrounding lexical contexts for each word that were shared with 

other category members (which we call overlap) and on the probability with which the 

learner hears (or fails to hear) each of the particular word-context combinations. In these 

studies, bigram frequencies for words and their contexts were carefully balanced so that 

these frequencies alone could not be the basis for generalization across test item types and 

across experimental conditions. When exposed to a large sample of the possible sentences in 

the grammar (a high density sampling), learners collapsed words into categories and fully 

generalized novel syntactic contexts to the familiar words based on the category structure 

they had inferred. That is, learners extended full category privileges to all members of the 

category, thus generalizing beyond their input. When we reduced the number of surrounding 

contexts that were shared across lexical items, learners still generalized from familiar to 

novel contexts but were less confident about extending full category privileges to all 

members of the category. These results thus illustrate both the ability of learners to 

generalize and the distributional details on which such generalization is based. In the present 

research we use this paradigm to ask whether these same outcomes can be achieved when 

lexical frequency is imbalanced.

As we describe below, learners are exposed to a set of sentences from an artificial language. 

These sentences have no meaning and do not contain any other cues to the category structure 

of the language beyond the distributional contexts that words from the target category share. 

Crucially, to mirror frequency variation in natural language, the absolute frequency of words 

in the target category varies along a Zipfian distribution. When lexical frequency varies 

widely within and across categories, information about contexts for low frequency lexical 

items will be much more sparse than that for high frequency lexical items. Under these 

circumstances, how will learners use frequency and consistency of contexts to make 

decisions regarding categorization and generalization? Words that occur at low frequencies 

overall, or at low frequencies in specific contexts, could indicate the presence of a separate 

category (thereby leading a learner to restrict generalization). Alternatively, their rarity could 

simply reflect the Zipfian distribution of words within categories (and should have no effect 

on generalization). Learners might overcome these variations by several methods. They 

might use the distributional information from the most frequent words in order to form a 

category, and then apply the full set of contexts associated with this category to other words 

that share some of these contexts, regardless of their frequency. Alternatively, they might 

compute the conditional probabilities with which words occur in each of their possible 

contexts, taking the overall frequency of the word as a baseline against which its occurrence 

in specific contexts is assessed. As a third alternative, when words are less frequent, learners 

might be less certain about their status within the category or about the category as a whole. 

This would lead to decreased generalization, either specifically for low frequency words or 

for all lexical items in the category.
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Since words and contexts in real languages do indeed vary dramatically in frequency, 

studying the effects of such frequency variations is important for understanding how 

statistical learning works in such circumstances (see also Kurumada, Meylan, & Frank 

(2013), who used Zipfian frequency variations in statistical learning of word segmentation 

and found that such variations can be advantageous). By introducing large lexical frequency 

variations in the input, we will not only explore how this impacts category formation and 

generalization; we will also test whether previous distributional learning results scale-up to 

more naturalistic input, and precisely how computations in natural language acquisition are 

adjusted for frequency variations.

2. Experiment 1

In Experiment 1 learners are exposed to a large sample of the possible sentences in the 

language (a high density sampling), and the contexts surrounding the words in the target 

category have a high degree of overlap. These factors should lead learners to conclude that 

the target words all belong to a single category and therefore to generalize to novel 

grammatical contexts (Reeder et al, 2013). However, in the present experiment, in contrast to 

previous research on category formation, the words of the language vary in their frequency 

of occurrence: they are divided evenly into high frequency, mid frequency, and low 

frequency words. This results in the word sequences that form the contexts for these words 

(word bigrams) also being high, mid, or low frequency. This design thus allows us to ask 

whether the absolute frequency of individual words and their combinations with other words 

– or, rather, their patterns and probabilities of occurrence with other words, regardless of 

how frequent the word is – determines the formation of syntactic categories and the 

generalization of words to novel contexts.

We also will examine the extreme case in which a novel word appears very infrequently and 

only in a single linguistic context. This provides a particularly strong test of generalization: 

its membership in a category is supported by only a single familiar context, but other words 

in the target category, all of which occur much more frequently, also occur in the same 

context (as well as in others). Learners might either collapse this rare word into the category 

and extend to it all of the unattested contexts – in effect, interpreting the absence of these 

combinations in the input as due to the overall low frequency with which the word occurs – 

or maintain this rare word as a lexical exception, in light of the missing information about 

the contexts in which it can occur. By examining how learners interpret this minimally 

overlapping word, we can better understand the use of lexical frequency and contextual 

probability in generalization.

Recall that, to be successful in acquiring categories from distributional information, learners 

must be sensitive to variation in word frequency but not be misled into putting words with 

different frequencies into distinct categories or using frequency differences to form too many 

(or too few) grammatical categories. We hypothesize that, while learners in Experiment 1 

may show sensitivity to variation in word frequency in their sentence ratings, their overall 

pattern of generalization will remain the same across all word frequency levels. Under the 

conditions of Experiment 1 (high density, high overlap), learners should rate familiar and 

novel sentences containing a given x-word the same, even though x-words with high 
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frequency may be rated higher overall than those with low frequency. When familiar and 

novel sentences are rated the same – that is, when learners rate grammatical sentences they 

have never heard before to be just as well formed as the familiar sentences they heard during 

exposure – this indicates that they have formed a category, extending the same category 

privileges (permitted syntactic contexts) to all members of the category.

2.1 Method

2.1.1 Participants—Twenty-one monolingual, native English-speaking undergraduates 

from the University of Rochester were paid to participate in this experiment. Six participants 

were excluded from the analyses due to equipment failure (4) or for failure to comply with 

experimental instructions (2). Of the remaining participants, eight were exposed to 

Language 1 and seven were exposed to Language 2, which differed only in the specific 

words assigned to the grammatical categories.

2.1.2 Stimulus Materials—Sentences were generated from a grammar of the form 

(Q)AXB(R). Each letter corresponds to a category of nonsense words (see Table 1). 

Categories A and B contained 3 words each, X contained 4 words, and Q and R contained 2 

words each. X is the target category of interest; A and B served as contexts for X, providing 

distributional information that can indicate whether the different X-words are part of the 

same category (that is, have the same privileges of occurrence in A_ and _B contexts) or, 

rather, have individually distinct contexts in which each of them can occur. Q and R words 

are optional, creating sentences of varying length in the language (between 3 to 5 words 

long) and preventing the A, X, and B words from appearing consistently at the beginning or 

end of the sentence.

In this experiment, training sentences were selected such that the words in the target X 

category had highly overlapping contexts. During exposure, X1, X2, and X3 all occurred 

with every A word and every B word (though not with every A_B context). This means that, 

in aggregate, the contexts in which X1, X2 and X3 occurred were completely overlapping in 

terms of the preceding A or the subsequent B word. In contrast, X4 occurred in only one 

context: A1X4B1. Because of this, X4 was minimally overlapping with the other words in the 

X category (see Table 2). Focusing on the target X-category and its immediate A and B 

context cues, there were 3×4×3 = 36 possible AXB strings in the language. Of these, 

learners were exposed to 19 AXB combinations: 6 with X1, 6 with X2, 6 with X3, and 1 with 

X4. The rest were withheld for testing generalization. Reeder et al. called this a dense 
sampling of the target category, since learners were exposed to more than half of the 

possible AX1–4B combinations.

In order to test learners’ sensitivity to variations in lexical frequency, we systematically 

varied the exposure to each X-word along a Zipfian distribution to create high, medium, and 

low word-frequency groups. AXB strings containing X1 were presented 3 times each (low 
frequency) for a total of 18 strings, strings containing X2 were presented 11 times each 

(medium frequency) for a total of 66 strings, and strings containing X3 were presented 22 

times each (high frequency) for a total of 132 strings. As in a Zipfian distribution, our 

second most frequent X-word (medium) occurred half as often as our most frequent X-word 
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(high). In a Zipfian distribution, the word frequencies continue to follow this pattern, with 

the next most frequent X-word occurring approximately half as often as the word one 

frequency rank above it. We chose to present our lowest frequency X-word, X1, 18 times, 

which corresponds approximately to the fourth most frequent word in a Zipfian distribution 

for our corpus size. We selected this value because the single-context, minimally-

overlapping X4 string was presented 18 times. Crucially, then, X4 was heard just as often as 

the low-frequency X1, but the contexts surrounding X1 strings were broader than the single 

context surrounding the X4 strings. The possible X1 strings were densely sampled (two-

thirds of the possible strings were in the input) and included all of the possible A and B 

contexts. X4, however, was sparsely sampled, seen with only one of the 9 possible A_ and 

_B contexts. Of special interest, then, is how well learners are able to generalize to X4 as 

compared with X1. In previous work, if participants acquired X1-X3 as a strong category, 

they also readily included X4 in the category; but when X4 in the present experiment is both 

rare and narrowly distributed, it is not clear whether participants should so readily generalize 

all of the target category’s distributional properties to it.

Because of the optional Q and R flanker words, each AXB string could be presented in 

multiple contexts: AXB, QAXB, AXBR, or QAXBR. The frequency of these different Q/R 

contexts was divided equally for each frequency group, though not every AXB string was 

seen with each of the Q’s and R’s. Altogether the exposure set consisted of 234 strings.

Test strings consisted of familiar grammatical AXB strings that were presented during 

training, novel but grammatical AXB strings that were withheld from exposure, and 

ungrammatical strings that were of the form AXA or BXB (with no word repetitions in any 

string). Test strings were presented to participants in a pseudorandom order: the first half of 

the test contained 10 familiar, 13 grammatical novel, and 12 ungrammatical strings; the 

second half repeated the 10 familiar and 13 novel strings, but presented 12 new 

ungrammatical strings and presented all of these test strings in a different randomized order. 

Of the 10 familiar test strings, there were three containing each of X1, X2, and X3 and one 

containing X4 (recall that there is only one familiar X4 string possible); of the 13 novel test 

strings, there were three containing each of X1, X2, and X3, and four containing X4; and of 

the 12 ungrammatical strings in each test half, there were three containing each of X1, X2, 

X3, and X4 strings. The difference in ratings of familiar and ungrammatical strings tells us 

whether participants have learned the basic properties of the language. We use the difference 
between ratings of familiar and novel grammatical strings to indicate whether learners have 

collapsed X-words into a single category. If this difference is large, learners are not 

generalizing to the novel, unheard contexts for each X-word. If this difference is small, 

learners are generalizing beyond their input, which suggests that they have formed an X-

category that allows every X-word to appear in the same contexts as every other X-word.

During the test, participants were asked to rate only a subset of the possible novel AXB 

strings. To ensure that there was nothing special about the particular subset of novel strings 

that were tested, we divided subjects into two testing groups. Each testing group received a 

different subset of novel items to rate.
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To create the training and test strings, nonsense words were recorded separately, each with 

terminal and with non-terminal intonation, by a female native English speaker. These 

recordings were adjusted with Praat (Boersma, 2001) to achieve relatively consistent pitch, 

volume, and duration among words. Words were then concatenated into sentences in Sound 

Studio with 50ms of silence inserted between them. Sentence-initial and medial words had 

non-terminal intonation, whereas sentence-final words had terminal intonation.

2.1.3 Procedure—Prior to exposure, participants were instructed to listen carefully 

while they heard sentences from a made-up language, because they would be tested on their 

knowledge of the language later. During exposure, participants listened passively via 

headphones as a custom software package presented the training strings with 1500ms of 

silence between sentences. After training, participants were presented with individual test 

sentences and asked to rate each sentence based on whether the sentence came from the 

language they heard during training: 5 meant the sentence definitely did come from the 

language, and 1 meant the sentence definitely did not come from the language.

2.2 Results

We found no significant differences in ratings of the two sets of novel grammatical strings 

(F<1), suggesting that we did not inadvertently select a biased set of novel grammatical 

strings to test. We therefore collapsed ratings across the two testing groups for all 

subsequent analyses. Additionally, there was no main effect of how words were assigned to 

categories in Language 1 versus Language 2 (see Table 1) (F<1), so we collapsed 

participants’ ratings across the two languages.

As in Reeder et al. (2013), we analyzed ratings of strings containing X1, X2, and X3 

separately from strings containing X4
1. Though the raw number of exposures to X1 and X4 

were the same during training, the nature of the exposure and test for these strings was quite 

different: X1 was heard 18 times across 6 different contexts, whereas X4 was heard 18 times 

in just one context; thus there was only one familiar X4 string to test, whereas there were 6 

familiar X1 strings to test. Given this difference, we first focus on the patterns of 

generalization across X1–3 test strings, and then consider generalization to novel AX4B test 

strings separately. Because individual learners may have used our rating scale in different 

ways, subject ratings were examined as raw scores and also were transformed to z-scores for 

each individual. There were no differences in results across analyses using the raw vs. 

transformed ratings; we therefore report only the raw ratings here.

2.2.1 X1–3 analyses—Figure 1 shows the mean ratings for the grammatical familiar, 

grammatical novel, and ungrammatical test strings containing X1, X2, and X3. The mean 

rating of familiar strings was 3.54 (SE = 0.08), the mean rating of novel grammatical strings 

was 3.52 (SE = 0.12), and the mean rating of ungrammatical strings was 2.71 (SE = 0.15). 

As in Reeder et al. (2013), this pattern of results provides compelling evidence that learners 

learn the basic structure of the grammar and generalize fully from familiar to novel 

grammatical test strings.

1Analyzing all X-word ratings together does not qualitatively change the results.
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To examine this generalization effect in more detail, we ran a repeated-measures ANOVA 

with test-item type (familiar, novel, ungrammatical) and X-word (X1, X2, X3) as within-

subjects factors. This allowed us to determine how ratings differed as a function of word 

frequency (see Figure 2). Mauchly’s test indicated a violation of the sphericity assumption 

for both test type (χ2(2) = 9.35, p < 0.01) and X-word (χ2 (2) = 7.53, p < 0.05), so degrees 

of freedom were corrected using Greenhouse-Geisser estimates (εTestType=0.65, 

εX-word=0.68). The results revealed significant main effects of test-item type (F(1.30,16.87) 

= 14.26, p < 0.001) and X1–3-word (F(1.36,17.74) = 4.94, p < 0.05). There was also a 

significant interaction between test-item type and X-word (F(4,52) = 2.99, p<0.05). 

However, this interaction was not due to a changing effect of word frequency on 

generalization. Planned comparisons showed that ratings of familiar and novel grammatical 

strings did not significantly differ (F(1,13)=0.03, p = 0.86) for any of the X-word types. 

However, ungrammatical strings were rated significantly lower than either familiar or novel 

strings (F(1, 13)=.15.96, p < 0.01), and this difference increased over the X-word types (i.e., 

as X-word frequency increased).

These results suggest that learners are just as willing to generalize from the familiar to the 

novel grammatical combinations for each X1–3-word, regardless of lexical frequency, which 

varied by a factor of 7. Learners also correctly reject ungrammatical strings for each 

frequency level. However, strings containing the low-frequency X1 word are rated lower 

overall (a planned comparison reveals that strings containing X1 are rated significantly lower 

than strings containing X3, p = 0.014), demonstrating sensitivity to lexical frequency but no 

disruption to the pattern of ratings to novel grammatical test-items across lexical frequency. 

That is, there was similar use of distributional cues to category membership across lexical 

items that differ dramatically in frequency.

2.2.2 X4 analyses—As shown in Figure 3, for test items containing X4, the mean rating 

of familiar strings was 3.77 (SE = 0.16), the mean rating of novel grammatical strings was 

3.18 (SE = 0.10), and the mean rating of ungrammatical strings was 2.38 (SE = 0.15). A 

repeated measures ANOVA on these test items, with test type (familiar, novel, 

ungrammatical) as the within subjects factor, revealed a significant main effect of test type 

(F(2,26) = 29.89, p<0.0001). Planned comparisons show significant differences between all 

three test types (for familiar vs. novel grammatical, F(1,13) = 19.05, p < 0.001; for novel 

grammatical vs. ungrammatical, F(1,13) = 17.07, p < 0.001). Generalization for the single-

context X4 category to novel grammatical strings was thus less robust than generalization for 

the X1-X3 categories. It is important to note that X4 appears in the exposure corpus exactly 

the same number of times as X1. Despite this, there was more generalization to novel 

grammatical test items for X1, apparently due to its occurrence with a broader set of A_ and 

_B contexts. It is therefore not the frequency of occurrence of a word, but rather its 

occurrence across distributional contexts, that is more important for category formation and 

generalization.

2.3 Discussion

As in Reeder et al. (2013), we found that when there was dense sampling and complete 

overlap among contexts of the words in the X-category, learners rated familiar and novel 
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X1–3 test strings the same, indicating that they collapsed X1–3 into a single category and 

generalized the allowable contexts across these words. This suggests that lexical frequency 

differences as large as 7:1 do not significantly impact how learners form categories based on 

distributional cues like context overlap and sampling density. Given sufficient exposure to 

fully overlapping context cues, learners will collapse words into a category and generalize 

across gaps in their input. This is not because learners entirely ignore lexical frequency 

information. Learners were sensitive to the lexical frequency differences: strings with low 

frequency X1 words were rated significantly lower than strings with high frequency X3 

words, but the same pattern of generalization to novel grammatical test items was seen 

across all three word frequencies. Importantly, the results from the X4 word emphasize a 

similar point: participants show a somewhat diminished tendency to generalize X4 to all of 

the X-word contexts; but this is due to the reduced range of contexts in which it appeared in 

the exposure corpus, not to its reduced frequency, which was identical to that of the low-

frequency X1 words.

3. Experiment 2

The previous experiment demonstrated that large lexical frequency imbalances do not 

prevent learners from using distributional cues to discover categories in their input, provided 

that the target category members are surrounded by a dense and highly overlapping set of 

context words. However, during natural language acquisition, learners do not always have 

access to dense, highly overlapping samples of input for every word and category they must 

learn. Rather, because learners hear only a sample of the possible sentences in their 

language, they often need to infer what category a word belongs to after hearing only a few 

of the syntactic contexts in which that word can occur. When there are gaps in the input 

(missing syntactic contexts), learners must decide whether those contexts are absent by 

chance or because that particular construction is ungrammatical. This task is further 

complicated when the words in a category (and, as a result, the permitted syntactic contexts 

for that word) occur with unequal frequencies. When word frequency varies along a Zipfian 

distribution, with some being highly frequent and others highly infrequent, gaps in the input 

may be due to a third possibility: low frequency.

In Experiment 2 we tested whether lexical frequency would have a larger impact on 

generalization when the exposure corpus contained systematic gaps, created by reducing the 

overlap of contexts in which different category members appeared. In this corpus, each X-

word appeared with only 2 of the 3 possible A-words and 2 of the 3 possible B-words; the 

X-words differed in which specific A- and B-words they combined with. Learners could 

reasonably interpret these patterns as suggesting that the X-words were a single category, or 

that each X-word had its own subcategorization restrictions. In Reeder et al. (2013) this 

incomplete overlap among words resulted in somewhat decreased generalization to novel 

strings containing X1–3 words and also decreased generalization to a minimally overlapping 

X4 word. Learners did continue to generalize from familiar to novel grammatical contexts, 

but their ratings of novel contexts were lower than those of familiar contexts (though 

substantially higher than their ratings of ungrammatical sequences). Here we explore 

whether this occurs when the same reduction in context overlap appears in X-words of 

varying lexical frequencies, or whether highly variable word frequencies buffer the learner 
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from restricting generalization when contextual gaps occur or, on the other hand, reduce 

certainty and generalization overall.

We hypothesize that learners in Experiment 2 will show sensitivity to variation in word 

frequency in their sentence ratings, but the pattern of generalization shown in Reeder et al. 

(2013) for incomplete overlap will remain the same across all word frequency levels. That is, 

learners will rate novel sentences somewhat lower than familiar sentences across all word 

frequency levels, though X-words with high frequency may be rated higher overall than X-

words with low frequency. As compared to Experiment 1, this lower rating for novel 

sentences would suggest that learners with gaps in the exposure corpus are more uncertain 

about generalizing to novel contexts, but we expected that this pattern would not be altered 

by variable word frequency.

3.1 Method

3.1.1 Participants—Thirty-one adults were paid to participate in Experiment 2. Eleven 

subjects were excluded from all analyses because they did not follow instructions (5), had 

participated in a similar experiment (1), were bilingual (1), were outside of our target age 

range (3), or because of equipment failure (1). All of the remaining participants were 

monolingual, English-speaking undergraduates who had not participated in Experiment 1. 

Eleven participants were exposed to Language 1, and nine were exposed to Language 2, 

which differed only in which specific words were assigned to each grammatical category.

3.1.2 Stimulus Materials and Procedure—Stimulus materials were constructed in 

the same manner as Experiment 1. However, exposure strings were now selected to create 

incomplete overlap in contexts across X1–3-words (see Table 2). This design creates 

systematic gaps in the contexts that support forming a single X-category. X1 was only heard 

with A1, A2, B2, and B3 context words; X2 was only heard with A2, A3, B1, and B3; X3 was 

only heard with A1, A3, B1, and B2; and X4 was only heard in one context (A1X4B1). As in 

Experiment 1, X-word input frequencies followed the ratio 18:66:132:18 for X1:X2:X3:X4, 

which correspond to the first, second, and fourth ranked words in a Zipfian distribution of a 

corpus this size. With the addition of optional Q and R flanker words, the total exposure 

consisted of 234 strings (as in Experiment 1).

All subjects were given a ratings test. As in Experiment 1, the first half of the test contained 

10 familiar, 13 novel, and 12 ungrammatical strings, presented in pseudo-random order; the 

second half repeated the 10 familiar and 13 novel strings with 12 new ungrammatical 

strings, all in a different random order. As in Experiment 1, of the 10 familiar test strings, 

there were three containing each of X1, X2, and X3 and one containing X4 (recall that there 

is only one familiar X4 string possible); of the 13 novel test strings, there were three 

containing each of X1, X2, and X3, and four containing X4; and of the 12 ungrammatical 

strings in each test half, there were three containing each of X1, X2, X3, and X4 strings.

3.2 Results

There was no main effect of language (F<1), so we collapsed the results across the two 

languages for all subsequent analyses.
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3.2.1 X1–3 analyses—Figure 4 shows the mean ratings for the grammatical familiar, 

grammatical novel, and ungrammatical test strings containing X1, X2, and X3. The mean 

rating of X1–3 familiar strings was 3.96 (SE = 0.09), the mean rating of novel grammatical 

strings was 3.63 (SE = 0.09), and the mean rating of ungrammatical strings was 2.61 (SE = 

0.12). As in Reeder et al (2013), then, when X-words did not overlap completely in the 

contexts in which they appeared, learners did not fully generalize from familiar to novel 

grammatical strings; however, they rated both much higher than ungrammatical strings.

To examine how ratings differed as a function of word frequency, we ran a repeated-

measures ANOVA with test-item type (familiar, novel, ungrammatical) and X-word (X1, X2, 

X3) as within-subjects factors. The analysis revealed significant main effects for both factors 

(test item type: F(2,36) = 51.81, p < 0.0001; X-word: F(2,36)=9.71, p<0.0001). Planned 

comparisons showed that ratings of familiar and novel grammatical strings differed 

significantly across the X-word types (F(1,18) = 9.38, p < 0.01). Ungrammatical strings 

were rated significantly lower than either familiar or novel grammatical strings (F(1, 18) = 

50.20, p < 0.0001). There was also a significant difference between the ratings of the low-

frequency X1 strings and the mid frequency X2 strings (F(1,18) = 14.90, p < 0.001) (see 

Figure 5). Importantly, however, there were no significant interactions (F < 1). For all 

frequency levels, familiar strings were rated somewhat higher than novel strings, and both 

were rated quite substantially higher than ungrammatical strings. There was no difference in 

this pattern across different word frequency levels.

3.2.2 X4 analyses—The mean rating of X4 familiar strings was 3.45 (SE = 0.23), the 

mean rating of novel grammatical strings was 2.95 (SE = 0.18), and the mean rating of 

ungrammatical strings was 2.36 (SE = 0.19) (see Figure 6). The ratings for these test items 

were submitted to a repeated-measures ANOVA with test type as the within-subjects factor. 

Mauchly’s test revealed that the sphericity assumption was violated (χ2(2)=8.56, p < 0.05), 

so degrees of freedom were corrected using the Greenhouse-Geisser estimate (ε=0.72). 

There was a significant effect for test-item type (F(1.43, 25.80) = 10.25, p < 0.001). Planned 

comparisons revealed that familiar X4 strings were rated marginally higher than novel 

grammatical X4 strings (F(1,18) = 3.53, p = 0.08), which were rated significantly higher than 

ungrammatical X4 strings (F(1,18) = 14.88, p < 0.001).

3.3 Discussion

As was found in Reeder et al. (2013), the systematic gaps created by incomplete overlap of 

contexts leads learners to be more conservative in generalization. As shown in Figure 4, 

these gaps in Experiment 2 led participants to judge familiar and novel grammatical test 

strings as more different from each other than did participants in Experiment 1 where there 

was complete overlap. These results suggest that learners did not fully collapse X1–3 into a 

single category when context overlap was reduced. Since the exposure in Experiments 1 and 

2 contained the same number of strings and the same ratio of frequency imbalances, variable 

word frequency cannot explain the change in behavior across the two experiments. Instead, 

only the shift in context overlap could be responsible for the observed change in 

generalization behavior. Most important, as we saw in Experiment 1, while there is 

sensitivity to lexical frequency as shown by the significant differences in overall mean 
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ratings of individual X-words, the large lexical frequency variations (7:1 ratio) in the X-

category do not alter the patterns of ratings across different types of test items. That is, 

lexical frequency variations do not alter how learners interpret distributional cues to 

categorization.

While X4 and X1–3 strings showed the same pattern (that is, mean rating of familiar items 

was greater than that for novel grammatical items for both), the difference between novel 

and familiar X4 test items in this experiment was only marginally significant. This is most 

likely due to the fact that there were many fewer X4 test items compared with X1–3 items 

and thus lower statistical power in this comparison. Reeder et al. (2013) also found a 

significant difference between novel and familiar X1–3 items but not X4 items when learners 

were exposed to reduced overlap. However, both differences became significant when 

learners received additional exposure to this reduced overlap. Perhaps when overlap is 

reduced and frequency is highly variable, as is the case in our Experiment 2, learners require 

more evidence of systematic gaps before they restrict generalization to a low-frequency 

novel word.

Overall, in this experiment learners restrict generalization based on the reduced overlaps 

among the contexts in which items occur. This pattern does not change with large 

differences in item frequency.

4. General Discussion

Our results provide further evidence that a powerful statistical learning mechanism is 

sufficient to enable adult learners to acquire the latent category structure of an artificial 

language, even without correlated phonetic or semantic cues. More importantly, our results 

also show that, while learners are sensitive to lexical frequency, substantial lexical frequency 

variations do not alter how learners interpret distributional cues to categorization. That is, 

when learners are exposed to words that have completely overlapping contexts, as in 

Experiment 1, they generalize (participants rated novel sentences no differently than familiar 

sentences). When learners are exposed to words that have partially overlapping contexts 

(i.e., lexical gaps), as in Experiment 2, they restrict generalization somewhat (participants 

rated novel sentences slightly but significantly lower than familiar sentences) but still 

distinguish novel grammatical sentences from ungrammatical strings. These results suggest 

that in a more naturalistic learning environment, where lexical and bigram frequencies are 

not uniform and instead mirror the Zipfian lexical frequency variations present in natural 

languages, distributional learning is still a viable mechanism for category acquisition. 

Importantly, they also suggest that learners do not form their categories based only on high 

frequency lexical items, leaving lower frequency items aside or judging them with greater 

uncertainty. Rather, they apparently conduct distributional analyses similarly on lexical 

items of varying frequency levels, conditioning their expectations about context occurrence 

based on the frequency of the lexical items. In other words, the type of statistic that learners 

use to determine categorization is not the absolute frequency with which words occur in 

each context, but rather the conditional probabilities that words occur in these contexts, 

given their overall frequency. This is consistent with learners’ use of conditional rather than 
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absolute frequency statistics in other experiments as well (see, for example, Aslin, Saffran & 

Newport, 1998; Kurumada et al., 2013).

As we have discussed, when there are gaps in the input (missing syntactic contexts), learners 

must decide whether those contexts are absent by chance or because that particular 

construction is ungrammatical. Previous work has suggested that a distributional learner 

could accomplish this via Bayesian inference (Reeder et al. 2013, Tenenbaum & Griffiths, 

2001). That is, the learner could compute the likelihood that a particular context is missing 

by chance, given the data he or she has experienced. In this framework, the larger the corpus 

– or in the present case, the more frequently a lexical item occurs in the corpus without 

appearing in a particular context – the less likely it is that the context is absent by chance, 

and the more likely the learner should be to rate these withheld contexts as ungrammatical. 

Indeed, when gaps are persistent, both human learners (Reeder et al. 2013) and Bayesian-

inspired models (Qian et al. 2012) are more likely to identify withheld contexts as 

ungrammatical. Importantly, the results of the present experiments suggest that learners do 

not merely compute the likelihood that a context is absent by chance based on its absolute 

frequency in the corpus. Were this the case, our learners should have concluded that low 

frequency words (e.g. X1), with their low frequency of appearance in all contexts, were 

much less likely to be part of the X category and its contexts compared to high frequency 

words (e.g. X3); but we observed no such interaction in our results. Instead, learners 

apparently condition their expectations about context occurrence based on the frequency of 

the lexical items and determine whether to generalize to novel contexts based on these 

frequency-adjusted probabilities.

It is possible that we observed robust categorization in this paradigm because our frequency 

manipulations were smaller (a maximum ratio of 7:1) than frequency ratios in natural 

language input. Despite this difference in scale, however, our results provide important 

insight into how a mature statistical learner interprets frequency information, especially 

given that exposure was limited to only 234 sentences. Research on priming and adaptation 

in language have demonstrated that even short exposures to new linguistic environments can 

bias how language users interpret information in natural languages (e.g., Fine et al., 2013; 

Thothathiri & Snedeker, 2008; Traxler, 2008) and in artificial languages (Fedzechkina et al., 

2012). These results are striking because they demonstrate that in certain situations, recent 

frequency information can rapidly outweigh a lifetime of language experience. Learners in 

our experiments are naïve to both the structure of the artificial grammar and the assignment 

of words to categories. Therefore, we might expect frequency to have a larger effect than it 

would with natural language input, as our learners have no prior biases in this language to 

overcome. Given this, it is unlikely that our results are solely due to scaled-down frequency 

variations.

Of course, in future work the same questions must be studied in child learners. But at least 

for adult learners, the present results support the relevance of distributional learning for 

grammatical categorization by confirming that the same patterns of learning occur across 

lexical frequency variations. Because natural languages do exhibit extreme variations in 

lexical frequency, these results take an important step in suggesting that findings from 

artificial grammar learning experiments of categorization may well apply to natural language 
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learning. Our results also suggest the type of statistics that learners utilize as they acquire 

grammatical categories. As has been shown in studies of word segmentation (Aslin et al., 

1998; Kurumada et al., 2013), statistical learning does not appear to depend primarily on 

simple frequency statistics (such as lexical frequency or bigram frequency), but rather 

utilizes more complex calculations (such as conditional probabilities or Bayesian statistics) 

that involve the expected frequency with which element combinations should occur, given 

their individual element frequencies. While it might seem unlikely that infants and young 

children could be capable of these complex calculations, our studies to date with young 

learners (Aslin et al., 1998; Schuler et al., in preparation) support the notion that statistical 

learning involves such computations at many levels of analysis.
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Figure 1. 
Mean ratings from Experiment 1, comparing familiar, novel, and ungrammatical test strings 

for X1, X2 and X3 words combined. Participants rate on a scale from 1 – 5 sentences 

presented during exposure (familiar grammatical), sentences that are of the form AXB but 

were not presented during exposure (novel grammatical), and sentences that were 

ungrammatical. Error bars are standard error.
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Figure 2. 
Mean ratings of familiar, novel, and ungrammatical test strings for Experiment 1, separated 

by X-word. Participants rate on a scale from 1 – 5 sentences presented during exposure 

(familiar grammatical), sentences that are of the form AXB but were not presented during 

exposure (novel grammatical), and sentences that were ungrammatical. Error bars are 

standard error.
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Figure 3. 
Mean ratings from Experiment 1, comparing familiar, novel, and ungrammatical test strings 

for X4 word. Participants rate on a scale from 1 – 5 sentences presented during exposure 

(familiar grammatical), sentences that are of the form AXB but were not presented during 

exposure (novel grammatical), and sentences that were ungrammatical. Error bars are 

standard error.
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Figure 4. 
Mean ratings from Experiment 2, comparing familiar, novel and ungrammatical test strings 

for X1, X2, and X3 words combined. Participants rate on a scale from 1 – 5 sentences 

presented during exposure (familiar grammatical), sentences that are of the form AXB but 

were not presented during exposure (novel grammatical), and sentences that were 

ungrammatical. Error bars are standard error.
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Figure 5. 
Mean ratings of familiar, novel, and ungrammatical test strings for Experiment 2, separated 

by X-word. Participants rate on a scale from 1 – 5 sentences presented during exposure 

(familiar grammatical), sentences that are of the form AXB but were not presented during 

exposure (novel grammatical), and sentences that were ungrammatical. Error bars are 

standard error.

Schuler et al. Page 22

Lang Learn Dev. Author manuscript; available in PMC 2018 November 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. 
Mean ratings from Experiment 2, comparing familiar, novel, and ungrammatical test strings 

for X4 word. Participants rate on a scale from 1 – 5 sentences presented during exposure 

(familiar grammatical), sentences that are of the form AXB but were not presented during 

exposure (novel grammatical), and sentences that were ungrammatical. Error bars are 

standard error.
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Table 1.

Assignment of words to categories for Languages 1 and 2.

Language 1

Q A X B R

spad flairb tomber fluggit gentif

klidum daffin zub mawg frag

glim lapal bleggin

norg

Language 2

Q A X B R

frag gentif spad zub lapal

daffin mawg fluggit tomber flairb

klidum bleggin glim

sep
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Table 2.

All possible strings generated from the (Q)AXB(R) grammar.

Strings with X1 Strings with X2 Strings with X3 Strings with X4

A1 X1 B1 * A1 X2 B1 A1 X3 B1 * # A1 X4 B1 * #

A1 X1 B2 A1 X2 B2 * A1 X3 B2 * # A1 X4 B2

A1 X1 B3 * # A1 X2 B3 * A1 X3 B3 A1 X4 B3

A2 X1 B1 A2 X2 B1 * # A2 X3 B1 * A2 X4 B1

A2 X1 B2 * # A2 X2 B2 * A2 X3 B2 A2 X4 B2

A2 X1 B3 * # A2 X2 B3 A2 X3 B3 * A2 X4 B3

A3 X1 B1 * A3 X2 B1 * # A3 X3 B1 A3 X4 B1

A3 X1 B2 * A3 X2 B2 A3 X3 B2 * # A3 X4 B2

A3 X1 B3 A3 X2 B3 * # A3 X3 B3 * A3 X4 B3

Strings that were presented in the input for Experiment 1 are denoted with *; strings presented in the input for Experiment 2 are denoted with #.
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