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Summary

In this paper, our interest is in the perturbation analysis of level-dependent
quasi-birth-and-death (LD-QBD) processes, which constitute a wide class of
structured Markov chains. An LD-QBD process has the special feature that
its space of states can be structured by levels (groups of states), so that a
tridiagonal-by-blocks structure is obtained for its infinitesimal generator. For
these processes, a number of algorithmic procedures exist in the literature in
order to compute several performance measures while exploiting the underly-
ing matrix structure; among others, these measures are related to first-passage
times to a certain level L(0) and hitting probabilities at this level, the maxi-
mum level visited by the process before reaching states of level L(0), and the
stationary distribution. For the case of a finite number of states, our aim here
is to develop analogous algorithms to the ones analyzing these measures, for
their perturbation analysis. This approach uses matrix calculus and exploits the
specific structure of the infinitesimal generator, which allows us to obtain addi-
tional information during the perturbation analysis of the LD-QBD process by
dealing with specific matrices carrying probabilistic insights of the dynamics
of the process. We illustrate the approach by means of applying multitype ver-
sions of the susceptible-infective (SI) and susceptible-infective-susceptible (SIS)
epidemic models to the spread of antibiotic-sensitive and antibiotic-resistant
bacterial strains in a hospital ward.
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1 INTRODUCTION

Recently, Caswell1 used matrix calculus to provide the sensitivities and elasticities (i.e., dimensionless sensitivities) of
the dynamics of absorbing continuous-time Markov chains (CTMCs) to arbitrary parameters, which may correspond to
either the transition rates themselves or functions of these rates that have substantive meaning. More concretely, Caswell1

derived formulas for the sensitivity and elasticity of the moments of the time until absorption, the time spent in each
transient state, and the number of visits to each transient state before absorption, being the resulting expressions applied
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to a model for the progress of colorectal cancer. The results in the work of Caswell1 are closely related to the investigation
of absorbing Markov chains in discrete time, with applications to demographic and ecological problems in the work of
Caswell.2

The reader is alerted to the fact that, although perturbation analysis of Markov chains is a long-standing problem (see,
for example, the survey by Avrachenkov et al.3), the approach suggested by Caswell1,2 is not aligned with the classical treat-
ment of the sensitivity analysis for perturbed Markov chains; see other works.4–8 In the classical framework, the problem
is essentially based on bounding the distance between stationary distributions in a suitable functional space when the
one-step transition probability matrix P of a discrete-time Markov chain is replaced by another one-step transition proba-
bility matrix P′; see, for example, the papers by Li et al.6 and Seneta.8 For CTMCs, the impact on the steady-state distribu-
tion is usually measured when the infinitesimal generator Q is perturbed to Q′(𝜀)=Q + 𝜀Q∗, where 𝜀 is a sufficiently small
positive number and the perturbation matrix Q∗ satisfies certain weak conditions; see, for example, section 3 in the work of
Altman et al.9 The papers by Altman et al.,9 and Heidergott et al.10 are two representative contributions to the perturbation
analysis for denumerable and finite Markov chains with applications to queueing models. In the epidemiological setting,
Hautphenne et al.11 presented an analytical sensitivity treatment for a continuous-time Markovian branching process
and showed its applications to the early spread of an influenza-like epidemic on a network of cities in the United States.
Chitnis et al.12 computed sensitivity indices of the reproductive number and the endemic equilibrium point to the param-
eters on a deterministic model of malaria transmission. The interest of these authors11,12 is in sensitivities/elasticities,
instead of perturbations, with respect to a single parameter, whence the mathematical modelling in the works11,12 may
be seen as the scalar version of that in the works of Caswell.1,2

In this paper, the aim is to complement the general treatment of Caswell1,2 by taking advantage of the sparsity of the
underlying matrices arising when analyzing a class of structured CTMCs. Specifically, the interest is in level-dependent
quasi-birth-and-death (LD-QBD) processes (see, e.g., section 7.2 in the work of Artalejo and Gómez-Corral13), which
are CTMCs in two dimensions, the level and the phase, such that the process only jumps across either adjacent levels or
the same level in one transition. In analyzing LD-QBD processes, matrix-analytic methods14,15 are popular as modeling
tools that allow us to construct and study, under a unified and algorithmic tractable framework, a variety of stochastic
models, such as epidemic models,16–18 inventory problems,19 reliability systems,20,21 retrial queues,22,23 and two-species
competition processes,24–26 among others. The starting point in our analysis is the paper by Gaver et al.,27 where the
emphasis is upon obtaining numerical methods for evaluating stationary distributions and moments of first-passage times
in finite LD-QBD processes. In the setting of perturbed QBD processes analyzed under the classical perspective, the paper
by Li and Liu28 is an excellent work where censoring techniques and stochastic integral functionals are used to discuss
infinitesimal sensitivity analysis, even in the case of perturbed structured Markov chains and Markovian arrival streams;
for a related work, see the work of Dendievel et al.,29 where properties of the perturbed stationary distribution of a QBD
process are derived by restricting the process to the first two levels of states.

The results to be presented here deal with perturbation analysis of finite LD-QBD processes as an important tool for
understanding how certain parameters—inherently linked to the dynamics of the model—determine the properties of the
process, as well as for predicting how small changes in the environmental conditions will modify the outcome. We present
an efficient computational approach to the perturbation analysis of finite LD-QBD processes in terms of first-passage
times to a certain level L(0) and related hitting probabilities (Section 2.1), the maximum level visited by the process
before reaching states in level L(0) (Section 2.2) and the stationary distribution (Section 2.3). Our results are motivated by,
but not restricted to, epidemic models, whence we include two examples (Sections 3.1 and 3.2) describing the spread of
two infectious agents among a finite population of individuals, under the assumption that each infectious agent confers
immunity against the second agent. In the context of nosocomial pathogens, these epidemic models allow us to construct
(Section 3.3) simple mathematical models of bacterial transmission within a hospital ward, in such a way that first-passage
times permit us to study the length of an outbreak; the stationary distribution is a long-run description of the epidemic;
and the maximum level visited by the LD-QBD process is seen as an important measure in studying infectious peaks
during an outbreak.

2 FINITE LD- QBD PROCESSES

First, we introduce some terminology and notation for CTMCs and LD-QBD processes. The interest is in a CTMC  =
{X(t) ∶ t ≥ 0} on the two-dimensional state space, as follows:

 = {(i, 𝑗) ∶ 0 ≤ i ≤ K, 0 ≤ 𝑗 ≤ Mi} ,
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where the first coordinate i represents the level, and the second one j is termed the phase of the state (i, j). We analyze the
case of a potentially different but finite number Mi+1 of phases per level, and we partition as∪K

i=0L(i)with L(i) = {(i, j) ∶
0 ≤ j ≤ Mi} and 0 ≤ i ≤ K. The CTMC  is then called an LD-QBD process if transitions from a state are only permitted
to either states in the same level or states in adjacent levels, and the infinitesimal rates are assumed to be potentially level
dependent. By using a row-to-column orientation, this assumption yields a block-tridiagonal infinitesimal generator

Q =

⎛⎜⎜⎜⎜⎜⎝

Q0,0 Q0,1
Q1,0 Q1,1 Q1,2

Q2,1 Q2,2 Q2,3
⋱ ⋱ ⋱

QK−1,K−2 QK−1,K−1 QK−1,K
QK,K−1 QK,K

⎞⎟⎟⎟⎟⎟⎠
, (1)

where entries q(i,𝑗),(i′,𝑗′) of Qi,i′ are linked to transitions from the state (i, j) ∈ L(i) to the state (i′, j′) ∈ L(i′), with i′ ∈ {i −
1, i, i + 1}; in writing Equation (1), we may assume a lexicographical ordering of states in  , which means that states in
level L(i) precede those in L(i + 1), and within level L(i) with 0 ≤ i ≤ K, the state (i, j) precedes state (i, j + 1) for phases
0 ≤ j ≤ Mi − 1, so that (Qi,i′ )1+𝑗,1+𝑗′ = q(i,𝑗),(i′,𝑗′). Note that, in the conservative case (i.e., q(i,𝑗),(i,𝑗) = −

∑
(i′,𝑗′)∈L∗(i,𝑗)q(i,𝑗),(i′,𝑗′),

for any 0 ≤ i ≤ K and 0 ≤ j ≤ Mi, with L∗(i, 𝑗) = ∪i+1
i′=i−1L(i′)∖{(i, 𝑗)}, and L(i′) is the empty set if i′ ∈ {−1, K + 1}), states of

 are all positive recurrent as  is irreducible.
We shall consider here the general case where the entries of Q depend on some parameters in a column vector

𝜽 = (𝜃1, 𝜃2, … , 𝜃s)T, in such a way that matrix Q remains the infinitesimal generator of a suitably defined conserva-
tive LD-QBD process—on an irreducible class  of states—for sufficiently small perturbations of 𝜽. In Sections 2.1–2.3,
we present, in a unified way and algorithmically tractable manner, the perturbation analysis of three properties of the
LD-QBD process  with respect to 𝜽, and similar to the paper by Caswell,1 we use matrix calculus to differentiate matri-
ces and vectors arising from the underlying algorithmic treatment of these properties. For the glossary of matrix notation
and a summary of those matrix calculus properties used in Sections 2.1–2.3, we refer the reader to Appendix A.

2.1 First-passage times and hitting probabilities
Let T(i, j) be the first-passage time to level L(0), provided that the initial state of  is (i, j), and p(i, j)(n) be the probability,
starting from (i, j), of reaching L(0) by visiting state (0,n), for phases 0 ≤ n ≤ M0 and states (i, 𝑗) ∈  . It is clear that, in
the case i = 0, first-passage times verify T(0, j) = 0 almost surely, and hitting probabilities are given by p(0, j)(n) = 𝛿j,n, for
phases 0 ≤ j,n ≤ M0, where 𝛿a,b denotes Kronecker's delta.

In this section, we quantify the effects of changes in some entries of 𝜽 on the behavior of  in terms of T(i, j) and p(i, j)(n)
for states (i, 𝑗) ∈ ∖L(0), which are closely related to an outbreak in epidemics (Section 3). The discussion that follows
is based on the derivatives of the expectations E

[
Tl
(i,𝑗)

]
and probabilities p(i, j)(n) with respect to the parameter 𝜃r, for

integers l ≥ 1 and 1 ≤ r ≤ s. To this end, we first focus on first-passage times T(i, j) for states (i, 𝑗) ∈ ∖L(0) and proceed in
two steps; specifically, we present in the first step an algorithmic solution (Algorithm 1.A) for computing the moments
m(l)

(i,𝑗) = E
[

Tl
(i,𝑗)

]
, for integers l ≥ 1, which is useful in deriving a second solution (Algorithm 1.B) for the partial derivatives

𝜕E
[

Tl
(i,𝑗)

]
∕𝜕𝜃r, for integers l ≥ 1 and 1 ≤ r ≤ s.

To begin with, we condition on the first transition of the process  occurring from the initial state (i, 𝑗) ∈ ∖L(0).
Starting at (i, j), the first state visited by  may be any state (i′, j′) ∈ L∗(i, j) with probability −q−1

(i,𝑗),(i,𝑗)q(i,𝑗),(i′,𝑗′), and T(i, j)
can be readily decomposed into T′

(i,𝑗)→(i′,𝑗′) + T(i′,𝑗′), where the random variable T′
(i,𝑗)→(i′,𝑗′) is exponentially distributed

with parameter −q(i, j),(i, j), and T′
(i,𝑗)→(i′,𝑗′) and T(i′,𝑗′) are independent by the Markovian property. This implies that, by

conditioning on each possible first transition (i, j) → (i′, j′) of the process  , the Laplace–Stieltjes transforms 𝜑(i,𝑗)(z) =
E[exp{−zT(i,𝑗)}], for Re(z) ≥ 0 and states (i, 𝑗) ∈ ∖L(0), satisfy the equalities

𝜑(i,𝑗)(z) =
1

z − q(i,𝑗),(i,𝑗)

(Mi−1∑
𝑗′=0

q(i,𝑗),(i−1,𝑗′)𝜑(i−1,𝑗′)(z) +
Mi∑

𝑗′=0,𝑗′≠𝑗
q(i,𝑗),(i,𝑗′)𝜑(i,𝑗′)(z) + (1 − 𝛿i,K)

Mi+1∑
𝑗′=0

q(i,𝑗),(i+1,𝑗′)𝜑(i+1,𝑗′)(z)

)
, (2)

with 𝜑(0,𝑗′)(z) = 1 because 𝜑(i,𝑗)(z) =
∑

(i′,𝑗′)∈L∗(i,𝑗) − q−1
(i,𝑗),(i,𝑗)q(i,𝑗),(i′,𝑗′)E[exp{−zT(i,𝑗)}|(i, 𝑗) → (i′, 𝑗′)] and
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E[exp{−zT(i,𝑗)}|(i, 𝑗) → (i′, 𝑗′)] = E
[
exp

{
−zT′

(i,𝑗)→(i′,𝑗′)

}]
𝜑(i′,𝑗′)(z) with E

[
exp

{
−zT′

(i,𝑗)→(i′,𝑗′)

}]
=

−(z − q(i,𝑗),(i,𝑗))−1q(i,𝑗),(i,𝑗). By multiplying Equation (2) by z − q(i, j),(i, j), we derive the matrix equality

z𝝋(z) = Q𝝋(z) + b, (3)

for the column vector 𝝋(z) of Laplace–Stieltjes transforms 𝜑(i, j)(z), for Re(z) ≥ 0 and states (i, 𝑗) ∈ ∖L(0), where the
matrix Q is obtained from Q by deleting rows and columns associated with states of L(0); b is given by

b =
(

Q1,0 1M0+1
0J

)
,

and J =
∑K

i=2 Mi + K − 1 is the cardinality of the subset ∪K
i=2L(i). By taking derivatives in Equation (3) with respect to z

at point z = 0 and noting that m(l)
(i,𝑗) = (−1)ldl𝜑(i,𝑗)(z)∕dzl|z=0, we characterize the values m(l)

(i,𝑗), for l ≥ 1, as the solution to
the system of linear equations

m(l) = Am(l) + b(l), (4)
where

m(l) =
⎛⎜⎜⎝

m(l)
1
⋮

m(l)
K

⎞⎟⎟⎠ ,
with m(l)

i = (m(l)
(i,0), … ,m(l)

(i,Mi)
)T , for 1 ≤ i ≤ K, and the matrix A has the structured form

A =

⎛⎜⎜⎜⎜⎜⎝

A1,1 A1,2
A2,1 A2,2 A2,3

A3,2 A3,3 A3,4
⋱ ⋱ ⋱

AK−1,K−2 AK−1,K−1 AK−1,K
AK,K−1 AK,K

⎞⎟⎟⎟⎟⎟⎠
. (5)

In Equation (5), the submatrix Ai,i′ is obtained from Qi,i′ by dividing elements of its (1 + j)th row, for integers 0 ≤ j ≤ Mi,
by the value Δ(i, j) = −q(i, j),(i, j), and the diagonal elements of Ai,i are all equal to zero, for 1 ≤ i ≤ K, that is, the matrix A
is related to the embedded jump chain and consists of one-step transition probabilities from states of ∖L(0) to states in
∖L(0). The column vector b(l) in Equation (4) has the form

b(l) =
⎛⎜⎜⎝

b(l)
1
⋮

b(l)
K

⎞⎟⎟⎠ ,
where the subvector b(l)

i is specified by lm(l−1)
i ∕𝚫i with 𝚫i = (Δ(i,0), … ,Δ(i,Mi))

T , for 1 ≤ i ≤ K, which represents
element-by-element vector division. Then, subvectors m(l)

i of moments in Equation (4) can be iteratively computed, start-
ing with m(0)

i = 1Mi+1, for 1 ≤ i ≤ K, from previously computed subvectors m(l−1)
i of moments of order l − 1, as indicated

in Algorithm 1.A. The proof of Algorithm 1.A is based on a matrix version (see, e.g., p. 144 in the work of Ciarlet30) of the
well-known forward-elimination–backward-substitution method for solving a system of linear equations, and it is thus
omitted.

Algorithm 1.A. Computation of the expectations m(l)
(i,𝑗) = E[Tl

(i,𝑗)] of first-passage times to level L(0), for l ≥ 1 and states
(i, 𝑗) ∈ ∖L(0).

Step 1: Set p = 0;
for i = 1, … ,K, evaluate

𝐦(𝑝)
i = 𝟏Mi+1;

𝐛(𝑝+1)
i = (𝑝 + 1)m(𝑝)

i
𝚫i

;
𝐇K = 𝐈MK+1 − 𝐀K,K;
for i = K − 1, … , 1, evaluate

𝐇i = 𝐈Mi+1 − 𝐀i,i − 𝐀i,i+1𝐇−1
i+1𝐀i+1,i.

Step 2: While p < l, repeat
p = p + 1;
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𝐉(𝑝)K = 𝐛(𝑝)K ;
for i = K − 1, … , 1, evaluate

𝐉(𝑝)i = 𝐀i,i+1𝐇−1
i+1𝐉

(𝑝)
i+1 + 𝐛(𝑝)i ;

𝐦(𝑝)
1 = 𝐇−1

1 𝐉(𝑝)1 ;
for i = 2, … ,K, evaluate

𝐦(𝑝)
i = 𝐇−1

i (Ai,i−1𝐦(𝑝)
i−1 + 𝐉(𝑝)i );

for i = 1, … ,K, evaluate

𝐛(𝑝+1)
i = (𝑝 + 1)𝐦

(𝑝)
i
𝚫i

.

For every state (i, 𝑗) ∈ ∖L(0), the random time T(i,j) may be formulated as the time until absorption into an absorb-
ing state 0 for a finite CTMC  ′ defined on the states {0} ∪ (∖L(0)), with initial probability vector (0, eT

J′ (𝑓i,𝑗)) and
infinitesimal generator

Q′ =
( 0 0T

J′

q Q

)
,

where J′ = M1 + 1 + J is the cardinality of the class ∖L(0) of transient states, the column vector q is given by −Q1J′ ,
eJ′ (𝑓i,𝑗) is a column vector with J ′ entries that are all equal to zero, with the exception of a single one at the fi, jth entry, and
𝑓i,𝑗 =

∑i−1
i′=1 Mi′ + i + 𝑗,* By section 2.3 in the work of Latouche and Ramaswami,15 this means that the first-passage time

T(i, j) follows a phase type law with representation (eT
J′ (𝑓i,𝑗),Q), and consequently, moments of T(i, j) can be evaluated as

m(l)
(i,𝑗) = l!eT

J′ (𝑓i,𝑗)
(
−Q

−1)l
1J′ .

Algorithm 1.A is then an alternative algorithmic solution to the general-purpose expression l!eT
J′ (𝑓i,𝑗)(−Q

−1
)l1J′ , where

inverse matrices H−1
i of smaller orders Mi + 1 are progressively evaluated instead of a single inverse matrix of order J′.

Moreover, we stress that, because first-passage times can be seen as absorption times, arguments by Caswell1 for sensi-
tivity and elasticity of the moments of first-passage times in absorbing CTMCs can be readily applied. Here, however, we
suggest to adapt the matrix calculus approach of Caswell1, and by exploiting the block-tridiagonal structure of Q in (1), we
derive an analogous algorithm to Algorithm 1.A (Algorithm 1.B) allowing us to compute the partial derivatives of E[Tl

(i,𝑗)]
in an efficient and unified manner. More concretely, Algorithm 1.B is derived by using matrix calculus to differentiate
matrices and vectors in Algorithm 1.A with respect to the vector 𝜽 of parameters; for example, in evaluating dm(𝑝)

i ∕d𝜽T

from the equality m(𝑝)
i = H−1

i (Ai,i−1m(𝑝)
i−1 +J(𝑝)i ), for p < l and 2 ≤ i ≤ K, in Algorithm 1.A (Step 2), straightforward algebra

yields
dm(𝑝)

i

d𝜽T = −
((

H−1
i

(
Ai,i−1m(𝑝)

i−1 + J(𝑝)i

))T
⊗ H−1

i

)
dvecHi

d𝜽T +
((

m(𝑝)
i−1

)T
⊗ H−1

i

)
dvecAi,i−1

d𝜽T +H−1
i Ai,i−1

dm(𝑝)
i−1

d𝜽T +H−1
i

dJ(𝑝)i

d𝜽T ,

as the reader may easily verify by applying properties 1–4 in Appendix A.
A particular feature of this approach is that it allows us to obtain some extra information about the effect of small

perturbations in 𝜽 on the expected numbers of visits to states of L(i), before reaching states in L(i − 1). To be concrete, we
consider a family {(i) ∶ 0 ≤ i ≤ K} of CTMCs, where (i) with 1 ≤ i ≤ K is the restriction of the process  , observed
during those intervals of time spent at states in level L(i), before the process  moves down to level L(i − 1) for the first
time, and the process (0) is the restriction of  observed at the lowest level L(0). This means that, for 1 ≤ i ≤ K, (i)
is a transient CTMC. Then, for a fixed integer 1 ≤ i ≤ K − 1, the matrix H−1

i is related to the embedded jump chain of
the restricted process (i), and more particularly, its entry (H−1

i )1+𝑗,1+𝑗′ can be seen as the expected number of visits to
the state (i, j′), starting from the state (i, j), before the first visit of (i) to any of the states in L(i − 1) (or, equivalently,
L(0) ∪ · · · ∪ L(i − 1) because the process (i) is forced to pass through states in level L(i − 1) when it leaves level L(i)); in
the special case i = K, the restricted version (K) amounts to the original process  , and the entry (H−1

K )1+𝑗,1+𝑗′ records
the expected number of visits to the state (K, j′), starting from the state (K, j), before leaving level L(K). In analyzing the
sensitivity of these expected numbers of visits to states in L(i), for integers 1 ≤ i ≤ K, we remark here that, for integers
1 ≤ i ≤ K, the derivatives of the matrix H−1

i can then be derived from the identity
dvecH−1

i

d𝜽T = −
((

H−1
i
)T

⊗ H−1
i

) dvecHi

d𝜽T ,

*Under the assumption of a lexicographical labeling of states in ∖L(0), the fi,jth entry of the vector eJ′ (𝑓i,𝑗 ), with 𝑓i,𝑗 =
∑i−1

i′=1 Mi′ + i+ 𝑗, amounts to the
choice of (i, j) as the initial state of the process  ′.
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where matrices H−1
i and dvecHi∕d𝜽T are evaluated from Algorithms 1.A (Step 1) and 1.B (Step 1), respectively.

We note that, in Algorithm 1.B, matrices dvecH−1
i ∕d𝜽T are evaluated as a prerequisite for computing the submatrices

dm(l)
i ∕d𝜽T containing the partial derivatives 𝜕E[Tl

(i,𝑗)]∕𝜕𝜃r, for integers l ≥ 1 and 1 ≤ r ≤ s and states (i, 𝑗) ∈ ∖L(0).

Algorithm 1.B. Computation of the partial derivatives 𝜕E[Tl
(i,𝑗)]∕𝜕𝜃r, for integers l ≥ 1 and 1 ≤ r ≤ s and states

(i, 𝑗) ∈ ∖L(0).

Step 1: Set p = 0;
for i = 1, … ,K, evaluate

dm(𝑝)
i

d𝜽T = 𝟎(Mi+1)×s;
db(𝑝+1)

i
d𝜽T = (𝑝 + 1)

(
D−1(𝚫i)

dm(𝑝)
i

d𝜽T −
(((

m(𝑝)
i

)T
D−1(Δi)

)
⊗ D−1(Δi)

)
D(vecIMi+1)(𝟏Mi+1 ⊗ IMi+1)

d𝚫i
d𝜽T

)
;

dvecHK
d𝜽T = − dvecAK,K

d𝜽T ;
for i = K − 1, … , 1, evaluate

dvecHi
d𝜽T = − dvecAi,i

d𝜽T −
((

H−1
i+1Ai+1,i

)T
⊗ IMi+1

)
dvecAi,i+1

d𝜽T

+
((

H−1
i+1Ai+1,i

)T
⊗

(
Ai,i+1H−1

i+1

)) dvecHi+1

d𝜽T −
(
IMi+1 ⊗

(
Ai,i+1H−1

i+1

)) dvecAi+1,i

d𝜽T .
Step 2: While p < l, repeat

p = p + 1;
dJ(𝑝)K
d𝜽T = db(𝑝)

K
d𝜽T ;

for i = K − 1, … , 1, evaluate
dJ(𝑝)i
d𝜽T =

((
H−1

i+1J(𝑝)i+1

)T
⊗IMi+1

)
dvecAi,i+1

d𝜽T +Ai,i+1H−1
i+1

dJ(𝑝)i+1

d𝜽T −
((

H−1
i+1J(𝑝)i+1

)T
⊗
(
Ai,i+1H−1

i+1

))dvecHi+1

d𝜽T +db(𝑝)
i

d𝜽T ;

dm(𝑝)
1

d𝜽T = −
((

H−1
1 J(𝑝)1

)T
⊗ H−1

1

)
dvecH1

d𝜽T + H−1
1

dJ(𝑝)1
d𝜽T ;

for i = 2, … ,K, evaluate
dm(𝑝)

i
d𝜽T = −

((
H−1

i

(
Ai,i−1m(𝑝)

i−1 + J(𝑝)i

))T
⊗ H−1

i

)
dvecHi

d𝜽T

+
((

m(𝑝)
i−1

)T
⊗ H−1

i

)
dvecAi,i−1

d𝜽T + H−1
i Ai,i−1

dm(𝑝)
i−1

d𝜽T + H−1
i

dJ(𝑝)i
d𝜽T ;

for i = 1, … ,K, evaluate
db(𝑝+1)

i
d𝜽T =(𝑝+1)

(
D−1(𝚫i)

dm(𝑝)
i

d𝜽T −
(((

m(𝑝)
i

)T
D−1(𝚫i)

)
⊗D−1(𝚫i)

)
D(vecIMi+1)(1Mi+1 ⊗ IMi+1)

d𝚫i
d𝜽T

)
.

Similar to first-passage times, the hitting probabilities p(i, j)(n), for states (i, 𝑗) ∈ ∖L(0) and phases 0 ≤ n ≤ M0, can be
analyzed by using a first-step argument, yielding

𝑝(i,𝑗)(n) =
1

−q(i,𝑗),(i,𝑗)

(Mi−1∑
𝑗′=0

q(i,𝑗),(i−1,𝑗′)𝑝(i−1,𝑗′)(n) +
Mi∑

𝑗′=0,𝑗′≠𝑗
q(i,𝑗),(i,𝑗′)𝑝(i,𝑗′)(n) + (1 − 𝛿i,K)

Mi+1∑
𝑗′=0

q(i,𝑗),(i+1,𝑗′)𝑝(i+1,𝑗′)(n)

)
. (6)

Then, it is clear from Equations (2) and (6) that the hitting probabilities p(i, j)(n), for states (i, 𝑗) ∈ ∖L(0) and phases
0 ≤ n ≤ M0, can be determined as the solution to Equation (4) with the column vectors m(l) and b(l) replaced by

p(n) =

( p1(n)
⋮

pK(n)

)
and b̂(n) =

⎛⎜⎜⎝
b̂1(n)
⋮

b̂K(n)

⎞⎟⎟⎠ ,
respectively, where pi(n) = (𝑝(i,0)(n), … , 𝑝(i,Mi)(n))

T and b̂i(n) = 𝛿1,iAi,i−1eMi−1+1(n + 1), for integers 1 ≤ i ≤ K. Algorithm
2.A is then a simplified version of Algorithm 1.A, from which we may evaluate the hitting probability p(i, j)(n) as the (1+j)th
entry of the column vector pi(n), for states (i, 𝑗) ∈ ∖L(0) and phases 0 ≤ n ≤ M0.
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Algorithm 2.A. Computation of the hitting probabilities p(i,j)(n), for states (i, 𝑗) ∈ ∖L(0) and phases 0 ≤ n ≤ M0 + 1.
For i = K, … , 1, evaluate

Hi = IMi+1 − Ai,i − (1 − 𝛿i,K)Ai,i+1H−1
i+1Ai+1,i;

b̂i(n) = 𝛿1,iAi,i−1eMi−1+1(n + 1);
JK(n) = b̂K(n);

for i = K − 1, … , 1, evaluate
Ji(n) = Ai,i+1H−1

i+1Ji+1(n) + b̂i(n);
p1(n) = H−1

1 J1(n);

for i = 2, … ,K, evaluate
pi(n) = H−1

i (Ai,i−1pi−1(n) + Ji(n)).

Regarding the perturbation of hitting probabilities, matrix calculus results (Appendix A) applied to Algorithm 2.A lead
us to Algorithm 2.B with a solution for the partial derivatives 𝜕p(i, j)(n)∕𝜕𝜃r for states (i, 𝑗) ∈ ∖L(0), phases 0 ≤ n ≤ M0,
and integers 1 ≤ r ≤ s, which are stored in the (1 + n)th row and the rth column of the Jacobian matrix dpi(n)∕d𝜽T , for
1 ≤ i ≤ K. Algorithm 2.B makes use of matrices dvecHi∕d𝜽T , previously computed in Algorithm 1.B.

Algorithm 2.B. Computation of the partial derivatives 𝜕p(i, j)(n)∕𝜕𝜃r, for states (i, 𝑗) ∈ ∖L(0), phases 0 ≤ n ≤ M0, and
integers 1 ≤ r ≤ s.

For i = K, … , 1, evaluate
db̂i(n)

d𝜽T = 𝛿i,1

(
eT

Mi−1+1(n + 1)⊗ IMi+1

)
dvecAi,i−1

d𝜽T ;

dJK (n)
d𝜽T = db̂K (n)

d𝜽T ;

for i = K − 1, … , 1, evaluate
dJi(n)
d𝜽T =

((
H−1

i+1Ji+1(n)
)T

⊗ IMi+1

)
dvecAi,i+1

d𝜽T +Ai,i+1H−1
i+1

dJi+1(n)
d𝜽T −

((
H−1

i+1Ji+1(n)
)T

⊗
(
Ai,i+1H−1

i+1

)) dvecHi+1

d𝜽T + db̂i(n)
d𝜽T ;

dp1(n)
d𝜽T = −

((
H−1

1 J1(n)
)T

⊗ H−1
1

)
dvecH1

d𝜽T + H−1
1

dJ1(n)
d𝜽T ;

for i = 2, … ,K, evaluate
dpi(n)

d𝜽T =−
((

H−1
i

(
Ai,i−1pi−1(n) + Ji(n)

))T ⊗ H−1
i

)dvecHi
d𝜽T +

(
(pi−1(n))T

⊗H−1
i

) dvecAi,i−1

d𝜽T +H−1
i

(
Ai,i−1

dpi−1(n)
d𝜽T + dJi(n)

d𝜽T

)
.

2.2 Maximum level visited before reaching level L(0)
In this section, we briefly present the perturbation analysis of the probability distribution of the maximum level Xmax
visited by the LD-QBD process  before reaching states of level L(0), provided that X(0) = (i, j), for states (i, 𝑗) ∈ ∖L(0).
To this end, we first observe that the random variable Xmax is identically distributed as its counterpart in the embedded
jump chain. We then suggest to compute the conditional probabilities 𝑝̃(i,𝑗)(x) = P(Xmax ≥ x|X(0) = (i, 𝑗)), for integers
x ∈ {i + 1, … ,K} and initial states (i, 𝑗) ∈ ∖L(0), by noting that 𝑝̃(i,𝑗)(x) is equal to the probability that, starting from
(i, j), the embedded jump process enters the subset ∪K

i′=xL(i′) of states but avoiding states of L(0). Hence, for each fixed
integer x ∈ {i + 1, … ,K}, we consider an absorbing discrete-time process ̃(x) defined on the state space

S̃(x) = {0} ∪
x−1⋃
i′=1

L(i′) ∪ {x},

where 0 and x are obtained by lumping the level L(0) and the subset ∪K
i′=xL(i′) together to make two absorbing states. The

one-step transition probability matrix of ̃(x) has the structured form

P̃(x) =
⎛⎜⎜⎝

1 0T
J′′′ 0

ã(x) Ã(x) b̃(x)
0 0T

J′′′ 1

⎞⎟⎟⎠ ,
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where we let ã(x) and b̃(x) be 1J′′′ − Ã(x)1J′′′ − b̃(x) and
(

0J′′
Ax−1,x1Mx+1

)
, respectively, J′′ =

∑x−2
i′=1 Mi′ + x − 2, J′ ′ ′ =

Mx−1 + 1 + J′′ , and

Ã(x) =

⎛⎜⎜⎜⎜⎝
A1,1 A1,2
A2,1 A2,2 A2,3

⋱ ⋱ ⋱
Ax−2,x−3 Ax−2,x−2 Ax−2,x−1

Ax−1,x−2 Ax−1,x−1

⎞⎟⎟⎟⎟⎠
.

In a similar manner to Equation (6), a first-step argument allows us to observe that the conditional probabilities 𝑝̃(i,𝑗)(x) =
P(Xmax ≥ x|X(0) = (i, 𝑗)), for integers x ∈ {i+1, … ,K} and initial states (i, 𝑗) ∈ ∖L(0), can be thought of as restricted hit-
ting probabilities verifying Equation (4) with obvious modifications in matrices and vectors. To be concrete, the one-step
transition probability matrix A in Equation (4) is replaced by Ã(x), and the column vectors m(l) and b(l) are replaced,
respectively, by p̃(x) and b̃(x), with

p̃(x) =

( p̃1(x)
⋮

p̃x−1(x)

)
,

and p̃i(x) = (𝑝̃(i,0)(x), … , 𝑝̃(i,Mi)(x))
T . This means that, for every integer x ∈ {i + 1, … ,K}, the conditional mass function

of Xmax can be derived from Algorithm 2.A as

P(Xmax = x|X(0) = (i, 𝑗)) = 𝑝̃(i,𝑗)(x) − (1 − 𝛿x,K)𝑝̃(i,𝑗)(x + 1).

As a result, the partial derivatives 𝜕P(Xmax = x|X(0) = (i, 𝑗))∕𝜕𝜃r, for integers 1 ≤ r ≤ s, are evaluated as 𝜕𝑝̃(i,𝑗)(x)∕𝜕𝜃r −
(1 − 𝛿x,K)𝜕𝑝̃(i,𝑗)(x + 1)∕𝜕𝜃r, whose terms are readily derived by adapting Algorithm 2.B in an appropriate manner.

2.3 Stationary regime
To determine the stationary distribution of the LD-QBD process  , many approaches may be followed, and for gen-
eral purposes, most of them yield algorithmic procedures. These algorithmic procedures are usually based on the
tridiagonal-by-blocks form (1) of the infinitesimal generator Q without any further assumption, except that the LD-QBD
process is irreducible. We focus here on the solution given by Gaver et al.,27 which proceeds in two steps: During the first
step, the procedure progressively reduces the state space by removing one level at each iteration, until a CTMC defined
on states of L(K) is constructed; once this CTMC on level L(K) is solved, the procedure iteratively computes the stationary
vector of the process  in the second step, by adding back one level at each iteration. This yields the procedure described
in Algorithm 3.A, which amounts to that in algorithm A in the work of Gaver et al.,27 from which we may evaluate the
stationary probabilities 𝜋(i,𝑗) = limt→∞P(X(t) = (i, 𝑗)|X(0) = (i′, 𝑗′)) for states (i, 𝑗) ∈  as the (1+ j)th entry of the column
vector 𝝅i, regardless of the initial state (i′, 𝑗′) ∈  .

Algorithm 3.A. (Linear level reduction algorithm; see section 2 in the work of Gaver et al.27)
Computation of the stationary probabilities 𝜋(i,j), for states (i, 𝑗) ∈  .

Step 1: B0 = Q0,0;
for i = 1, … ,K, evaluate

Bi = Qi,i + Qi,i−1
(
−B−1

i−1

)
Qi−1,i;

evaluate 𝜋̃K by solving
BT

K 𝜋̃K = 0MK+1 with 1T
MK+1𝜋̃K = 1.

Step 2: Set c̄ = 1;
for i = K − 1, … , 0, evaluate

𝜋̃i =
(
−B−1

i

)TQT
i+1,i𝜋̃i+1;

c̄ = c̄ + 1T
Mi+1𝜋̃i;

for i = 0, … ,K, evaluate
𝜋i = c̄−1𝜋̃i.

Then, an appeal to the matrix calculus results in Appendix A allows us to differentiate matrices and vectors with respect
to the vector 𝜽 of parameters on Steps 1–2 of Algorithm 3.A and, consequently, to provide the perturbation analysis of 



GÓMEZ-CORRAL AND LÓPEZ-GARCÍA 9 of 22

in terms of partial derivatives of the stationary probabilities 𝜕𝜋(i,j)∕𝜕𝜃r, for integers 1 ≤ r ≤ s, which are located at the
(1 + j)th row and the rth column of the matrix d𝜋i∕d𝜽T , for states (i, 𝑗) ∈  .

Algorithm 3.B. Computation of the partial derivatives 𝜕𝜋(i,j)∕𝜕𝜃r, for integers 1 ≤ r ≤ s and states (i, 𝑗) ∈  .

Step 1: dvecB0
d𝜽T = dvecQ0,0

d𝜽T ;
dvecBT

0
d𝜽T = dvecQT

0,0

d𝜽T ;
for i = 1, … ,K, evaluate

dvecBi
d𝜽T = dvecQi,i

d𝜽T −
((

B−1
i−1Qi−1,i

)T
⊗ IMi+1

)
dvecQi,i−1

d𝜽T

+
((

B−1
i−1Qi−1,i

)T
⊗

(
Qi,i−1B−1

i−1

)) dvecBi−1
d𝜽T −

(
IMi+1 ⊗

(
Qi,i−1B−1

i−1

)) dvecQi−1,i

d𝜽T ;

dvecBT
i

d𝜽T =
dvecQT

i,i

d𝜽T −
((

Qi,i−1B−1
i−1

)
⊗ IMi+1

) dvecQT
i−1,i

d𝜽T

+
((

Qi,i−1B−1
i−1

)
⊗

(
B−1

i−1Qi−1,i
)T
)

dvecBT
i−1

d𝜽T −
(

IMi+1 ⊗
(
B−1

i−1Qi−1,i
)T
) dvecQT

i,i−1

d𝜽T ;
evaluate d𝜋̃K∕d𝜽T by solving(

𝜋̃T
K ⊗ IMK+1

) dvecBT
K

d𝜽T = −BT
K

d𝜋̃K
d𝜽T with 1T

MK+1
d𝜋̃K
d𝜽T = 0T

s .
Step 2: Set dc̄

d𝜽T = 0T
s ;

for i = K − 1, … , 0, evaluate
dπ̃i
d𝜽T =

((
𝜋̃T

i+1Qi+1,iB−1
i

)
⊗

(
B−1

i

)T
)

dvecBT
i

d𝜽T −
(
𝜋̃T

i+1 ⊗
(
B−1

i

)T
) dvecQT

i+1,i

d𝜽T −
(
Qi+1,iB−1

i

)T d𝜋̃i+1

d𝜽T ;

dc̄
d𝜽T = dc̄

d𝜽T + 1T
Mi+1

d𝜋̃i
d𝜽T ;

for i = 0, … ,K, evaluate
dπi
d𝜽T = c̄−1

(
d𝜋̃i
d𝜽T − 𝜋i

dc̄
d𝜽T

)
.

For a fixed integer 0 ≤ i ≤ K−1, the matrix Bi in Algorithm 3.A (Step 1) can be thought of as the infinitesimal generator
of the restriction ̄(i) of the LD-QBD process  , observed during those intervals of time spent at level L(i), before it enters
level L(i + 1) for the first time. It is clear that the state space of the restriction ̄(i) is given by L(i), and ̄(i) is a transient
CTMC in the case 0 ≤ i ≤ K − 1, whereas the restriction ̄(K) of the process  to states in L(K) is positive recurrent.
Therefore, the entry (−B−1

i )1+𝑗,1+𝑗′ is interpreted as recording the expected total time spent in the state (i, j′), starting from
the state (i, j), before the first visit of ̄(i) to any of the states in L(i+1), for integers 1 ≤ i ≤ K−1. (−B−1

0 )1+𝑗,1+𝑗′ represents
the expected total time spent in (0, j′), given that the process  starts from the state (0, j), before leaving level L(0). Thus,
regarding the effect of small perturbations in 𝜽 on these expected total times spent at states in L(i) with 0 ≤ i ≤ K − 1,
we point out here that, for phases 0 ≤ j, j′ ≤ Mi and integers 1 ≤ r ≤ s, the partial derivatives 𝜕(−B−1

i )1+𝑗,1+𝑗′∕𝜕𝜃r can be
readily derived from the matrices −B−1

i (Step 1 in Algorithm 3.A) and dvec(−Bi)∕d𝜽T (Step 1 in Algorithm 3.B), because
dvec(−B−1

i )∕d𝜽T = −((−B−1
i )T ⊗ (−B−1

i ))dvec(−Bi)∕d𝜽T .

3 APPLICATIONS TO EPIDEMIC MODELS

LD-QBD processes are natural tools for the analysis of epidemic models governed by exponential laws. In Sections 3.1
and 3.2, we briefly discuss two models with epidemics in competition; specifically, two epidemic agents are assumed to
be simultaneously present in a finite population, in such a way that they interact to increase or decrease each other's
effectiveness, and each agent confers immunity against the other epidemic agent. In Section 3.3, these models are linked
to the work by Lipsitch et al.,31 where a mathematical model of bacterial transmission within a hospital is described in
order to study the effects of measures to control nosocomial transmission of bacteria and reduce antimicrobial resistance
in nosocomial pathogens.

3.1 The multitype SI epidemic model
The first example corresponds to the SI1, I2 epidemic model analyzed by Saunders32 (see also Billard et al.33), which
describes the spread of two types of infectious diseases—termed type-1 and type-2—among a homogeneously mixed closed
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population of N individuals. Infected individuals do not recover, but suffering one type of infectious disease provides
immunity against the other. By denoting by S(t), I1(t), and I2(t), the number of susceptible individuals, and the numbers
of type-1 and type-2 infectives, respectively, at time t ≥ 0, we may describe the dynamics of the SI1, I2 epidemic model in
terms of the finite CTMC  = {(S(t), J(t)) ∶ t ≥ 0}, where S(t) = N − I1(t) − I2(t) and J(t) = I1(t) − I1 with initial numbers
I1(0) = I1 and I2(0) = I2 of infectives. The state space of  has the form

 = {(i, 𝑗) ∈ N0 ×N0 ∶ 0 ≤ i ≤ N − I1 − I2, 0 ≤ 𝑗 ≤ N − I1 − I2 − i} ,

and transitions among states are due to either a new type-1 infection (i.e., (i, j) → (i−1, j+1)) with rate i(j+ I1)𝛽1 or a new
type-2 infection (i.e., (i, j) → (i− 1, j)) with rate i(N− i− j− I1)𝛽2, for strictly positive contact rates 𝛽1 and 𝛽2; see Figure 1.

Let T be the time to reach the end of the epidemic spread, that is, T = inf{t ≥ 0 ∶ S(t) = 0}. In order to analyze
the numbers I1(T) and I2(T) of infectives at time T, we may decompose the state space  by levels as ∪N−I1−I2

i=0 L(i) with
L(i) = {(i, 𝑗) ∈  ∶ 0 ≤ 𝑗 ≤ N − I1 − I2 − i}, whence K = N − I1 − I2 and level L(i) consists of Mi + 1 = N − I1 − I2 − i + 1
states, according to notation in Section 2. This labeling of states leads us to an LD-QBD process defined on  , whose
infinitesimal generator is specified according to Equation (1) as follows:

1. For integers 1 ≤ i ≤ N − I1 − I2, the (1 + j, 1 + j′)th entry of Qi,i−1 is given by

(Qi,i−1)1+𝑗,1+𝑗′ =
⎧⎪⎨⎪⎩

i( 𝑗 + I1)𝛽1, if 𝑗′ = 𝑗 + 1,
i(N − i − 𝑗 − I1)𝛽2, if 𝑗′ = 𝑗,

0, otherwise,

for 0 ≤ j ≤ Mi and 0 ≤ j′ ≤ Mi−1.
2. The submatrix Q0,0 takes the form Q0,0 = 0(M0+1)×(M0+1) and, for integers 1 ≤ i ≤ N − I1 − I2, the submatrix Qi,i is a

diagonal matrix with diagonal entries (Qi,i)1+j,1+j = −(( j + I1)i𝛽1 + (N − i − j − I1)i𝛽2), for 0 ≤ j ≤ Mi.
3. For integers 0 ≤ i ≤ N − I1 − I2 − 1, the submatrix Qi,i+1 is a null matrix, that is, Qi,i+1 = 0(Mi+1)×(Mi+1+1).

In the terminology of Sections 2.1–2.3, the random time T corresponds to the time instant T(N−I1−I2,0) to reach states of
L(0), provided that  starts from state (N − I1 − I2, 0). Thus, the joint probability distribution of the numbers (I1(T), I2(T))
of type-1 and type-2 infectives at the end of the epidemic spread amounts to the hitting probabilities 𝑝(N−I1−I2,0)(i1 − I1),
for integers I1 ≤ i1 ≤ N − I2, because the event {I1(T) = i1, I2(T) = N − i1} is equivalent to {S(T) = 0, J(T) = i1 − I1}.

3.2 The multitype SIS epidemic model
In this section, we focus on a multitype SIS epidemic model with two strains and external sources of infection, which is
shown in Figure 2. Similar to the case analyzed in Section 3.1, the resulting SI1, I2S epidemic model describes the spread
of two types of infection among a closed population of N homogeneous individuals, where now a susceptible individual
can become a type-k infective, for k ∈ {1, 2}, due to either external factors (with rate 𝜆k ≥ 0) or an infectious contact with
a type-k infective (with rate 𝛽k > 0). In the spirit of the work of Kirupaharan and Allen,34 any type-k infective cannot
be infected by any type-k′ infective, with k′ ≠ k, until his/her infectious period expires. Type-k infectious periods are
assumed to be exponentially distributed with mean 𝛾−1

k , for k ∈ {1, 2}.
The SI1, I2S epidemic process is analyzed by using the random variables S(t), I1(t), and I2(t) at an arbitrary time t, with

S(0) = N−I1−I2, I1(0) = I1, I2(0) = I2 representing the initial conditions. Nevertheless, the construction of the underlying
LD-QBD process in Sections 3.2.1 and 3.2.2 shall depend on the probabilistic descriptors under study, which are related

FIGURE 1 Multitype SI stochastic epidemic model

FIGURE 2 Multitype SIS stochastic epidemic model



GÓMEZ-CORRAL AND LÓPEZ-GARCÍA 11 of 22

to the global outbreak (Section 3.2.1), the outbreak corresponding to the kth strain (Section 3.2.2), and the stationary
distribution (Section 3.2.3).

3.2.1 Descriptors of the global outbreak
Let T be the time for both strains to become extinct for the first time and Xmax be the global peak of infection during the
outbreak, that is, T = inf{t ≥ 0 ∶ I1(t) + I2(t) = 0} reflects the length of a global outbreak, and Xmax = max{I1(t) + I2(t) ∶
0 ≤ t < T} records the maximum number of simultaneously infected individuals before the global outbreak expires.
Because these random indexes refer to I1(t) + I2(t), we define here the process 1 as

1 = {(I(t), J(t)) ∶ t ≥ 0},

where I(t) = I1(t) + I2(t) and J(t) = I2(t), so that the number of susceptible individuals, and the numbers of type-1 and
type-2 infectives are given by S(t) = N − I(t), I1(t) = I(t) − J(t), and I2(t) = J(t), respectively. The process 1 can be seen
as an LD-QBD process defined on the state space 1 = ∪N

i=0L1(i) with ith level L1(i) = {(i, j) ∶ 0 ≤ j ≤ i}, for integers
0 ≤ i ≤ N, that is, K = N and level L1(i) contains Mi + 1 = i + 1 states, for 0 ≤ i ≤ N. This means that, under the initial
conditions I1(0) = I1 and I2(0) = I2, the random time T corresponds to the first-passage time T(I1+I2,I2), and the probability
distribution of Xmax can be determined by analyzing the distribution of the maximum level visited by the process 1
before reaching states of level L1(0). Therefore, moments of T are progressively computed from Algorithm 1.A, whereas
their local sensitivity analysis is carried out by means of Algorithm 1.B; in a similar manner, the conditional probabilities
P(Xmax = x|(I(0), J(0)) = (I1 + I2, I2)) and their corresponding derivatives are derived from an adaptation of Algorithms
2.A and 2.B (according to our comments in Section 2.2). The submatrices Qi,i′ , for i′ ∈ {i − 1, i, i + 1}, to be used in these
algorithms are specified by the following:

1. For 1 ≤ i ≤ N, the (1 + j, 1 + j′)th entry of Qi,i−1 is given by

(Qi,i−1)1+𝑗,1+𝑗′ =
⎧⎪⎨⎪⎩
𝑗𝛾2, if𝑗′ = 𝑗 − 1,
(i − 𝑗)𝛾1, if𝑗′ = 𝑗,

0, otherwise,

for 0 ≤ j ≤ i and 0 ≤ j′ ≤ i − 1.
2. For 0 ≤ i ≤ N, the submatrix Qi,i has diagonal form and its diagonal entries are given by (Qi,i)1+j,1+j = −((N− i)(𝜆1 +

𝜆2 + (i − j)𝛽1 + j𝛽2) + (i − j)𝛾1 + j𝛾2), for 0 ≤ j ≤ i.
3. For 0 ≤ i ≤ N − 1, the (1 + j, 1 + j′)th entry of Qi,i+1 is given by

(Qi,i+1)1+𝑗,1+𝑗′ =
⎧⎪⎨⎪⎩
(N − i)(𝜆1 + (i − 𝑗)𝛽1), if𝑗′ = 𝑗,

(N − i)(𝜆2 + 𝑗𝛽2), if𝑗′ = 𝑗 + 1,
0, otherwise,

for 0 ≤ j ≤ i and 0 ≤ j′ ≤ i + 1.

3.2.2 Descriptors of the outbreak for the type-k strain
For k ∈ {1, 2}, we let T(k) denote the time before extinction of type-k infectives for the first time (i.e., T(k) = inf{t ≥ 0 ∶
Ik(t) = 0}), Ik′ (T(k)) be the number of type-k′ infectives (with k′ ≠ k) when this occurs, and Xmax(k) represent the peak
of infection for strain k during the time interval [0,T(k)) (i.e., Xmax(k) = max{Ik(t) ∶ 0 ≤ t < T(k)}). Without any loss of
generality, we focus on the case k = 1 and define the CTMC 2 = {(I1(t), I2(t)) ∶ t ≥ 0} on the states of 2 = {(i, 𝑗) ∶ 0 ≤

i ≤ N, 0 ≤ 𝑗 ≤ N − i}. By decomposing the state space 2 by levels ∪N
i=0L2(i) with L2(i) = {(i, j) ∶ 0 ≤ j ≤ N− i} (i.e., K = N

and L2(i) contains Mi + 1 = N− i+ 1 states), we may formulate 2 as an LD-QBD process with the following submatrices
Qi,i′ , for i′ ∈ {i − 1, i, i + 1}:

1. For 1 ≤ i ≤ N, the non-null entries of Qi,i−1 are given by (Qi,i−1)1+j,1+j = i𝛾1, for 0 ≤ j ≤ N − i.
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2. For 0 ≤ i ≤ N, the entries of Qi,i are given by

(Qi,i)1+𝑗,1+𝑗′ =

⎧⎪⎪⎨⎪⎪⎩

𝑗𝛾2, if𝑗′ = 𝑗 − 1,
−((N − i − 𝑗)(𝜆1 + 𝜆2 + i𝛽1 + 𝑗𝛽2) + i𝛾1 + 𝑗𝛾2), if𝑗′ = 𝑗,

(N − i − 𝑗)(𝜆2 + 𝑗𝛽2), if𝑗′ = 𝑗 + 1,
0, otherwise,

for 0 ≤ j ≤ N − i and 0 ≤ j′ ≤ N − i.
3. For 0 ≤ i ≤ N− 1, the non-null entries of Qi,i+1 are given by (Qi,i+1)1+j,1+j = (N− i− j)(𝜆1 + i𝛽1), for 0 ≤ j ≤ N− i− 1.

3.2.3 Stationary measures
Unlike the descriptors in Sections 3.2.1 and 3.2.2, which can be analyzed for nonnegative external infection rates 𝜆1, 𝜆2 ≥

0, the analysis of the stationary distribution needs the assumption of at least an external infection stream (i.e., 𝜆1 > 0 and
/or 𝜆2 > 0), so that the CTMC under analysis is positive recurrent. Then, the stationary distribution and its perturbation
analysis can be readily evaluated by applying Algorithms 3.A and 3.B to either the process 1 or the process 2, because
they only differ in the underlying labeling of states. Once the stationary distribution is in hand, it is possible to compute
the mean and standard deviation of the numbers I1(∞) and I2(∞) of type-1 and type-2 infectives, respectively, in the
long term.

3.3 A mathematical model of bacterial transmission
We link the SI1, I2, and SI1, I2S epidemic models to the deterministic model in figure A in the work of Lipsitch et al.31 for the
spread of two bacterial strains in a hospital ward. Lipsitch et al.31 considered an antibiotic-sensitive (AS) bacterial strain
and an antibiotic-resistant (AR) bacterial strain, termed strain 1 and strain 2, respectively, spreading among patients, such
that the infection by one bacterial strain provides immunity against the other. Because antibiotics are commonly used in
hospitals to prevent a wide range of conditions, Lipsitch et al.31 assumed that patients in the ward are routinely provided
antibiotics 1 and 2, regardless of these patients being infected or not by bacteria; more concretely, antibiotic 1 is only
effective against the AS bacterial strain, whereas antibiotic 2 is effective against both strains of bacteria. The acquisition
of resistance by bacteria can lead to some fitness cost, amounting to a reduction of the bacterial strain infectiousness due
to the corresponding mutation; to represent this fact, Lipsitch et al.31 considered a common infection rate 𝛽 = 1.0 days−1

and set 𝛽1 = 𝛽 and 𝛽2 = (1 − c)𝛽 with c ∈ (0, 1). Spontaneous clearance of sensitive and resistant bacteria occurs at a rate
𝛾 , and contributions of antibiotics 1 and 2 to this recovery are represented by rates 𝜏1 and 𝜏2. Patients are assumed to be
admitted by and discharged from the hospital ward at a common rate 𝜇.

In our numerical experiments (Tables 1–4), we consider a hospital ward with N = 20 patients, initial numbers
(I1, I2) = (1, 1) of infectives, and values c ∈ {0.05, 0.1, 0.25} of fitness cost. It should be pointed out that, unlike the paper of
Lipsitch et al.,31 where the deterministic model is related to frequencies, we shall consider from now on rates 𝛽1 = N−1𝛽

and 𝛽2 = N−1(1 − c)𝛽, because the random variables in the underlying LD-QBD processes  (Section 3.1), and 1 and 2
(Section 3.2) amount to numbers of infectives.

In Tables 1 and 2, the interest is in a preliminary scenario with 𝜏1 = 𝜏2 = 0.0 (no usage of antibiotics), 𝛾 = 0.0 (no
spontaneous recovery), and 𝜇 = 0.0 (no arrival or departure of patients during the outbreak), which is readily translated
into an SI1, I2 epidemic model. For practical use, it is worth noting that the derivatives of a predetermined descriptor D
in Tables 1 and 2 (i.e., expected values and standard deviations of T, I1(T) and I2(T)) satisfy

𝜕D
𝜕c

= − 𝛽

N
· 𝜕D
𝜕𝛽2

, (7)

𝜕D
𝜕𝛽

= 1
N

(
𝜕D
𝜕𝛽1

+ (1 − c) 𝜕D
𝜕𝛽2

)
, (8)

because rates 𝛽1 and 𝛽2 depend on the value c of fitness cost and the rate 𝛽; note that Equations (7) and (8) are readily
derived from the equalities 𝜕D∕𝜕c = (𝜕D∕𝜕𝛽2)(𝜕𝛽2∕𝜕c) and 𝜕D∕𝜕𝛽 = (𝜕D∕𝜕𝛽1)(𝜕𝛽1∕𝜕𝛽)+(𝜕D∕𝜕𝛽2)(𝜕𝛽2∕𝜕𝛽), respectively.
This means that, in implementing Algorithms 1.B and 2.B, we may use s = 2 parameters (i.e., 𝜽 = (𝛽1, 𝛽2)T) instead
of s = 4.

In Table 1, we compute the values of the mean length E[T] of an outbreak and the mean numbers E[I1(T)] and E[I2(T)]
of patients infected by AS and AR bacterial strains, respectively, during the outbreak, together with the corresponding
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TABLE 1 Means and standard deviations of the
time T until the end of the epidemic spread and of
the numbers I1(T) and I2(T) of type-1 and type-2
infectives when this occurs in the SI1, I2 epidemic
model

Descriptor c= 0.05 c= 0.1 c= 0.25

E[T] 6.19405 6.34476 6.77960
𝜎(T) 1.71320 1.75954 1.91860
E[I1(T)] 10.43524 10.89166 12.38137
𝜎(I1(T)) 5.46754 5.43652 5.18336
E[I2(T)] 9.56475 9.10833 7.61862
𝜎(I2(T)) 5.46754 5.43652 5.18336

Note. (Strain 1: antibiotic sensitive; strain 2: antibiotic
resistant.)

TABLE 2 Elasticities of the descriptors in Table 1 with respect
to various parameters in the SI1, I2 epidemic model

c Elasticities 𝜽=𝜷1 𝜽=𝜷2 𝜽= c 𝜽= 𝜷

0.05 𝜕E[T]∕𝜕𝜃
𝜃−1E[T]

−0.53632 −0.46367 −0.00227 −1
𝜕𝜎(T)∕𝜕𝜃
𝜃−1𝜎(T)

−0.50385 −0.49614 +0.02611 −1
𝜕E[I1(T)]∕𝜕𝜃
𝜃−1E[I1(T)]

+0.81180 −0.81180 +0.04272 0
𝜕𝜎(I1(T))∕𝜕𝜃
𝜃−1𝜎(I1(T))

−0.06897 +0.06897 −0.00363 0
𝜕E[I2(T)]∕𝜕𝜃
𝜃−1E[I2(T)]

−0.88569 +0.88569 −0.04661 0
𝜕𝜎(I2(T))∕𝜕𝜃
𝜃−1𝜎(I2(T))

−0.06897 +0.06897 −0.00363 0

0.10 𝜕E[T]∕𝜕𝜃
𝜃−1E[T]

−0.57432 −0.42567 −0.00411 −1
𝜕𝜎(T)∕𝜕𝜃
𝜃−1𝜎(T)

−0.50908 −0.49091 +0.05454 −1
𝜕E[I1(T)]∕𝜕𝜃
𝜃−1E[I1(T)]

+0.77161 −0.77161 +0.08573 0
𝜕𝜎(I1(T))∕𝜕𝜃
𝜃−1𝜎(I1(T))

−0.14139 +0.14139 −0.01571 0
𝜕E[I2(T)]∕𝜕𝜃
𝜃−1E[I2(T)]

−0.92268 +0.92268 −0.10252 0
𝜕𝜎(I2(T))∕𝜕𝜃
𝜃−1𝜎(I2(T))

−0.14139 +0.14139 −0.01571 0

0.25 𝜕E[T]∕𝜕𝜃
𝜃−1E[T]

−0.69652 −0.30348 −0.00726 −1
𝜕𝜎(T)∕𝜕𝜃
𝜃−1𝜎(T)

−0.54844 −0.45155 +0.15051 −1
𝜕E[I1(T)]∕𝜕𝜃
𝜃−1E[I1(T)]

+0.63487 −0.63487 +0.21162 0
𝜕𝜎(I1(T))∕𝜕𝜃
𝜃−1𝜎(I1(T))

−0.37968 +0.37968 −0.12656 0
𝜕E[I2(T)]∕𝜕𝜃
𝜃−1E[I2(T)]

−1.03176 +1.03176 −0.34392 0
𝜕𝜎(I2(T))∕𝜕𝜃
𝜃−1𝜎(I2(T))

−0.37968 +0.37968 −0.12656 0

Note. (Strain 1: antibiotic sensitive; strain 2: antibiotic resistant.)

standard deviations. The interest here is in analyzing the impact that small perturbations in the parameters of (𝛽1, 𝛽2, c, 𝛽)
have on these summary statistics, whence in Table 2 we list values of elasticities (i.e., (𝜃−1D)−1𝜕D∕𝜕𝜃) for summary statis-
tics D and parameter 𝜃. In terms of the sign of elasticities (which is identical to the sign of the partial derivative 𝜕D∕𝜕𝜃),
the main insights are as follows:

• The mean length of the outbreak E[T] increases with decreasing values of 𝛽1 and 𝛽2, which are represented by cor-
responding negative partial derivatives. On the other hand, increasing values of c lead to decreasing infectiousness of
the AR bacterial strain, which corresponds to longer outbreaks and thus a strictly positive partial derivative 𝜕E[T]∕𝜕c
(that is, it corresponds to longer time until all the patients become infected), whereas increasing global infectiousness
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TABLE 3 Mean and standard deviation of various descriptors in the
SI1, I2S epidemic model with c = 0.25

Descriptor D Expected value E[D] Standard deviation 𝝈(D)

T 2,481.58612 3,092.40947
Xmax 16.62473 6.47966
T(1) 24.64084 44.53220
I2(T(1)) 4.90746 4.58200
Xmax(1) 6.76017 6.38924
T(2) 676.64801 1,105.89870
I1(T(2)) 4.51942 4.22930
Xmax(2) 11.38508 8.79249
I1(∞) 0.81095 2.31470
I2(∞) 11.05264 3.90887

Note. (Strain 1: antibiotic sensitive; strain 2: antibiotic resistant.)

TABLE 4 Elasticities of the descriptors in Table 3 with respect to primary parameters
in the SI1, I2S epidemic model with c = 0.25

Elasticities 𝜽=𝜷1 𝜽= 𝜷2 𝜽=𝝀1 𝜽=𝝀2 𝜽= 𝜸1 𝜽= 𝜸2
𝜕E[T]∕𝜕𝜃
𝜃−1E[T]

+0.34677 +9.74277 −0.21501 +0.68438 −0.52104 −11.03787
𝜕𝜎(T)∕𝜕𝜃
𝜃−1𝜎(T)

+0.02910 +9.54556 −0.24298 +0.61974 −0.12515 −10.82626
𝜕E[Xmax]∕𝜕𝜃
𝜃−1E[Xmax]

+0.23125 +0.32876 +0.01805 +0.03876 −0.25994 −0.35689
𝜕𝜎(Xmax)∕𝜕𝜃
𝜃−1𝜎(Xmax)

−0.35035 −0.20165 −0.04290 −0.04085 +0.38545 +0.25030
𝜕E[T(1)]∕𝜕𝜃
𝜃−1E[T(1)]

+4.50387 −2.01010 +0.14857 −0.49981 −5.14178 +1.99925
𝜕𝜎(T(1))∕𝜕𝜃
𝜃−1𝜎(T(1))

+4.57286 −2.03753 +0.11877 −0.64958 −5.15409 +2.14957
𝜕E[I2(T(1))]∕𝜕𝜃
𝜃−1E[I2(T(1))]

+0.86287 +1.24945 +0.05036 +0.13550 −1.23667 −1.06153
𝜕𝜎(I2(T(1)))∕𝜕𝜃
𝜃−1𝜎(I2(T(1)))

+0.28166 +0.77701 +0.01704 +0.01477 −0.43910 −0.65139
𝜕E[Xmax(1)]∕𝜕𝜃
𝜃−1E[Xmax(1)]

+1.69079 −0.57956 +0.07306 −0.08225 −1.60528 +0.50325
𝜕𝜎(Xmax(1))∕𝜕𝜃
𝜃−1𝜎(Xmax(1))

+1.22316 −0.46291 +0.02971 −0.08852 −1.15905 +0.45761
𝜕E[T(2)]∕𝜕𝜃
𝜃−1E[T(2)]

−4.03536 +9.69147 −0.76852 +0.33206 +4.64273 −10.86238
𝜕𝜎(T(2))∕𝜕𝜃
𝜃−1𝜎(T(2))

−3.73132 +9.10850 −0.75903 +0.27937 +4.35939 −10.25690
𝜕E[I1(T(2))]∕𝜕𝜃
𝜃−1E[I1(T(2))]

+2.29215 +0.40123 +0.23929 +0.03737 −2.36991 −0.60014
𝜕𝜎(I1(T(2)))∕𝜕𝜃
𝜃−1𝜎(I1(T(2)))

+0.98563 +0.09937 +0.01294 +0.01000 −0.93989 −0.16806
𝜕E[Xmax(2)]∕𝜕𝜃
𝜃−1E[Xmax(2)]

−0.43243 +1.08596 −0.03890 +0.07347 +0.42559 −1.11369
𝜕𝜎(Xmax(2))∕𝜕𝜃
𝜃−1𝜎(Xmax(2))

−0.11834 +0.29223 −0.01981 +0.00009 +0.14455 −0.29872
𝜕E[I1(∞)]∕𝜕𝜃
𝜃−1E[I1(∞)]

+5.62035 −6.43584 +0.98647 −0.55509 −6.60683 +6.99094
𝜕𝜎(I1(∞))∕𝜕𝜃
𝜃−1𝜎(I1(∞))

+3.76640 −3.79310 +0.45838 −0.37816 −4.22478 +4.17126
𝜕E[I2(∞)]∕𝜕𝜃
𝜃−1E[I2(∞)]

−0.43187 +1.31603 −0.08106 +0.06638 +0.51294 −1.38241
𝜕𝜎(I2(∞))∕𝜕𝜃
𝜃−1𝜎(I2(∞))

+1.25353 −1.70748 +0.18008 −0.19435 −1.43362 +1.90183

Note. (Strain 1: antibiotic sensitive; strain 2: antibiotic resistant.)

𝛽 leads to decreasing values of E[T], so that 𝜕E[T]∕𝜕𝛽 < 0. These results are explained by noting that no recoveries
occur in this model, so that the end of the epidemic spread occurs when all patients are infected.

• The mean number E[I1(T)] of infected patients by the AS bacterial strain increases with decreasing values of 𝛽2 (because
𝜕E[I1(T)]∕𝜕𝛽2 < 0) and with increasing values of 𝛽1 and c (because 𝜕E[I1(T)]∕𝜕𝛽1 > 0 and 𝜕E[I1(T)]∕𝜕c > 0), illustrating
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bacterial strain competition; in a similar manner, analogous comments can be made for the expected number E[I2(T)]
of patients infected by the strain of AR bacteria.

• Perturbations in the common infection rate 𝛽 do not affect the random variables I1(T) and I2(T) at all, because these
perturbations lead to equal relative changes in 𝛽1 and 𝛽2, so that positive and negative effects on these variables are
balanced out. This is directly related to the fact that the dynamics of the SI1, I2 epidemic model are governed by the
ratio 𝛽−1

2 𝛽1 (in this case, becoming (1 − c)−1), and not by the particular magnitudes of 𝛽1 and 𝛽2.
• Stochastic uncertainty, represented by 𝜎(T), decreases with increasing values of 𝛽1, 𝛽2, and 𝛽 (roughly speaking, the

faster infections occur, the less volatile the length of the outbreak is) and with decreasing values of c. On the other
hand, uncertainty about I1(T), represented by 𝜎(I1(T)), increases with 𝛽2 (because 𝜕𝜎(I1(T))∕𝜕𝛽2 > 0) and decreases
with 𝛽1 and c, for similar reasons; note that analogous comments can be made on the strain of AR bacteria in terms
of 𝜎(I2(T)).

We stress that the comments above refer to the sign of the derivatives in Table 2 and apply regardless of the partic-
ular value of c ∈ {0.05, 0.1, 0.25}. A more detailed comparison between derivatives in absolute terms is carried out by
comparing elasticities in Table 2, with the following insights:

• The mean length of the outbreak is more affected by perturbations in 𝛽1 than in 𝛽2, and this difference is more sig-
nificant with increasing values of c. This behavior is directly related to the fact that 𝛽2 < 𝛽1, because c is strictly
positive. In the special case c = 0, we would expect to obtain a value for the elasticity of E[T] with respect to 𝛽2 (i.e.,
Elasticit𝑦(E[T]; 𝛽2) = (𝛽−1

2 E[T])−1𝜕E[T]∕𝜕𝛽2) equal to its counterpart with respect to 𝛽1 (i.e., Elasticity(E[T]; 𝛽1)). More-
over, the expected length of an outbreak is inversely proportional to 𝛽, represented by Elasticity(E[T]; 𝛽) = −1, which
is to be expected because 𝛽−1 = 1 day, where 1 day amounts to the unit of time and thus the time unit used for E[T].

• Some symmetries can be identified; for example, it is seen that

Elasticit𝑦(E[I1(T)]; 𝛽1) = −Elasticit𝑦(E[I1(T)]; 𝛽2),

for any value c of fitness cost. This is explained again by the fact that the dynamics in SI1, I2 epidemic models are
governed by the ratio 𝛽−1

2 𝛽1, so that the mean number of patients suffering infection by the AS bacterial strain can
increase either by increasing the value of 𝛽1 or decreasing the value of 𝛽2; similar comments apply to the expected
number E[I2(T)] and standard deviations 𝜎(I1(T)) and 𝜎(I2(T)).

• In general, the rate 𝛽 represents the most important parameter for the random index T, whereas 𝛽1 and 𝛽2 are equally
important for the random variables I1(T) and I2(T), regardless of the value of c.

We now incorporate discharge and recovery of patients into the model of Lipsitch et al.31 by making use of the SI1, I2S
epidemic model with recovery rates 𝛾1 = 𝛾 + 𝜏1 + 𝜏2 + 𝜇 and 𝛾2 = 𝛾 + 𝜏2 + 𝜇, and values 𝜏−1

1 = 5 days and 𝜏−1
2 = 10 days,

when discharge of patients, who are replaced by susceptible patients, occurs, on average, in 7 days (i.e., 𝜇−1 = 7 days),
and spontaneous recovery occurs, on average, in 30 days (i.e., 𝛾−1 = 30 days). These values for 𝜏1, 𝜏2, 𝜇, and 𝛾 correspond
to realistic selections used by Lipsitch et al. (see figure 2 in the work of Lipsitch et al.31), although parameters are known
to vary within concrete ranges. For instance, the average duration 𝜇−1 of hospital stay and the average time 𝛾−1 until the
spontaneous clearance of bacterial carriage may vary between 7 and 20 days, and between 30 and 60 days, respectively;
see table 1 in the work of Lipsitch et al.31 We also select rates 𝜆1 = N−10.1 and 𝜆2 = N−10.1 to represent infections not
directly caused by infectious contacts (for example, due to environmental contamination of the hospital ward), but we
should point out that these parameters are an addition not considered explicitly in the work of Lipsitch et al.31

For the sake of brevity, results in Tables 3 and 4 are related to primary parameters of 𝜽 = (𝛽1, 𝛽2, 𝜆1, 𝜆2, 𝛾1, 𝛾2)T and the
choice c = 0.25; a further discussion on sensitivities and elasticities with respect to secondary parameters (i.e., c, 𝛽, 𝜏1, 𝜏2,
𝜇 and 𝛾) can be found online (see Supporting information). We note that long outbreaks obtained in our numerical results
(lasting for years; Table 3) are related to the fact that there is an AR bacteria in the hospital ward and that no specific
control action is considered in the model. If we focus on the scenario with c = 0.25, the long global outbreak represented by
E[T] ∼ 2, 481 days corresponds to a random overlap of outbreaks corresponding to the AS and AR bacterial strains, until by
chance the hospital ward becomes cleared of both strains of bacteria at the same time. The main contribution to this global
outbreak length corresponds to long AR bacterial strain outbreaks (with expected length E[T(2)] ∼ 676 days), overlapping
with short AS bacterial strain outbreaks (with expected length E[T(1)] ∼ 24 days). Moreover, the peak of infection in the
hospital ward amounts to E[Xmax] ∼ 16 infected patients, with peaks of E[Xmax(1)] ∼ 6 patients infected by the AS bacterial
strain, and peaks of E[Xmax(2)] ∼ 11 patients infected by the AR bacterial strain. Although implementing control measures
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within the hospital ward would contribute to decrease the values of these summary statistics (more particularly, Lipsitch
et al.31 considered control strategies such as implementing barrier precautions, improving handwashing compliance levels
by health-care workers, or increasing drug dosage when bacteria are detected in the ward), considering such control
actions is out of the scope of this paper, and we focus instead on the local sensitivity analysis for the parameters when no
intervention is considered.

In Table 4, we list values of the elasticities of summary statistics with respect to the parameters of (𝛽1, 𝛽2, 𝜆1, 𝜆2, 𝛾1, 𝛾2),
in the case c = 0.25. Again, we first focus on the sign of these elasticities (equivalently, partial derivatives). As the reader
may observe, the mean length of the outbreak increases with increasing values of 𝛽1, 𝛽2, and 𝜆2 and with decreasing values
of 𝛾1 and 𝛾2, as one might expect. However, it is also seen that 𝜕E[T]∕𝜕𝜆1 < 0, which suggests that external infections
of patients by the strain of AS bacteria act here as a global protection in the hospital ward, reducing the length of the
global outbreak. This can be better explained by analyzing scenarios with smaller and larger values of the fitness cost c.
For example, for c = 0.1 (results not reported here), we find that 𝜕E[T]∕𝜕𝛽1 and 𝜕E[T]∕𝜕𝜆1 are strictly negative, so that
when the AR bacterial strain is infectious enough, any kind of infection by the strain of AS bacteria acts as a protection
measure for the hospital ward in general terms, that is, when analyzing the global outbreak length E[T]. On the other
hand, in the case c = 0.5, when the fitness cost is large, and as a result, the AR bacterial strain is not so infectious, we find
that 𝜕E[T]∕𝜕𝛽1 and 𝜕E[T]∕𝜕𝜆1 are strictly positive, representing the fact that the protective role of the AS bacterial strain
is not worth it here, given the low infectiousness of the AR bacterial strain. The scenario in Table 4 (c = 0.25) should be
considered as an intermediate situation, where external infections by AS bacterial strain help to protect the ward, whereas
infectious contacts among patients by AS bacterial strain do not play the same protective role. These results suggest that,
when considering the implementation of control strategies, special focus should be made on avoiding environmental
contamination by the strain of AS bacteria, or on avoiding infectious contacts between patients by the AS bacterial strain
(through health-care workers), depending on the infectiousness of the strain of AR bacteria present in the ward. Other
insights from Table 4 are as follows:

• The expected peak E[Xmax] of infection increases with increasing values of any rate representing infection and with
decreasing values of the recovery rates. On the other hand, expected peaks E[Xmax(1)] of infection by the strain of AS
bacteria increase with increasing values of 𝛽1, 𝜆1, and 𝛾2, and with decreasing values of 𝛽2, 𝜆2, and 𝛾1, representing
the competition between both strains of bacteria. Similar comments apply not only to AR bacterial strain in terms
of E[Xmax(2)] but also to the expected steady-state numbers E[I1(∞)] and E[I2(∞)] of patients infected by AS and AR
bacteria, respectively.

• Derivatives of the standard deviation are difficult to interpret in the SI1, I2S epidemic model. However, we may note here
that, for example, the partial derivatives 𝜕𝜎(Xmax)∕𝛽1, 𝜕𝜎(Xmax)∕𝛽2, 𝜕𝜎(Xmax)∕𝜆1, and 𝜕𝜎(Xmax)∕𝜆2 are strictly negative,
and on the contrary, 𝜕𝜎(Xmax)∕𝛾1 and 𝜕𝜎(Xmax)∕𝛾2 are strictly positive. This means that the peak of the outbreak behaves
in a more deterministic way with increasing values of the infection rates, whereas it behaves more stochastically when
infection and recovery rates are more balanced, that is, with increasing values of recovery rates in Table 4.

In identifying the most important parameters for each descriptor, an examination of Table 4 reveals the following
observations:

• Symmetries identified in the SI1, I2 epidemic model disappear in the multitype SIS case, because incorporating the
recovery of patients in the hospital ward into the SI1, I2S epidemic model results in a more complex description. In
particular, the specific magnitudes of 𝛽1 and 𝛽2 have a significant impact on the descriptors, regardless of maintaining
the same value for the ratio 𝛽−1

2 𝛽1.
• When analyzing the expected length E[T] of the global outbreak, the magnitudes of 𝛽2 and 𝛾2 are the most relevant

ones. This fact is closely related to our comment above where the main contribution to the global outbreak length
corresponds to long AR bacterial strain outbreaks. The expected length E[T(1)] of AS bacterial strain outbreaks is
more affected by 𝛽1 and 𝛾1, whereas 𝛽2 and 𝛾2 have more impact on the expected length E[T(2)], as one would expect.
However, it is interesting to note that the competition between bacterial strains has a special impact on E[T(2)], which
is represented by relatively large values of Elasticity(E[T(2)]; 𝛽1) and Elasticity(E[T(2)]; 𝛾1). Similar comments directly
apply to E[Xmax(1)] and E[Xmax(2)].

• On the other hand, the global peak E[Xmax] of infection, as well as the steady-state numbers E[I1(∞)] and E[I2(∞)] of
infected patients by strains of AS and AR bacteria, respectively, seem to be approximately equally affected by infec-
tion and recovery rates corresponding to both bacterial strains, which result in comparable absolute magnitudes for
elasticities of these descriptors with respect to 𝛽1, 𝛽2, 𝛾1, and 𝛾2.
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FIGURE 3 A comparative study between Algorithms 1.B and 1.C

4 CONCLUSIONS

In this paper, we develop a comprehensive perturbation analysis of finite LD-QBD processes by computing the partial
derivatives of a number of summary statistics with respect to parameters governing the dynamics of the underlying pro-
cess. This is carried out in an algorithmic fashion that adapts well-known matrix-analytic procedures existing in the
literature for analyzing this class of Markov chains and by means of using matrix calculus techniques previously applied by
Caswell1 to absorbing CTMCs. We stress here that this approach could be directly applied to any existing matrix-analytic
algorithmic solution for skip-free Markov chains, which are more elaborated Markov chains than finite LD-QBD pro-
cesses. Furthermore, for the finite LD-QBD process under consideration, perturbation analysis of alternative descriptors
allowing for a matrix-analytic treatment (for example, the number of visits to level L(i), for integers 1 ≤ i ≤ K, before
reaching level L(0), and numbers of level descents and level ascents before reaching states in L(0), among others) could
also be developed in a similar manner.

Local sensitivity or perturbation analysis for LD-QBD processes is specially relevant in epidemic modeling. This is due
to the fact that not only the multitype versions of SI and SIS epidemics can be expressed in terms of LD-QBD processes but
also many other variants—including SIR, SIRS, SEIR epidemic models—can be represented in this way by conveniently
labeling states; see, for example, the works by Artalejo et al.35 and Neuts and Li.36 In particular, this is possible due to the
fact that events such as infections and recoveries in these processes occur one at a time in continuous time. In the special
case of SIR epidemic models, the block-tridiagonal form of Q in (1) is linked to a block-bidiagonal form for transient states
(see section 1 in the work of Neuts and Li36) when the bivariate process  is defined in terms of the numbers (S(t), I(t)) of
susceptibles and infectives at time t. This block-bidiagonal form in sections 3 and 4 in the work of Neuts and Li36 permits
recursive procedures for computing the final size of the epidemic and the maximum size distribution in a similar manner
to that in the work of Amador et al.,37 where the joint distribution of the maximum number of infectives during an out-
break and the random time to reach this maximum number is also derived in terms of Laplace–Stieltjes transforms. For
SIR epidemic models with Markov-modulated events, we refer the reader to the work of Almaraz and Gómez-Corral38;
more concretely, LD-QBD processes are used in the work of Almaraz and Gómez-Corral38 to derive the probability dis-
tributions of the length of an outbreak, the final size of the epidemic, and the number of secondary cases. When these
models are used for representing epidemics in reality, statistical estimation techniques, such as Bayesian approaches (for
instance, approximate Bayesian computation and Monte Carlo Markov chain methods), are usually implemented in order
to estimate parameters of these models from clinical data; see, for example, the work of Kypraios et al.39 In the statistical
setting, it is therefore important to evaluate the impact that a small perturbation of the underlying parameters may have
in the dynamics of the epidemic model, so that one can identify parameters that the model is most sensitive to, allowing
for potentially devoting more computational and statistical efforts in estimating those parameter values.

When faced with sensitivities and elasticities, an obvious approach is to evaluate by direct computation the partial deriva-
tives 𝜕D∕𝜕𝜃r of any descriptor D with respect to 𝜃r for 1 ≤ r ≤ s, instead of the differentiation of D with respect to the
vector𝜽 of parameters. In the case of first-passage times and the bacterial transmission model (Section 3.3), Figure 3 shows
CPU times for Algorithms 1.B (Section 2.1) and 1.C (Appendix B), where the latter computes, starting at r = 1, the partial
derivatives 𝜕E[Tl

(i,𝑗)]∕𝜕𝜃r for integers 1 ≤ r ≤ s and l = 1, the multitype SI epidemic model (Section 3.1) and initial state
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TABLE 5 Computational complexity summary of Algorithms 1.A–B, 2.A–B, and 3.A–B

Algorithm 1.A Algorithm 1.B

• It computes the expectations m(l)
(i,𝑗) of • It computes partial derivatives 𝜕E[Tl

(i,𝑗)]∕𝜕𝜃r ,
first-passage times to level L(0), for states for 1 ≤ r ≤ s, states (i, 𝑗) ∈ ∖L(0) and
(i, 𝑗) ∈ ∖L(0) and integers l ≥ 1, from Equation (4). integers l ≥ 1, in a unified manner.

• It requires the computation of Jacobian matrices
• It involves computing matrices Hi, for dvecHi∕d𝜽T , for 1 ≤ i ≤ K, involving sums,
1 ≤ i ≤ K, and their corresponding inverses, with products, and Kronecker products of matrices
size Mi + 1. and vectors, as well as vectorization of matrices,

with size Mi + 1. Inverses of matrices previously
computed in Algorithm 1.A are used.

• Moreover, it consists of two nested loops • Moreover, it consists of two nested loops
(0 ≤ p ≤ l, 1 ≤ i ≤ K) involving sums and (0 ≤ p ≤ l, 1 ≤ i ≤ K) involving sums, products,
products of matrices of size Mi + 1. and Kronecker products of matrices of size

Mi + 1, as well as vectorization of these matrices.
Algorithm 2.A Algorithm 2.B

• It computes hitting probabilities p(i,j)(n) • It computes partial derivatives 𝜕p(i,j)(n)∕𝜕𝜃r,
for states (i, 𝑗) ∈ ∖L(0) and phases for 1 ≤ r ≤ s, states (i, 𝑗) ∈ ∖L(0) and phases
0 ≤ n ≤ M0 + 1. 0 ≤ n ≤ M0 + 1, in a unified manner.

• It consists of three iterations of a loop
• Matrices Hi and corresponding inverses can be (0 ≤ i ≤ K) involving sums, products, and
directly used here once computed in Algorithm1.A. Kronecker products of matrices and vectors with

size Mi + 1, as well as vectorization of these
matrices. Inverses computed in Algorithm 1.A are used here.

• It consists of three iterations of one loop
(1 ≤ i ≤ K) involving sums and products of
matrices with size Mi + 1.
Algorithm 3.A Algorithm 3.B

• It computes stationary probabilities 𝜋(i,j), for • It computes partial derivatives 𝜕𝜋(i,j)∕𝜕𝜃r,
states (i, 𝑗) ∈  . for 1 ≤ r ≤ s and states (i, 𝑗) ∈  , in a unified manner.

• A first loop (1 ≤ i ≤ K) constructs Jacobian
matrices dvecBi∕𝜽T , involving sums, products,

• It involves computation of inverses B−1
i , for and Kronecker products of matrices and vectors

0 ≤ i ≤ K, with size Mi + 1, plus solving a th size Mi + 1, as well as vectorization of
system of MK + 1 linear equations corresponding these matrices. It also involves solving a system
to level L(k). of linear equations with (MK + 1)2 equations,

corresponding to level L(K) after vectorizing the
corresponding matrix.

• Moreover, it consists of two subsequent loops • Moreover, it consists of two subsequent
(0 ≤ i ≤ K) involving sums and products of loops (0 ≤ i ≤ K) involving sums, products, and
matrices and vectors with size Mi + 1. Kronecker products of matrices and vectors with

size Mi + 1, as well as vectorization of these matrices.

(i, j) = (I1 + I2, I2) with (I1, I2) = (1, 1). In order to carry out this computational comparison while increasing the number
s of parameters in 𝜽, we consider s − 2 additional external sources of type-1 infection, so that new type-k infections occur
with respective rates i(( 𝑗 + I1)𝛽1 +

∑s−2
k′=1 𝜆k′ ) if k = 1, and i(N − i − j − I1)𝛽2 if k = 2; this means that, in Figure 3, the

number of parameters equals s with s ∈ {2, 10, 25, 50}, and the rate 𝜆k′ corresponds to the k′ th external source of type-1
infection, for 0 ≤ k

′
≤ s − 2. It is seen that, for a large number s of parameters (s = 50; Figure 3), Algorithm 1.B behaves

better than Algorithm 1.C, whereas the latter performs better than the former if s is small (s ∈ {2, 10}). This behavior can
be explained by using the summary of computational complexity shown in Table 5. To be concrete, Algorithm 1.B (similar
to Algorithms 2.B and 3.B) is seen to require an extra effort to construct Jacobian matrices and related matrix operations
(for instance, Kronecker products and vectorization of matrices), which are not necessary in Algorithm 1.C. Because the
dimension of these matrices depends on the values s and N, moderate values for the number s of parameters (s = 25) are
linked to intermediate situations at which Algorithm 1.B yields better results for small population sizes (N < 100), but it
becomes worse than Algorithm 1.C for larger sizes (N > 100).

Therefore, the use of Algorithms 1.B, 2.B, and 3.B is expected to be more convenient when studying more complex
epidemic models, such as those incorporating population heterogeneities at the individual level (considering different
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TABLE 6 Computational complexities of Algorithms 1.A–B, 2.A–B,
and 3.A–B

Algorithm 1.A Algorithm 1.B

O

( K∑
i=1

(Mi + 1)3

)
O

(
max

{
s

K−1∑
i=1

(Mi + 1)3(Mi+1 + 1),
K∑

i=1
(Mi + 1)5

})
Algorithm 2.A Algorithm 2.B

O

( K∑
i=0

(Mi + 1)3

)
O

(
s

K∑
i=0

(Mi + 1)3

)
Algorithm 3.A Algorithm 3.B

O

( K∑
i=0

(Mi + 1)3

)
O

(
s

K∑
i=0

(Mi + 1)4

)

individual susceptibilities, infectivities, or recovery periods), leading to LD-QBD processes defined on networks,18,40 these
models being specially useful for analyzing epidemic processes in highly heterogeneous environments such as hospital
units.40,41 The type of local sensitivity analysis carried out here is specially interesting in this type of epidemic processes on
networks because the number of parameters in these models grows combinatorially with the number N of individuals in
the network. For instance, in the case of an SIR epidemic model on a directed network (see the work by López-García 40)
with external sources of infection and N individuals, the number of parameters in the model amounts to 2

(
N
2

)
+ 2N,

corresponding to 2
(

N
2

)
infectious contact rates, N external infection rates, and N recovery rates; this means that, for a

population of N = 10 heterogeneous individuals, the number of parameters may be as large as s = 110.
In a more general setting, Table 6 shows the effect that the number of levels (K + 1), the numbers of phases per level

(Mi + 1, with 0 ≤ i ≤ K), and the number of process parameters (s) has on the computational complexity of Algorithms
1.A–1.B, 2.A–2.B, and 3.A–3.B. It is observed that Algorithms 1.A and 2.A have computational complexities similar to
the computational complexity of the linear level reduction algorithm (Algorithm 3.A) by Gaver et al.,27 because the most
intensive computational effort lies in these algorithms in the inversion and product of matrices with dimensions Mi + 1,
for 0 ≤ i ≤ K. Note that the computational complexity of Algorithms 1.A–1.B is written by considering a fixed integer l.
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APPENDIX A: GLOSSARY OF NOTATION AND MATRIX CALCULUS PROPERTIES

Throughout this paper, vectors and matrices are denoted by bold lowercase and uppercase letters, respectively, with aT

and AT denoting the transpose of the vector a and the matrix A. We denote the identity matrix of order h by Ih, the null
matrix of dimension h × l by 0h×l, and the column vectors of zeros and ones with dimension h by 0h and 1h, respectively.
Given a matrix A of dimension h × l and a column vector x with l entries, we let vecA be a column vector with hl entries
obtained by stacking columns within A, and D(x) denotes the diagonal matrix with x within its diagonal.

For a column vector y with h entries depending on parameters stored in a column vector x of order l, the derivative of
y with respect to x amounts to the Jacobian matrix dy∕dxT of dimension h × l, which is given by

dy
dxT =

⎛⎜⎜⎜⎜⎜⎝

d𝑦1
dx1

d𝑦1
dx2

· · · d𝑦1
dxl

d𝑦2
dx1

d𝑦2
dx2

· · · d𝑦2
dxl

⋮ ⋮ ⋱ ⋮
d𝑦h
dx1

d𝑦h
dx2

· · · d𝑦h
dxl

⎞⎟⎟⎟⎟⎟⎠
.

As a result, derivatives of matrices can be readily derived, translating matrices into vectors by using the vec(·) operator
and by evaluating the resulting Jacobian matrices; more concretely, for a matrix A of dimension m × n with entries aij
depending on parameters stored in a column vector x of order l, the derivative of A with respect to x is related to the
matrix dvecA∕dxT, which has the form

dvecA
dxT =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

da11
dx1

da11
dx2

· · · da11
dxl

⋮ ⋮ ⋮
dam1
dx1

dam1
dx2

· · · dam1
dxl

da12
dx1

da12
dx2

· · · da12
dxl

⋮ ⋮ ⋮
dam2
dx1

dam2
dx2

· · · dam2
dxl

⋮ ⋮ ⋮
da1n
dx1

da1n
dx2

· · · da1n
dxl

⋮ ⋮ ⋮
damn
dx1

damn
dx2

· · · damn
dxl

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

In Sections 2.1–2.3, we obtain derivatives of certain properties of  with respect to a vector w of parameter values by using
four matrix calculus properties, which are as follows:

1. For vectors y, x, and z depending on parameters within w, and matrices W and V with identical numbers of rows,
the derivative of y = Wx + Vz with respect to w is given by

dy
dwT = W dx

dwT + V dz
dwT .
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2. Let A be a square matrix, whose entries depend on parameters within w. If the matrix A is nonsingular, then the
derivative of A−1 with respect to w can be determined from

dvec(A−1)
dwT = −

(
(A−1)T ⊗ A−1) dvecA

dwT ,

where ⊗ represents Kronecker's product.
3. For a column vector x with m entries depending on parameters within w,

dvecD(x)
dwT = D(vecIm)(1m ⊗ Im)

dx
dwT .

4. For matrices A, B, and C depending on parameters within w, it is readily seen that vec(ABC) =
(
CT ⊗ A

)
vecB.

For a general treatment on matrix calculus and its applications, we refer the reader to, among others, the book by
Magnus and Neudecker42; more concrete results with ecological and demographic applications can be found in the works
of Caswell.1,2

APPENDIX B: A SIMPLE ALGORITHM

Starting from r = 1, Algorithm 1.C allows us to derive partial derivatives of the moments m(l)
(i,𝑗) of first-passage times with

respect to a single parameter 𝜃r, for integers 1 ≤ r ≤ s.

Algorithm 1.C. Computation of the partial derivatives 𝜕E
[

Tl
(i,𝑗)

]
∕𝜕𝜃r, computed one at a time, for integers l ≥ 1 and

1 ≤ r ≤ s, and states (i, 𝑗) ∈ ∖L(0).
Set r = 0;
while r < s, repeat

r = r + 1;
Step 1: Set p = 0;

for i = 1, … ,K, evaluate
m(𝑝,𝜃r)

i = 0Mi+1;

b(𝑝+1,𝜃r)
i = (𝑝 + 1) 𝜕

𝜕𝜃r

(
m(𝑝)

i
Δi

)
;

H(𝜃r)
K = −A(𝜃r)

K,K ;
for i = K − 1, … , 1, evaluate

H(𝜃r)
i = −A(𝜃r)

i,i − A(𝜃r)
i,i+1H−1

i+1Ai+1,i + Ai,i+1H−1
i+1H(𝜃r)

i+1H−1
i+1Ai+1,i − Ai,i+1H−1

i+1A(𝜃r)
i+1,i.

Step 2: While p < l, repeat
p = p + 1;

J(𝑝,𝜃r)
K = b(𝑝,𝜃r)

K ;
for i = K − 1, … , 1, evaluate

J(𝑝,𝜃r)
i = A(𝜃r)

i,i+1H−1
i+1J(𝑝)i+1 − Ai,i+1H−1

i+1H(𝜃r)
i+1H−1

i+1J(𝑝)i+1 + Ai,i+1H−1
i+1J(𝑝,𝜃r)

i+1 + b(𝑝,𝜃r)
i ;

m(𝑝,𝜃r)
1 = −H−1

1 H(𝜃r)
1 H−1

1 J(𝑝)1 + H−1
1 J(𝑝,𝜃r)

1 ;
for i = 2, … ,K, evaluate

m(𝑝,𝜃r)
i = −H−1

i H(𝜃r)
i H−1

i

(
Ai,i−1m(𝑝)

i−1 + J(𝑝)i

)
+ H−1

i

(
A(𝜃r)

i,i−1m(𝑝)
i−1 + Ai,i−1m(𝑝,𝜃r)

i−1 + J(𝑝,𝜃r)
i

)
;

for i = 1, … ,K, evaluate

b(𝑝+1,𝜃r)
i = (𝑝 + 1) 𝜕

𝜕𝜃r

(
m(𝑝)

i
Δi

)
.

As the reader may verify, Algorithm 1.C does not use the vec(·) operator. In Step 2, the column vector m(𝑝,𝜃r)
i amounts

to the element-by-element partial derivative of m(𝑝)
i with respect to parameter 𝜃r, for 1 ≤ r ≤ s. Therefore, for the vector

of partial derivatives of the element-by-element vector division m(𝑝)
i ∕Δi, we may express(

𝜕

𝜕𝜃r

(
m(𝑝)

i

Δi

))
𝑗

=

(
m(𝑝,𝜃r)

i

)
𝑗
(Δi)𝑗 −

(
m(𝑝)

i

)
𝑗

(
Δ(𝜃r)

i

)
𝑗(

(Δi)𝑗
)2 .
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