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Abstract

Traumatic brain injury (TBI) is a widely-recognized risk factor for neurodegenerative disease. The 

purpose of this review is to provide an update on the state of the science related to injury cascades 

in TBI-related neurodegeneration. Acute and chronic pathological outcomes of TBI are similar to 

those seen in several neurodegenerative conditions, suggesting common linking pathways. Initial 

research described severe TBI patients with postmortem identification of abnormal proteins, such 

as amyloid deposits. History of mild TBI (mTBI) is less consistently associated with heightened 

risk of neurodegenerative outcomes, but specific populations with complicated medical histories 

and comorbidities may be more susceptible. Our understanding of a pathological signature 

associated with repetitive mTBI and/or subclinical brain trauma advanced significantly over the 

past decade, and is now commonly referred to as chronic traumatic encephalopathy. We discuss 

hypotheses linking TBI to neurodegenerative disease, and the importance of considering factors 

like injury severity, timing of injury (early life versus older age), injury frequency, and repetitive 

subclinical brain trauma when extrapolating results from current literature to certain populations. 

We describe the challenges to obtaining the data necessary for accurate epidemiological research 

and determination of true risk magnitude, and note the importance of developing treatment-based 

approaches to risk mitigation.

Introduction

Traumatic brain injury (TBI) and neurodegenerative disease are both international public 

health concerns. Heightened research efforts investigating links between these two 

conditions indicate TBI may elevate risk of developing neurodegenerative pathology by a 

variety of potential mechanisms. Harrison Martland first described poor long-term outcome 

specific to repetitive TBI mechanisms as “punch drunk” syndrome in 1928, later termed 

dementia pugilistica by Millspaugh in 1937 and “chronic progressive traumatic 

encephalopathy of boxers” by Critchley in 19571–3. Chronic traumatic encephalopathy 

(CTE) is now a widely-recognized term among the public that was popularized over the past 

decade because of evidence suggesting athletes and military personnel exposed to repetitive 

Correspondence to: Steven T. DeKosky, MD, FACP, FANA, FAAN, Department of Neurology, McKnight Brain Institute, PO Box 
100236, Gainesville FL 32610, 352-273-8500, DeKosky@UFL.edu. Assistant: Sabrina M. Sánchez, 352.273.8500 Office/
352.246.8904 Cell, Sabrina.Sanchez@mbi.ufl.edu. 

HHS Public Access
Author manuscript
Brain Inj. Author manuscript; available in PMC 2018 November 05.

Published in final edited form as:
Brain Inj. 2017 ; 31(9): 1177–1182. doi:10.1080/02699052.2017.1312528.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



brain trauma are at risk of the neurodegenerative pathology 4,5. Studies also identify TBI as 

a possible environmental risk factor for more common degenerative diseases such as 

Alzheimer’s disease (AD). Overlapping neuropathological outcomes between TBI and 

neurodegenerative disorders lend support to this association, though a great deal remains 

unknown. Here we note population and injury severity-specific considerations, and we 

briefly review hypothesized mechanisms, epidemiological studies describing diagnosed 

neurodegenerative disease and dementia after TBI exposure, and future research avenues.

TBI Severity and At-Risk Populations

TBI is described along a continuum from mild to moderate to severe based on gross 

neurological assessment and neuroimaging findings. Many consider “concussion” 

synonymous with mild TBI (mTBI). Recent concerns have emerged about repetitive 

subclinical brain trauma (RSBT), or forces transmitted to the brain that do not cross a 

threshold of observable or measurable functional changes but still likely result in shear-strain 

of axons. This is likely due to findings that repetitive trauma in certain sports (American 

football, ice hockey, and others) and soldiers has manifested as CTE or structural brain 

changes that do not necessarily correlate with a significant, documented concussion history. 

Civilians are at risk of single-event TBI of all severities via mechanisms such as motor 

vehicle accidents, assault, or falls, while certain collision sport athletes and military 

personnel are uniquely exposed to RSBT as well as more frequent mTBI. The degree to 

which findings from acute, severe TBI patients directly apply to those with extensive RSBT 

or multiple mTBI, and vice versa, is unclear, but such data likely identify candidate 

mechanisms underlying the relationships to later-life neurodegenerative disease.

Acute Pathophysiological Effects of Single-Event TBI

TBI results in diffuse axonal injury characterized by mechanical deformation of axons and 

subsequent indiscriminate glutamate release, spreading depolarization, and altered neuronal 

metabolism6. Dysregulated axonal transport systems lead to axonal swelling that may result 

in deprivation of necessary proteins at axon terminals and, ultimately, focal nerve 

disconnection (i.e. “secondary axotomy”) or reduced elasticity7. Excess amount of proteins 

associated with TBI, beta-amyloid (Aβ) and phosphorylated tau (pTau), are implicated in 

many neurodegenerative diseases. Johnson et al. (2013) and Washington et al. (2016) review 

axonal and cellular polypathologies following TBI in greater detail8,9.

Human TBI studies indicate that damaged axons “can serve as a large reservoir” of amyloid 

precursor protein (APP) and Aβ10. APP levels in the temporal cortex increase within hours 

after severe TBI in humans and localize to axonal swellings, neurites, and cell bodies in the 

absence of acute neurofibrillar pathology11. APP upregulation and accumulation is an 

established marker of diffuse axonal injury in TBI, significantly increasing risk for 

neurotoxic levels of Aβ12,13. Roberts and colleagues indicated approximately 30% of severe 

TBI patients test positive for Aβ plaques, and a significant effect of age such that incidence 

was 20% in those younger than 50 and 60% in patients between 51 and 6014. Studies also 

show significantly higher incidence of intracellular and intra-axonal accumulation of non-
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plaque Aβ11,15. Similar results are noted in animal studies using fluid percussion and 

controlled cortical impact injury models16–21.

The shear-strain force from TBI may result in hyperphosphorylation, misfolding, and 

accumulation of tau, which disrupts axonal transport systems. Presence of aggregated pTau 

as neurofibrillary tangles (NFTs) acutely after a single TBI is not as common as Aβ, but the 

distribution of tau pathology appears unique to TBI etiology. Uryu et al. examined brain 

tissue from 18 cases following single incident fatal TBI and found far less prevalence of 

pTau relative to APP accumulation within axons22. A more recent study compared NFT 

deposition in patients diagnosed with only a single TBI (with 1–47 years’ survival) and 

found no difference in prevalence compared to an age-matched control group. However, the 

TBI group displayed NFTs more frequently when limiting analyses to subjects 60 years or 

younger. Deposition of age-related NFTs or tau deposition does not occur commonly in 

subjects below 60 years. The TBI group also had a unique distribution of NFT depositions in 

the cortical layers – clustering at depths of cortical sulci, compared to controls exhibiting 

NFTs predominantly in entorhinal cortex and the hippocampus, considered mostly 

consistent with normal aging23. Cortical NFTs are not widely seen with normal aging, but 

with clinically manifest Alzheimer’s disease.

Hypotheses Linking TBI to Progressive Neurodegenerative Disease

Mechanisms driving the potential neurodegenerative effects of acute TBI, multiple mTBI, or 

RSBT are poorly understood. Proposed hypotheses include decreased cognitive reserve, 

chronic inflammation, chronic microglia activation, acute upregulation of APP and 

subsequent AD-like cascades, and slow degeneration of axonal connections due to altered 

protein degradation processes. The widespread effects of TBI on neuronal homeostasis and 

regulatory functions suggests one or many of these hypotheses may drive chronic 

dysfunction even in the absence of subsequent or repetitive forces transmitted to the brain.

The cognitive reserve hypothesis holds that the effects of TBI modify the “normal aging” 

trajectory for the affected individual, and multiple injuries may have synergistic negative 

effects that amplify or accelerate the risk of crossing a threshold for dementia diagnosis. 

Neuropathologically, acute neuroinflammation after TBI is associated with cytokine release 

and persistent microglia activation, evidenced by reactive microglia found post-mortem 

months to years after a single TBI24–27. Johnson and colleagues found reactive microglia 

present in 28% of brains examined over a year following a single TBI, which supports 

previous data indicating chronic inflammation and microglia activation up to 17 years after 

TBI in areas distal to the trauma locus25,28.

As previously mentioned, acute TBI pathology can include Aβ and tau deposition. The 

normally functioning brain has mechanisms for protein degradation and removal. The 

ubiquitin-proteasome pathway, for example, is an intracellular mechanism that regulates 

degradation of both normal and abnormal proteins, and promotes normal cell growth and 

metabolism. This pathway may be impaired due to chronic inflammation following TBI, 

resulting in inability to clear proteins such as Aβ and pTau efficiently29. The combination of 

abnormal protein deposition and reduced degradation and clearance abilities suggest 
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plausible mechanisms linking single-event moderate to severe TBI to neurodegenerative 

processes.

Repetitive Brain Trauma and Neurodegeneration

Athletes participating in high frequency collision sports and certain military personnel are 

exposed to RSBT and potentially multiple mTBI30. CTE is the primary neurodegenerative 

tauopathy associated with RSBT and multiple mTBI history, though other proteomic 

molecules such as Aβ and TAR DNA-binding protein 43 (TDP-43) are also frequently 

observed. Recently published pathological criteria defined pTau aggregates in neurons, 

astrocytes, and cell processes around small vessels in cluster patterns at the depths of 

cortical sulci as the pathognomonic sign of CTE31. Continuous tau deposition in the cortical 

lamina differentiated AD from CTE, as does the absence, in CTE, of NFT deposition in 

other parts of the cortex and limbic system, particularly in milder cases of CTE. However, 

data show that up to 37% of individuals diagnosed with CTE pathology also met criteria for 

comorbid neurodegenerative pathology including AD, Lewy Body Disease, and 

frontotemporal lobar degeneration5, largely in older subjects, CTE has been identified 

almost exclusively in individuals with a history of repetitive brain trauma, though some 

recent findings raise questions of whether such exposure is necessary32,33. Lack of 

prospective longitudinal studies or validated in vivo diagnostic markers, and current sample 

biases significantly limit accurate determination of CTE incidence and prevalence. Literature 

to date has not described CTE as an outcome of single-event TBI.

Absence of premortem CTE diagnostic markers complicates attribution of structural and 

functional changes seen in individuals with exposure to repetitive brain trauma, and thus, 

definitive diagnosis. Coughlin and colleagues found prolonged neuroinflammation in former 

National Football League (NFL) players associated with hippocampal atrophy as well as 

evidence of activated microglia years after retirement from sport34, like previously described 

outcomes after single-event TBI. Although early case studies using positron emission 

tomography (PET) revealed uptake of tau-binding ligands in retired NFL players with 

retention distribution inconsistently characteristic of expected CTE patterns35,36, more 

recent reports do show a pattern consistent with the pathological distribution associated with 

CTE. Increased cortical thinning, enlarged ventricles, subcortical atrophy, and diffuse white 

matter abnormalities have all been reported in retired NFL athletes37–39. Blood and 

cerebrospinal fluid (CSF) markers of central nervous system (CNS) injury may also provide 

insight to pathophysiological outcomes of RSBT and multiple mTBI. A recent study found a 

higher number of tau-positive exosomes in former American football athletes compared to 

retired non-collision sport athletes40. Alosco et al. reported a weak correlation between head 

impact exposure and plasma total tau levels, but no relationship with clinical outcomes41. 

Other studies demonstrated evidence of several markers of acute axonal injury following 

repetitive impacts sustained during a boxing match, but no differences between boxers and 

controls after three months of rest except for neurofilament light protein levels42.
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Risk of Dementia and Neurodegeneration Following TBI

Interpreting studies describing risk of dementia or neurodegenerative disease following TBI 

requires attention to time since injury (e.g. remote TBI history versus TBI in older adults), 

injury severity, and single-event versus repetitive injury (multiple mTBI and/or RSBT). 

There appears to be a weak statistical association between remote mTBI with loss of 

consciousness and incident dementia, on the order of 1.5 to 2.0-fold increased risk43,44, with 

some evidence suggesting mTBI is a weaker predictor than many other neurobiological and 

psychosocial risk factors45. Other studies, however, have found no association46,47. Crane 

and colleagues found no association between remote mTBI and dementia or AD pathology, 

but reported a specific heightened risk of Lewy body pathology48. Mayeux et al. also found 

no association between TBI history and AD diagnosis, but reported a two-fold higher risk in 

individuals with apolipoprotein epsilon-4 (ApoE-ε4) and a ten-fold increased risk in those 

with both history of TBI and ApoE-ε4, raising the possibility of synergistic effects of TBI 

and genetic predisposition for neurodegenerative disease49,50.

Data are similar in studies of older adults sustaining a TBI, with reported elevated risks 

ranging from 1.3 to 3.0 times greater likelihood of subsequent dementia diagnosis51,52 and 

even higher risk in older individuals with the ApoE-ε4 genotype53. Gardner and colleagues 

assessed risk for dementia following TBI in older adults (minimum age 55) compared to 

older adults sustaining an orthopedic injury without brain trauma. They found that moderate 

to severe TBI was associated with increased dementia risk across all age groups, and mTBI 

was a significant predictor in older subjects only (65 and older)54. Thus, consideration of 

injury age, severity, and genetic interactions may be important for determining risk of 

neurodegenerative disease following TBI.

Studies of repetitive brain trauma associated with collision sport participation have shown 

inconsistent risks of later-life neurodegenerative disease or dementia. Lehman et al. found 

retired NFL players were at lower overall risk of mortality compared to age-matched 

controls, but had a three-fold increased risk of having either AD or amyotrophic lateral 

sclerosis (ALS) at death55. Two recent Mayo Clinic studies found no association between 

high school football participation and subsequent risk of dementia, Parkinson’s disease 

(PD), or ALS, suggesting that risk was related to the degree of brain trauma exposure and 

length of playing career56,57. Like outcomes reported in single-event TBI studies, Jordan and 

colleagues described an interaction of genetics and brain trauma exposure such that the 

ApoE-ε4 genotype was associated with worse outcome in boxers with a high amount of 

exposure58. Maroon et al. systematically reviewed the initial 153 case reports of CTE and 

found no relationship between CTE and age of death or ApoE allele type, and concluded 

significant questions remain regarding the popularized belief of “widespread existence of 

CTE in contact sports59.” Incidence, prevalence, and risk factors for CTE are currently 

unknown due to absence of longitudinal studies of representative populations; the clear 

majority of brains analyzed from subjects suffering multiple recurrent TBI were 

symptomatic before death and came to autopsy because of their clinical symptoms.
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Challenges and Future Directions

Repetitive brain trauma research poses significant difficulties. Precise quantitative data is 

difficult to get in football and other collision sports, as well as military combat settings. 

Mechanistic differences between direct impacts seen in collision sports versus blast wave 

forces, and blast wave forces plus collision injury, in combat must also be studied. For 

example, a recent report from Shively and colleagues described potentially distinct 

pathological signatures associated with chronic blast exposure--specifically, astroglial 

scarring in the subpial glial plate, cortical blood vessels, grey-white matter junctions, and 

periventricular regions60. These findings were absent in cases of individuals with exposure 

to a single-event TBI, though a previous investigation from Goldstein et al. reported 

evidence of widespread astrocytosis in mice exposed to a single blast injury61.

Co-occurring posttraumatic stress disorder (PTSD) is frequently a confounding issue in 

military settings, and retired collision sport athletes often have comorbid neurobiological 

and psychosocial conditions complicating the appraisal and attribution of cognitive, mood, 

and behavioral difficulties experienced after retirement62. Future research efforts must 

utilize prospective, longitudinal, and epidemiological designs for determining incidence and 

prevalence of CTE and other neurodegenerative diseases in populations at risk for TBI 

and/or RSBT relative to the general population. Advanced neuroimaging (e.g. PET63) and 

physiological biomarkers (e.g. CSF, serum, and plasma concentrations of CNS injury-related 

proteins) coupled with comprehensive neuropsychological evaluations will assist in defining 

clinical signatures of CTE and possible phenotypic subtypes. Family-based and case-control 

genetic studies may elucidate gene-environment interactions and identify individuals at 

higher risk of adverse outcome following TBI both acutely and chronically.

Lastly, and perhaps most importantly, treatment modalities must be studied targeting not 

only aggregation and propagation of neurodegenerative proteins such as tau and Aβ16,64, but 

also modifiable risk factors believed to contribute to disease progression and overall quality 

of life, such as cardiovascular health, sleep disorders, psychiatric difficulties, and substance 

use, among others62. Models of the time course of AD pathology indicate that amyloid 

alteration precedes tau abnormalities by years, and that ongoing, chronic deposition 

processes may be occurring for a decade or more before observed evidence of cognitive or 

functional changes. Thus, it may be important to consider TBI as a risk factor for 

neuropathological outcomes separately from clinical outcomes (i.e. dementia), while also 

recognizing the role of prophylactic interventions that may prevent, delay, or slow formation 

of pathologic protein aggregates; and slow progression of disease through preservation or 

enhancement of neural structure and cognitive reserve.
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