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ABSTRACT The genetic analysis of complex traits does not escape the current excitement around artificial intelligence, including a
renewed interest in “deep learning” (DL) techniques such as Multilayer Perceptrons (MLPs) and Convolutional Neural Networks (CNNs).
However, the performance of DL for genomic prediction of complex human traits has not been comprehensively tested. To provide an
evaluation of MLPs and CNNs, we used data from distantly related white Caucasian individuals (n �100k individuals, m �500k SNPs,
and k = 1000) of the interim release of the UK Biobank. We analyzed a total of five phenotypes: height, bone heel mineral density,
body mass index, systolic blood pressure, and waist–hip ratio, with genomic heritabilities ranging from �0.20 to 0.70. After hyper-
parameter optimization using a genetic algorithm, we considered several configurations, from shallow to deep learners, and compared
the predictive performance of MLPs and CNNs with that of Bayesian linear regressions across sets of SNPs (from 10k to 50k) that were
preselected using single-marker regression analyses. For height, a highly heritable phenotype, all methods performed similarly, al-
though CNNs were slightly but consistently worse. For the rest of the phenotypes, the performance of some CNNs was comparable or
slightly better than linear methods. Performance of MLPs was highly dependent on SNP set and phenotype. In all, over the range of
traits evaluated in this study, CNN performance was competitive to linear models, but we did not find any case where DL outperformed
the linear model by a sizable margin. We suggest that more research is needed to adapt CNN methodology, originally motivated by
image analysis, to genetic-based problems in order for CNNs to be competitive with linear models.
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A major challenge of modern genetics is to predict an
individual’s phenotype (or disease risk) from the knowl-

edge of molecular information such as genotyping arrays or
even complete sequences. Applications of genomic prediction
range from the assessment of disease risk in humans (e.g., de
los Campos et al. 2010) to breeding value prediction in ani-
mal and plant breeding (e.g., Meuwissen et al. 2013). Un-
derstanding how DNA sequences translate into disease risk

is certainly a central problem in medicine (Lee et al. 2011;
Stranger et al. 2011).

Genome-wide association studies (GWAS) have been used
extensively to uncover variants associated with many impor-
tant human traits and diseases. However, for the majority of
complex human traits and diseases, GWAS-significant SNPs
explain only a small fraction of the interindividual differences
in genetic risk (Maher 2008). Whole-Genome Regression
(WGR), a methodology originally proposed by Meuwissen
et al. (2001), can be used to confront themissing heritability
problem. In aWGR, phenotypes are regressed on potentially
hundreds of thousands of SNPs concurrently. This approach
has been successfully adopted in plant and animal breeding
(e.g., de los Campos et al. 2013), and has more recently
received increased attention in the analysis and prediction
of complex human traits (e.g., Yang et al. 2010; Kim et al.
2017).
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Most of the applications of WGRs in human genetics use
linearmodels. Thesemodels havemultiple appealing features
and have proven to be effective for the prediction of com-
plex traits in multiple applications. Recent developments in
machine learning enable the implementation of high-
dimensional regressions using nonlinear methods that have
been shown to be effective in uncovering complex patterns
relating inputs (SNPs in our case) and outputs (phenotypes).
Among the many machine learning methods available, deep
learning (DL)methods such asMultilayer Perceptrons (MLPs)
haveemergedasoneof themostpowerful pattern-recognition
methods (Goodfellow et al. 2016). DL has demonstrated its
utility in disparate fields such as computer vision, machine
translation, and automatic driving, among others. It has also
been applied to genomic problems using Convolutional Neu-
ral Networks (CNNs) to learn the functional activity of DNA
sequences (Kelley et al. 2016), predict the effects of noncod-
ing DNA (Zhou and Troyanskaya 2015), investigate the reg-
ulatory role of RNA-binding proteins in alternative splicing
(Alipanahi et al. 2015), or infer gene expression patterns,
among others.

Shallow neural networks (NNs, e.g., single-layer net-
works) have been considered for nonparametric prediction
of complex traits in plant and animal breeding (Gianola et al.
2011; González-Camacho et al. 2012; Pérez-Rodríguez et al.
2012). Some of these studies suggest that NNs can achieve
reasonably high prediction accuracy; however, there has not
been consistent evidence indicating that NNs can outperform
linear models in prediction. Perhaps most importantly, most
of the available studies were based on relatively small sample
sizes and limited numbers of SNPs. So far, the application of
NNs for genomic prediction of complex traits has been lim-
ited, with only a few studies published in animal (e.g., Okut
et al. 2011) and plant breeding (e.g., González-Camacho et al.
2016).

In this study, we present an application of DL for the
prediction of complex human traits using data from distantly
related individuals. Achieving high prediction accuracy with
MLPs or CNNs requires using very large data sets for model
training (TRN). Until recently, such data sets were not avail-
able in human genetics. Fortunately, this situation has
changed as very large biomedical data sets from biobanks
become available. Here, we use data from the interim release
of theUKBiobank (http://www.ukbiobank.ac.uk/), and com-
pare the predictive performance of various MLPs and CNNs
with commonly used linear regression methods [BayesB
and Bayesian Ridge Regression (BRR)] using five complex
human traits.

Materials and Methods

Data set

The UK Biobank (www.ukbiobank.ac.uk) is a prospective co-
hort including half a million participants aged between
40 and 69 years who were recruited between 2006 and

2010. From the subjects whose genotypes and phenotypes
were provided, we used data from those that were white
Caucasians (self-identified and confirmed with SNP-derived
principle components) and were distantly related (genomic
relationships , 0.03). For comparison purposes, we use the
same data set and the same TRN testing (TST) partition as
the one used by Kim et al. (2017). The final data set consists
of a total of 102,221 distantly related white Caucasian indi-
viduals. The TRN set contains 80,000 subjects and the TST
set, the remaining 22,221 individuals. Further details about
sample inclusion criteria and quality control are provided in
Kim et al. (2017).

As in Kim et al. (2017), we also analyzed human height
because it is a highly heritable trait with a very complex ge-
netic architecture and a common human model trait in quan-
titative genetic studies (Visscher et al. 2010). However,
because human height is known to be a trait with high nar-
row-sense heritability, we expect that a large fraction of phe-
notypic variance could be captured with a linear model.
Therefore, to contemplate traits for which nonadditive effects
may be more relevant, we also considered bone heel mineral
density (BHMD), bodymass index (BMI), systolic blood pres-
sure (SBP), and waist–hip ratio (WHR). Not all phenotypes
were available for all individuals. The numbers of records
available for each trait are given in Table 1. Phenotypes were
all precorrected by sex, age, the center where phenotypes
were collected, and with the top-10 SNP-derived principal
components.

Genotypes

The UK Biobank’s participants were genotyped with a custom
Affymetrix Axiom array containing �820k (k = 1000) SNPs
(http://www.ukbiobank.ac.uk/scientists-3/uk-biobank-ax-
iom-array/). Here, SNP filtering followed the criteria used in
Kim et al. (2017). Briefly, SNPswith aminor allele frequency,
0.1% and a missing rate . 3% were filtered out using PLINK
1.9 (Chang et al. 2015). Mitochondrial and sex chromosome
SNPs were also removed, except those in pseudoautosomal
regions, yielding a total of 567,867 used SNPs.

For each of the prediction methods described below, we
evaluated performancewith SNP sets of 10k and 50k SNPs. In
set “BEST,” the 10k or 50k top most-associated SNPs, i.e.,

Table 1 Number of phenotypes available and genetic parameters

Trait

No. of
samples
TRN set

No. of
samples
TST set h2

A (SD) h2
D (SD)

Height 80,000 22,221 0.67 (0.04) 0.07 (0.02)
Bone heel mineral
density

71,529 19,784 0.32 (0.04) 0.11 (0.03)

Body mass index 79,915 22,192 0.29 (0.04) 0.09 (0.02)
Waist–hip ratio 79,962 22,214 0.20 (0.03) 0.10 (0.02)
Systolic blood pressure 74,560 20,687 0.18 (0.03) 0.09 (0.02)

h2
A: Posterior density median and SD of genomic heritability. h2

D: Posterior density
median and SD of genomic dominance variance (% of phenotypic variance). h2

A

and h2
D were estimated from 10k individuals from the TRN set using all markers via

a Bayesian Ridge Regression algorithm. No., number; TRN, training; TST, testing.

810 P. Bellot, G. de los Campos, and M. Pérez-Enciso

http://www.ukbiobank.ac.uk/
http://www.ukbiobank.ac.uk
http://www.ukbiobank.ac.uk/scientists-3/uk-biobank-axiom-array/
http://www.ukbiobank.ac.uk/scientists-3/uk-biobank-axiom-array/


those with the lowest P-values in a GWAS on the TRN set for
each trait, were chosen. In set “UNIF,” the genome was split
in windows of equal physical length and the most-associated
SNP within each window was chosen. This criterion was cho-
sen to accommodate the philosophy of CNNs, which are
designed to utilize the correlation between physically adja-
cent input variables (see below). Windows were 309- and
61-kb long in the 10k and 50k SNP UNIF sets, respectively.

Variance components analyses

We estimated the proportion of variance that could be
explained by additive and dominance effects using a genomic
best linear unbiased prediction (GBLUP) model (VanRaden
2008). The additive genomic relationship matrix for additive
effects was computed as in VanRaden’s equation

G ¼ XX’

2
Pm

j¼1qj ð12 qjÞ
;

where X is an n 3 m matrix (n individuals and m markers)
that contains the centered individual genotype values, i.e.,
22qj, 122qj, and 222qj when genotypes are coded as 0, 1,
and 2, with qj being the allele frequency of alternative allele
“1” at j-th SNP. The dominance relationship matrix was cal-
culated as proposed in Vitezica et al. (2013):

D ¼ MM’

4
Pm

j¼1½qj ð12qjÞ�2
;

where the elements of matrix Mnxm are 22qj2, 2qj(12qj),
and 22(12qj)2 for genotypes 0, 1, and 2, respectively. Due
to computational constraints, 10,000 random individuals
from the TRN set were used to build the genomic relationship
matrices, although with all markers.

Bayesian linear models

BayesB (Meuwissen et al. 2001) and Bayesian Ridge Regres-
sion (also called BLUP in the animal breeding literature,
Henderson 1984) are two widely used genomic linear pre-
diction methods; thus, we used these two methods as bench-
marks against which we compare DL techniques. In these
models, the phenotype of the i-th individual can be expressed
as:

yi ¼ b0 þ x’ibþ ei;

where b is a vector with regression coefficients on marker
genotypes xi and e, a residual term. The likelihood is written
as:

pðujyÞ ¼
Yn

i¼1

N
�
yi 2 b02 x’ib;s

2
e

�
pðuÞ

The difference between BRR and BayesB lies in the prior
specification pðuÞ: In BayesB, the parameters u include the
probability p of a given SNP being included in themodel, and

this probability in turn is also sampled according to a b bi-
nomial distribution, whereas all markers enter into themodel
for BRR (see, e.g., Pérez and de Los Campos (2014) for fur-
ther details).

MLPs

MLPs, also called fully connected feed-forward NNs, are
commonly used forDL. AnMLP consists of at least three layers
of nodes (Figure 1). The first layer, known as the input layer,
consists of a set of neurons (xi, j = 1, m) representing the
input features (SNP genotypes). Each neuron in the hidden
layer transforms the values from the previous layer with a
weighted linear summation, i.e., for the first layer and l-th
neuron að1Þl ¼ Pm

j¼1w
ð1Þ
lj xj þ bð1Þ0 ; where wð1Þ

lj is the weight of
l-th neuron to j-th input in the first layer, b0 is the intercept
(called “bias” in machine learning literature), followed by a
nonlinear activation function f(al) that results in neuron’s
output. Subsequent layers receive the values from the pre-
vious layers and the last hidden layer transforms them into
output values. Learning occurs in the MLP by changing
weights (w) after each piece of data is processed, such that
the loss function is minimized. This process is carried out
through back-propagation, a generalization of the least
squares algorithm in the linear perceptron (Rosenblatt 1961;
Rumelhart et al. 1986; LeCun et al. 1998a). Themultiple layers
and nonlinear activation distinguish an MLP from a linear
perceptron and make them far more versatile for representing
complex outputs. An issue with MLPs is the need to optimize
the neuron architecture, which depends on numerous param-
eters: activation function, dropout rate (i.e., the rate atwhich a
random neuron is removed from the model, Srivastava et al.
2014), and the number of layers and neurons per layer. See
section Hyperparameter optimization below.

In the standard variable coding, the values of each SNP
genotype are considered as numeric values, say 0, 1, and 2 for
each genotype. This assumes additivity. To allow explicitly for
dominance, we used the so-called one-hot encoding (Wan
et al. 2010) in a subset of analyses, where each genotype is
coded as a set of three binary variables instead of a number

Figure 1 Representation of a Multilayer Perceptron. Each layer is con-
nected to the previous one by a weighted linear summation, here repre-
sented by weight matrices W(i), and a (non)linear transformation.
Redrawn from http://www.texample.net/tikz/examples/neural-network/.

Genomic Prediction Using Deep Learning 811

http://www.texample.net/tikz/examples/neural-network/


taking values 0, 1, and 2 for the three genotypes, as we did for
the rest of the MLPs and CNNs described below.

CNNs

CNNs (LeCun and Bengio 1995; LeCun et al. 1998b) are a
specialized kind of NN for data, where inputs are associated
with each other and exploit that fact. The hidden layers of a
CNN typically consist of convolutional layers, pooling layers,
fully connected layers, and normalization layers. CNNs com-
bine several layers of convolutions with nonlinear activation
functions. Figure 2 showsa general diagramof aCNN.During the
training phase, a CNN automatically learns the coefficients of the
so called “filters.” A filter is defined as a combination of the input
values where the weights are the same for all input windows
(e.g., SNP windows). For example, in image classification, a CNN
may learn to detect edges from raw pixels in the first layer, and
then use the edges to detect simple shapes (say circles) in the
second layer. Then, these shapes can be used by the next layer
todetect evenmore complex features, say facial shapes. Finally, the
last layer is then a classifier that uses these high-level features.
These learnt filters are then used across all input variables. How-
ever, to make them slightly invariant to small translations of the
input, a pooling step is added. CNNs have shown great success in
computer vision, where pixel intensities of images are locally
correlated. In the genomic prediction context, adjacent SNP ge-
notypes are expected to be correlated due to linkage disequilib-
rium. In this case, it makes sense to use one-dimensional kernels,
as opposed to two-dimensional kernels used for images. This
means that sliding sets of s consecutive SNPs are used for each
filter (Figure 2), instead of squares of pixels.

Hyperparameter optimization

Hyperparameter optimization is a fundamental step for DL
implementation since it can critically influence the predictive

performance of MLPs and CNNs. Here, we applied a modified
genetic algorithm as implemented in DeepEvolve (Liphardt
2017) to evolve a population of MLPs or CNNs with the goal
of achieving optimized hyperparameters in a faster manner
than with traditional grid or random searches. The algorithm
is described in Supplemental Material, Figure S1 and the
different parameters optimized together with their theoreti-
cal effects on the model capacity are presented at Table S1.
This optimization was done for each trait independently us-
ing the TRN set and the 10k BEST SNP set in two steps. In the
first step, we selected the best five architectures for each of
the five traits independently. Next, all 25 solutions were eval-
uated for the remaining traits. Finally, we selected the best
three MLPs and CNNs that performed uniformly best across
traits.

Assessment of prediction accuracy

For all prediction methods, parameters were estimated by
regressing the adjusted phenotypes on SNPs set using data
fromtheTRNset. Subsequently,weapplied thefittedmodel to
genotypes of the TST data set and evaluated prediction
accuracy by correlating (R) the SNP-derived predicted phe-
notype with the adjusted phenotype in the TST set. Since the
MLPorCNNdepends, to anextent, on initialization values,we
ran each case six times andwe retained the best learner in the
TRN stage, i.e., using only the TRN set. Approximate lower-
bound SE’s of R were obtained from

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið12R2Þ=ðn2 2Þ;p
n

being the TST data size.

Software

GWAS and phenotype adjustment analyses were performed
with the BGData R package (de Los Campos and Grueneberg
2017). BayesB and BRR were fitted with the BGLR R package
(Pérez and de Los Campos 2014) using default parameters. A

Figure 2 Representation of a Convolutional Neural Network. (a) The input layer consists of the SNP matrix. The convolution filters are the same through
all different SNPs; we slide these filters horizontally with a stride of “s” SNPs, i.e., the number of SNPs that the filter is moved to compute the next
output. (b) Neuron outputs of convolutional layer with K dimensions (outlined as blue and green squares) are computed from inputs of input layer,
which fall within their receptive field (here consecutive sets of three SNPs) in the layer below (shown as blue- and green-colored rectangles). (c)
Convolutional networks usually include pooling layers, combining the output of the previous layer at certain locations into a single neuron (here, a 1 3
2 pooling is outlined in yellow). (d) Fully connected layers connect every neuron in one layer to every neuron in another layer. It is the same as traditional
MLPs, finally obtaining an estimated output (e). Partly redrawn using code in http://www.texample.net/tikz/examples/neural-network/.
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Bayesian GBLUP using BRR prior and eigenvalue decompo-
sition of G and D was employed to estimate genomic herita-
bilities with the BGLR package [see Forneris et al. (2017) for
an application of this model]. Genomic matrices were com-
puted with a Fortran program that employs Basic Linear Al-
gebra Subroutines (BLAS) (Dongarra et al. 1990, www.
netlib.org/blas/) for efficient parallelization, available at
https://github.com/miguelperezenciso/dogrm. The rest of
the analyses were implemented in python using scikit
(Pedregosa et al. 2011, www.scikit-learn.org), pandas (pan-
das.pydata.org), and numpy (www.numpy.org/) among
other libraries for the processing and analysis of the data.
To implement machine learning methods, we used the Keras
API (Chollet 2015, www.keras.io), which provides a high-
level NN API on top of Tensorflow (Abadi et al. 2015, www.
tensorflow.org) libraries. Software and pipelines are avail-
able at https://github.com/paubellot/DL-Biobank.

Data availability

This research has been conducted using the UK Biobank Re-
source under project identification number 15326. The data
are available for all bona fide researchers and can be acquired
by applying at http://www.ukbiobank.ac.uk/register-apply/.
The Institutional Review Board (IRB) of Michigan State Uni-
versity has approved this research with the IRB number 15–
745. The three authors completed IRB TRN. Lists of SNPs and
P-values are available at https://github.com/paubellot/DL-
Biobank. Supplemental material contains a summary of main

DL parameters, a description of the genetic algorithm used
for hyperparameter optimization, and additional MLP and
CNN results. Supplemental material available at Figshare:
https://doi.org/10.6084/m9.figshare.7035866.

Results

The five phenotypes analyzed span a wide range of genetic
profiles, as the GWAS in Figure 3 and heritabilities in Table 1
show. Height is a well-studied phenotype in the field of hu-
man quantitative genetics and, in agreement with the litera-
ture (e.g., Yang et al. 2010), the GWAS does show numerous
and highly significant peaks scattered throughout the ge-
nome: 946 SNPs had a P-value , 1028, the tentative ge-
nome-wide significance level. Height was also the trait with
highest genomic heritability: h2A = 0.67 (Table 1). Genomic
heritabilities were markedly lower for the rest of the pheno-
types. As expected, the dominance variance for height was
small relative to the additive variance; however, the esti-
mates of dominance variance were between one-half and
one-third of that of the additive variance for the other four
traits.

Although numerous peaks were detected for all traits, the
major locus for BHMD in chromosome7 (Hsa7: 120,945,328–
121,018,579 bp) is striking. Nguyen et al. (2003) already
predicted the presence of a major gene for BHMD and
Kemp et al. (2017) previously identified the WNT16 gene
as the most likely candidate for this QTL, which was the most

Figure 3 Genome-wide association study of traits analyzed. Each dot represents the P-value (2log10 scale) of a single SNP. SNPs from different
chromosomes are represented by alternating colors, starting with chromosome 1 on the left. The horizontal line indicates the tentative genome-wide
significance level (P-value = 1028). BHMD, bone heel mineral density; BMI, body mass index; SBP, systolic blood pressure; WHR, waist–hip ratio.
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significant region in a GWAS on a larger subset of the biobank
data set. As for BMI and WHR phenotypes, they shared some
peaks but theyweremore significant for BMI. Perhaps related
to this, the genomic heritability of BMI was 50% larger than
that of WHR (0.29 vs. 0.20, respectively, Table 1). The heri-
tability of SBP was mildly lower than that of WHR and QTL
peaks were concordantly less significant. We only found
15 SNPs with a P-value ,1028 in SBP vs. 56 SNPs in WHR.

The retainedMLPsandCNNs that performeduniformlybest
across traits are shown in Table 2. MLP1, MLP2, and MLP3
differ mainly in the number of layers: 1, 2, and 5, respectively.
For CNNs, the optimum SNP window was very small with
maximum overlap (stride = 1), but they differed in activation
function, number of neurons, and on number of filters. For
one-hot encoding, we evaluated only one MLP. Overall, the
chosen regularization, as inferred from the genetic algorithm,
was very small for either MLPs or CNNs (Table 2).

Figure 4 shows the TST correlation (R) between predicted
and adjusted height for each of the methods and SNP sets.
Overall, all methods performed similarly, although CNN
models were slightly worse. Prediction correlations with
the linear model were very similar to those reported in Kim
et al. (2017), as expected because we used the same data set.
Selecting SNPs based only on unrestricted GWAS P-values
(BEST set) was systematically better than setting a restriction
on the distance between retained SNPs (UNIF set), especially—
and paradoxically — for CNNs. Penalized linear methods were
not so sensitive to SNP choice, in particular when the total
number of SNPs was large (50k). We did not observe a clear
improvement in prediction accuracy for any of the methods
when increasing the number of SNPs from 10k to 50k. For some
CNNs (CNN3), adding SNPs was even detrimental when using
the UNIF set.

Figure 5 shows the correlation between predicted and
adjusted BHMD in the TST set, which displays a different
picture from that obtained with height (Figure 4). For this
phenotype, CNNs performed better overall than MLPs, espe-
cially for 10k SNP sets. In particular, CNN3 configuration was
comparable or slightly better than Bayesian linear methods.
Consistent with the height phenotype though, methods per-
formed better with the BEST SNP set than with the UNIF set.
For some MLPs and CNNs with the 50k sets, we observed

some convergence problems that persisted even after several
reinitializations of the algorithm. This is likely due to the
exponential increase in parameters to be learnt in nonlinear
methods with large SNP data sets and to the reduced pre-
dictive ability, compared to height. However, these issues
were not observed with linear methods.

For the rest of the phenotypes, predictive accuracies were
lower than for height or BHMD (Figure S2). Similar to what
we observed for BHMD, in the case of BMI, WHR and SBP
Bayesian linearmethods, and theCNN3,were consistently the
best methods overall. In some instances though, e.g., BMI,
one-hot encoding or MLP2 could be preferred. Differences
between top methods were never very large. In general, per-
formance of MLPs or CNNs was sensitive to the specified
network architecture, and highly dependent on the pheno-
type analyzed (Figure 5 and Figure S2). This was not somuch
the case for Bayesian linear methods, which were far more
stable.

CNNsaredesigned to exploit a spatially local correlationby
enforcing a putative connectivity pattern between nearby
inputs. This fact motivated the usage of equally spaced SNP
sets (UNIF sets). However, simply selecting SNPs on absolute
significance (BEST sets) was a better option across all anal-
yses. This indicates that systematic controlling for linkage
disequilibrium does not necessarily improve, and can even
harm, prediction accuracy. Furthermore, CNN hyperpara-
meter optimization suggested that maximum overlapping
(stride = 1) between very small windows (2–3 SNPs) was
the optimum configuration for CNNs (Table 2). To further
investigate the effect of SNP spacing and stride on CNNs, we
fitted CNN3 for height phenotype varying the overlap (max-
imum vs. no overlap) and SNP window size (2–10 SNPs). We
observed that overlapping between windows was better than
no overlapping, and small windows (2–3 SNPs) should be
preferred to large ones when using the BEST criterion (Table
S2). In the case of uniformly distributed SNPs, differences
between criteria were relatively small.

Discussion

With this work, we aim to stimulate debate and research on
the use of DL techniques for genomic prediction. DL is

Table 2 Main features of chosen MLPs and CNNs

Model Activationa

No. of
fully connected
layers (neurons)

No. of
convolutional
layers (filters)

No. SNPs/window
(stride)

Dropout
(weight regularization)

MLP1 Elu 1 (32) NA NA 0.01 (0.0)
MLP2 Elu 2 (64) NA NA 0.03 (0.0)
MLP3 Softplus 5 (32) NA NA 0.01 (0.0)
MLP-hot Elu 4 (128) NA NA 0.03 (0.01)
CNN1 Linear 1 (32) 1 (16) 3 (1) 0.01 (0.0)
CNN2 Elu 3 (32) 1 (32) 2 (1) 0.01 (0.0)
CNN3 Softplus 3 (64) 1 (16) 2 (1) 0.01 (0.0)

No., number; MLP, Multilayer Perceptron; Elu, exponential linear unit; CNN, Convolutional Neural Network.
a Elu: f(x) = c (ex21) x , 0, f(x) = x, x . 0; SoftPlus: f(x) = ln(1+ex); and Linear: f(x) = c x.
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prevailing in areas such as computer vision (LeCun et al.
2015), in part due to its ability to extract useful features
(i.e., to learn a hierarchical-modular feature space from vi-
sual space) and the ability of DL to map from these derived
features into outputs (either a quantitative outcome or a set
of labels). In these problems, the label is usually perfectly
known and the input visual space consists of complex fea-
tures, sometimes of mixed types, whose values vary over
wide ranges but are locally correlated. The natures of com-
plex trait analyses using SNP data are very different. First, the
attribute (the expected value of a trait or genetic risk) is not
observable. Rather, we observe a noisy version of it, which is a
function of both DNA-sequence and environmental factors.
Moreover, the inputs used in genomic prediction are much
simpler (SNP genotypes can take only three values) and
much more structured than the ones used in computer vision
or other areas where DL has thrived. Furthermore, since al-
lele frequencies of SNP genotypes are highly unbalanced, a
large number of SNP genotypes can be considered as simple
0/1 bits. The complex and noisy nature of the phenotypes,
and the relatively simple nature of the input data, may ex-
plain why DNA-based prediction linear models perform sim-
ilarly, and in many cases better, than DL.

The relative performance of DL vs. linear methods
depended on the trait analyzed but also on the DL network

architecture. For height, a highly polygenic trait with a pre-
dominant additive genetic basis, there were no large differ-
ences between methods, although linear methods prevailed.
This was not likely due to a limitation in the size of the data
but to the nature of the problem, which apparently can be
approximated rather well with a linearmodel. CNNswere the
worst-performing method in height, whereas the perfor-
mance of the simplest MLP (MLP1) was nearly undistinguish-
able from BayesB or BRR (Figure 4). In contrast, some CNNs
were comparable or slightly outperformed linear methods for
BHMD, WHR, and SBP in some instances (Figure 5 and Fig-
ure S2).

The predictive accuracy of Bayesian linear methods
depended highly on heritability. An interesting observation
is that this was not the only factor in MLPs and CNNs. For
instance, BHMD and BMI had similar heritabilities, yet the
performance of the several MLPs and CNNs varied. This may
be due to the very different distribution of QTL effects, as
shown in the GWAS profiles of Figure 3. Despite of the fact
that the estimated dominance variance was sizable for some
of the traits (WHR and SBP), using one-hot encoding did not
improve prediction in general. Given that dominance vari-
ance could be # 50% of additive variance in some traits
(Table 1), this suggests that DLs using one-hot encoding
may not efficiently capture dominance (compared to other

Figure 4 Prediction performance across methods and SNP sets for height. Gray, green, blue, and magenta bars correspond to linear, MLP, one-hot
encoding MLP, and CNN methods, respectively. Average SE of R’s were �3 3 1023. BEST, set with the 10k or 50k top most-associated SNPs; BRR,
Bayesian Ridge Regression; CNN, Convolutional Neural Network; MLP, Multilayer Perceptron; UNIF, set in which the genome was split in windows of
equal physical length and the most-associated SNP within each window was chosen.
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methods). The highly skewed distribution of allele frequen-
cies makes it difficult to accurately consider all three geno-
type effects. Note also that one-hot encoding results in an
increase in the number of parameters, increasing the risk of
overfitting.

MLPs and CNNs are actually highly heterogeneous clas-
ses of predictors. Depending on the configuration (e.g., on
the number of layers, number of neurons per layer, or the
activation function used, Table S1), very different models
can be obtained. In addition to selecting the network con-
figuration, hyperparameters that control regularization
need to be estimated as well. Finding an optimal configu-
ration for an MLP or CNN can be challenging. Here, we
used a genetic algorithm to perform this optimization. Ge-
netic algorithms are a well-known (e.g., Mitchell 1998)
approach for maximizing complex functions in cases such
as the one considered here, where optimum hyperpara-
meter values are highly dependent between them. The
complexity of DL methods contrasts with the frugality of
penalized linear regressions, where the search is con-
strained to the class of linear models and the only estimation
problem consists of finding weights associated with each of
the inputs.

It was computationally impossible to fit all �500k SNPs
with 100k subjects in an MLP or a CNN, and some feature

selection was needed. The GWAS top P-value was the best
and simplest criterion of those evaluated, although it is not
guaranteed to be uniformly the best choice. Although auto-
correlation between features may be a hindrance to predic-
tion, we did not find that limiting disequilibrium between
SNPs improved performance, in agreement with previous
results in the same data set (Kim et al. 2017). CNNs are
designed to exploit correlation between adjacent features,
which in our context translates into disequilibrium between
markers. We expected then that uniformly selecting the best
SNPs would be preferred over selection only on P-value;
however, our analyses showed the opposite (Figure 4, Fig-
ure 5, and Figure S2). We argue that this is due to the pres-
ence of clusters of associated SNPs together with large
genome “deserts,” for which markers are not useful for pre-
diction. To investigate this, we plotted the distances and
disequilibrium between the top pairs of consecutive SNPs
for BHMD in Figure 6 (plots for height were very similar and
are not shown). Figure 6a shows that, as expected, the dis-
tribution of distances in the BEST set is much broader than
that in the UNIF set. Far more interesting, an important
fraction (74%) of consecutive distances in the BEST set
were actually smaller than those in the UNIF set median,
a clear consequence of BEST set SNPs not being randomly
distributed but clustered in specific regions (see GWAS

Figure 5 Prediction performance across methods and SNP sets for bone heel mineral density. Gray, green, blue, and magenta bars correspond to linear,
MLP, one-hot encoding MLP, and CNN methods, respectively. Very low bar means method not converging. Average SE of R’s were �3 3 1023. BEST,
set with the 10k or 50k top most-associated SNPs; BRR, Bayesian Ridge Regression; CNN, Convolutional Neural Network; MLP, Multilayer Perceptron;
UNIF, set in which the genome was split in windows of equal physical length and the most-associated SNP within each window was chosen.
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profiles in Figure 3). In terms of linkage disequilibrium
(measured as correlation between genotype values at two
SNPs), the differences were dramatic since LD was very low
genome-wide (UNIF set), whereas LD was much higher in
the BEST sets (Figure 6b). In summary, choosing SNPs based
only on individual P-values resulted in groups of clustered
SNPs, the structures of which were better exploited by CNNs
than when SNPs were chosen at equal intervals. As a result,
CNNs performed better than some MLPs for BHMD or other
traits (Figure 5 and Figure S2).

Our analyses show that CNNs performed comparatively
better as narrow-sense heritability decreased and the con-
tribution of dominance increased. Therefore, in our opin-
ion, future efforts in DL research for genomic prediction
should aim at improving mapping functions to overcome
linear constraints that relate genotype to phenotype. For
CNNs, methods for optimum exploitation of SNP disequi-
librium in CNNs are also needed. A major problem here is
that LD varies along the genome and therefore optimum
SNP window sizes are not constant. This problem is similar
to that found in learning from text, where the length of each
document varies. Therefore, each individual word cannot
be used as an input feature, because long documents and
words would require different input spaces to shorter ones.
Researchers in textmachine learning have proposed several

methods to address those issues such as classical “bag of
words” (BOW, Salton and McGill 1983) or more recent
word2vec (Mikolov et al. 2013) algorithms. The basic idea
of both methods is to represent documents or words with
numbers, turning text into a numerical form that DL can
understand. BOW is based on the frequency of words,
whereas word2vec maps every word into a vector, so sim-
ilar words are closer. To use genotypes in CNNs more ef-
ficiently, a similar approach could be explored. This
representation should be smaller and length-independent,
and yet able to encode the SNPs’ information. To the best
of our knowledge, CNNs have not been applied to human
genetic prediction so far, but here we show that they are
promising tools that deserve future research.
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