Skip to main content
. 2018 Aug 31;210(3):809–819. doi: 10.1534/genetics.118.301298

Table 2. Main features of chosen MLPs and CNNs.

Model Activationa No. of fully connected layers (neurons) No. of convolutional layers (filters) No. SNPs/window (stride) Dropout (weight regularization)
MLP1 Elu 1 (32) NA NA 0.01 (0.0)
MLP2 Elu 2 (64) NA NA 0.03 (0.0)
MLP3 Softplus 5 (32) NA NA 0.01 (0.0)
MLP-hot Elu 4 (128) NA NA 0.03 (0.01)
CNN1 Linear 1 (32) 1 (16) 3 (1) 0.01 (0.0)
CNN2 Elu 3 (32) 1 (32) 2 (1) 0.01 (0.0)
CNN3 Softplus 3 (64) 1 (16) 2 (1) 0.01 (0.0)

No., number; MLP, Multilayer Perceptron; Elu, exponential linear unit; CNN, Convolutional Neural Network.

a

Elu: f(x) = c (ex−1) x < 0, f(x) = x, x > 0; SoftPlus: f(x) = ln(1+ex); and Linear: f(x) = c x.

HHS Vulnerability Disclosure