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ABSTRACTWe investigate the fate of de novomutations that occur during the in-host replication of a pathogenic virus, predicting the
probability that such mutations are passed on during disease transmission to a new host. Using influenza A virus as a model organism,
we develop a life-history model of the within-host dynamics of the infection, deriving a multitype branching process with a coupled
deterministic model to capture the population of available target cells. We quantify the fate of neutral mutations and mutations
affecting five life-history traits: clearance, attachment, budding, cell death, and eclipse phase timing. Despite the severity of disease
transmission bottlenecks, our results suggest that in a single transmission event, several mutations that appeared de novo in the donor
are likely to be transmitted to the recipient. Even in the absence of a selective advantage for these mutations, the sustained growth
phase inherent in each disease transmission cycle generates genetic diversity that is not eliminated during the transmission bottleneck.
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MANY pathogens experience population dynamics char-
acterized by periods of rapid expansion, while a host is

colonized, interleavedwith extreme bottlenecks during trans-
mission to new hosts. The effect of these transmission cycles on
pathogen evolution has been well studied, with particular focus
onlong-standingpredictionsregardingtheevolutionofvirulence
[reviewed in Alizon et al. (2009)], conflicting pressures of
within- and between-host fitness [Gilchrist and Sasaki 2002;
Coombs et al. 2007; Day et al. 2011; see Mideo et al. (2008)
for review], or broader factors affecting the evolutionary emer-
gence of pathogenic strains [Antia et al. 2003; Iwasa et al. 2003;
Reluga et al. 2007; Alexander and Day 2010; see Gandon et al.
(2012) for review].

In the experimental evolution ofmicrobial populations, the
impact of population bottlenecks has also been studied in
some depth, both theoretically (Bergstrom et al. 1999; Wahl
and Gerrish 2001; Wahl et al. 2002) and experimentally
(Burch and Chao 1999; Elena et al. 2001; Raynes et al.
2014; Lachapelle et al. 2015; Vogwill et al. 2016). While

severe population bottlenecks clearly reduce genetic diver-
sity, the period of growth between bottlenecks can have the
reverse effect, generating substantial de novo adaptive muta-
tions and promoting their survival (Wahl et al. 2002). The
survival of a novel adaptive lineage is predicted to depend not
only to the timing and severity of bottlenecks, but on the
details of the microbial life history and the trait affected by
the mutation (Alexander and Wahl 2008; Patwa and Wahl
2008; Wahl and Zhu 2015).

Theeffectsof transmissionbottlenecksontheevolutionofan
RNA virus have been explicitly studied in a series of experi-
mental papers, demonstrating that severe bottlenecks (one
surviving individual) reduced fitness (Duarte et al. 1992) de-
spite rapid population expansion between transmission events
(Duarte et al. 1993). The magnitude of this effect depends on
both the initial fitness of the lineage (Novella et al. 1995) and
on bottleneck severity (Novella et al. 1996). In theoretical
work, a model of a viral quasispecies undergoing periodic
transmission events predicts that pathogens should maintain
a mutation–selection balance with high virulence if the path-
ogen is horizontally transferred, if the bottleneck size is not too
small, and if the number of generations between bottlenecks is
large (Bergstrom et al. 1999).

Unlike the bottlenecks imposed in serial passaging, trans-
mission bottlenecks in nature are not constrained by exper-
imental control. Thus, key parameters such as the bottleneck
size, i.e., the number of microbes initiating an infection, have
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proven difficult to estimate. Nonetheless, experimental mod-
els [see Abel et al. (2015) for review], as well as recent tech-
niques such as DNA barcoding (Varble et al. 2014) and
sequencing of donor–recipient pairs in humans (Poon et al.
2016) have shed new light on this issue. In addition, we note
that many human viruses—including human immunodefi-
ciency virus, hepatitis B virus, and influenza A virus (IAV)—
reproduce by viral budding in the context of a potentially
limited target cell population (Garoff et al. 1998); the sur-
vival of de novomutations has not yet been predicted for this
microbial life history. Thus, the effects of transmission bottle-
necks on the genetic diversity of viral pathogens, that is, on
the fate of de novo mutations, are as yet unknown.

Inthiscontribution,wefirstdevelopadeterministicmodelof
thewithin-host dynamics of early infection by a viral pathogen.
We couple this to a detailed life-historymodel, using a branch-
ing process approach to follow the fate of specific de novo
mutations that are either phenotypically neutral or affect var-
ious life-history traits. These techniques allow us to predict
which adaptive changes in virus life history are most likely to
persist, and how the diversity of the viral sequence is predicted
to change between donor and recipient. We can thus predict,
for example, the rate at which de novo single-nucleotide poly-
morphisms arise during the course of a single infection and are
transmitted to a subsequent host.

Throughout the paper, we will illustrate our results with
parameters thathavebeenchosen tomodel the lifehistoryand
transmission dynamics of IAV. IAV is an orthomyxovirus
(Bouvier and Palese 2008) that imposes a significant burden
on global health, causing seasonal epidemics, sporadic pan-
demics, morbidity, and mortality (Carrat and Flahault 2007).
It is estimated that infectionwith seasonal strains of influenza
results in�36,000 deaths per year in the U.S., although exact
numbers are difficult to determine (Chowell et al. 2008).

Mathematical modeling is a well-established tool for predict-
ing the evolution of influenza (Larson et al. 1976; Bocharov and
Romanyukha 1994). Because of the critical importance of im-
mune evasion in influenza, interest has focused on the adapta-
tion of the virus in response to immune pressure, focusing on
antigenic drift (Boianelli et al. 2015) and antigenic shift (Feng
et al. 2011) in the global influenza pandemic (van de Sandt et al.
2012). However, recent models have specifically addressed the
within-host dynamics of IAV (Beauchemin et al. 2005; Baccam
et al. 2006; Beauchemin and Handel 2011; Smith and Perelson
2011; Dobrovolny et al. 2013; Boianelli et al. 2015). In concert
with these contributions, recent empirical work has elucidated
the life history of the IAV, providing quantitative estimates of
parameters such as the minimum infectious dose (Varble et al.
2014; Poon et al. 2016), the size of the target cell population,
and the kinetics of viral budding (Baccam et al. 2006;
Beauchemin and Handel 2011; Pinilla et al. 2012). Although
we now have an increasingly clear picture of the within-host life
history of this important pathogen (Beauchemin and Handel
2011; Biggerstaff et al. 2014), estimates of the rate at which
de novo mutations arise and are transmitted have not yet been
available. Our approach allows direct access to this question.

Methods

Life-history and transmission model

Deterministic model:Weusea systemofordinarydifferential
equations (ODEs) to approximate the within-host dynamics
during the early stages of infection by a pathogenic virus,
assuming a life history that involves infection of a target cell,
an eclipse phase, and finally an infectious stage. Specifically,
we propose:

target cells :
dyT
dt

¼ 2ayTðtÞvðtÞ

infected ðeclipseÞ : dyE
dt

¼ ayTðtÞvðtÞ2 ðDþ EÞyEðtÞ

budding cells :
dyB
dt

¼ EyEðtÞ2DyBðtÞ

free virus :
dv
dt

¼ 2CvðtÞ þ ByBðtÞ2ayTðtÞvðtÞ

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

: (1)

Here, yT represents susceptible target cells (in the case of IAV
we consider epithelial cells of the upper respiratory tract), yE
represents cells that are infected by the virus but not yet in
the budding stage, yB represents mature infected cells (in-
fected cells that are budding), and v represents the free virus,
that is, virions not attached to target cells (Baccam et al.
2006). Parameter B gives the rate at which budding cells
produce infectious free virus and C gives the clearance rate
for free virus. Infected cells die at constant rate D, while E
represents the rate at which infected cells mature, leaving the
eclipse phase and becoming budding cells. The parameter a
gives the rate of attachment per available target cell. Thus,
the overall attachment rate for a virion is a function of the
time-varying target cell population, and can be written
AðtÞ ¼ ayTðtÞ; with the corresponding mean attachment
time, AðtÞ21:

A limitation of ODE approaches is that all transitions are
described by exponential distributions. To relax this assump-
tion, we introduce a sequence of k infected stages through
which infected cells pass before reaching the budding stage.
This “chain of independent exponentials” allows for more
realistic gamma distributions of eclipse times (Wahl and
Zhu 2015). Specifically, we replace Equation (1) with:

target cells :
dyT
dt

¼ 2ayTðtÞvðtÞ

eclipse stage 1 :
dy1
dt

¼ ayTðtÞvðtÞ2 ðDþ kEÞy1ðtÞ

eclipse stage   2 . . . k
dyj
dt

¼ kEyj21ðtÞ2 ðDþ kEÞyjðtÞ j ¼ 2:::k

budding :
dyB
dt

¼ kEykðtÞ2DyBðtÞ

free virus :
dv
dt

¼ 2CvðtÞ þ ByBðtÞ2ayTðtÞvðtÞ

9>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>;

: (2)

When k ¼ 1; this model reduces to Equation (1); for k. 1; y1
gives the population of initially infected cells, which pass
through k eclipse stages at rate kE before budding. The tran-
sition rate kE is set such that the expected time in the eclipse
phase, in total, is fixed at 1=E for any value of k. In the
Supplemental Material, we also investigate a model in which
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the death term, D, is set to zero during the eclipse stages and
only acts during the budding stage. This likewise gives amore
realistic distribution for the lifetime of infected cells.

The founding virus begins as an initial population of free
virus (the initial infectious dose, vð0Þ ¼ v0) at time t ¼ 0:We
do not assume that all viral particles in the founding dose are
genetically identical, but we do assume that they are pheno-
typically identical, that is, they are described by the same
parameter values in the deterministic model. As described
further in the stochastic model below, we assume that disease
transmission occurs at time t during the peak viral shed-
ding period (when the free virus population, v, reaches its
peak value; see Figure 1). For the transmission event to a
new susceptible individual, a new founding population
is sampled from the total viral load. In particular, each
free viral particle becomes part of the infectious dose trans-
mitted to the next individual with probability F. The value
of F is computed such that for the founding virus, the ex-
pected size of the transmitted sample is v0; that is, F ¼ v0=vðtÞ:
Note that only free virions (those not yet attached to a tar-
get cell) are transferred to the next individual during
transmission.

Immune responses clearly play a critical role in the within-
host dynamics of viral infections, as is well documented for
models of IAV (Beauchemin and Handel 2011; Smith and
Perelson 2011; Dobrovolny et al. 2013). In the model pro-
posed above, innate immune mechanisms are included in the
clearance rate of free virus and the death rate of infected
cells; these constant rates are used as an approximation since
the innate immune response will vary over the infection time
course. Because we use this model only until the time of peak
viral shedding, which occurs 54.5-hr post infection (see
parameter values, below) and before the adaptive immune

response is activated (Tamura and Kurata 2004), we do not
include the adaptive immune response. We address this issue
further in the Discussion. Likewise, we do not include replen-
ishment of the susceptible target cell population over the
initial 54.5 hr of the infection. This is consistent with com-
plete desquamation of the epithelium (loss of all ciliated
cells) within 3 days postinfection in murine influenza, fol-
lowed by regeneration of the epithelial cells beginning 5 days
postinfection (Ramphal et al. 1979).

Stochastic life-history model: To describe the lineage asso-
ciated with a rare de novo mutation, a stochastic model is
required. To gain tractability, we assume that the mutant
lineage propagates in an environment for which the overall
dynamics of the target cell population are driven by the de-
terministic Equation (2). Thus, we treat the free virus,
eclipse-phase cells, and budding cells in the mutant lineage
stochastically, but use the deterministic system to predict the
susceptible target cell population at any time.

As in the deterministic model, free virions clear at a
constant rate C or adsorb to susceptible host cells at rate
AðtÞ: Note that the attachment rate of a free virion is not
constant; it depends on target cell availability, such that
AðtÞ ¼ ayTðtÞ; where yTðtÞ is the target cell population pre-
dicted by Equation (2). Host cells enter the eclipse phase
when a virion adsorbs, and exit the eclipse phase at rate E.
After the eclipse phase, mature infected cells bud virions at
rate B. Since budding itself does not immediately kill the host
cells (Garoff et al. 1998), after infection the cell is subject to a
constant death rateD, or in other words the cell remains alive
for an average time 1=D:

This stochastic growth process can be described as a
branching process, using a multitype probability generating
function (pgf) to describe a single lineage of free virions. As
described in theAppendix, this approach allows us to estimate
the probability, Xðt0Þ; that a lineage initiated by a de novo
mutation at time t0 is not transmitted to the next host. The
rate at whichmutations arise that will be transmitted, nðt0Þ; is
then given by

nðt0Þ ¼ ByBðt0Þmð12Xðt0ÞÞ (3)

where ByBðt0Þ is the rate at which new virions are produced at
time t0; m is the probability that the mutation of interest
occurs per new virion produced, and ð12Xðt0ÞÞ is the prob-
ability that the lineage is transmitted.

We use this result to compute S; the expected number of
times that the mutation of interest occurs de novo, over the
course of the infection, and survives to be transmitted to the
next host:

S ¼
Z t

0
nðt0Þdt0;

where t is the time of disease transmission. Finally, consider
dividing the time interval ð0; tÞ such that dt ¼ t=N and ti ¼ idt:
In this case for small dt; the quantity nðt0Þdt approximates

Figure 1 The time course of influenza A infection over the span of
1 week (168 hr). Parameter values are provided in Table 1, with the
following initial conditions: 43108 epithelial cells (target cells), 100 vi-
rions (initial infection dose), and all other populations initially zero.
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the probability that a surviving mutation occurs during
time interval ðt0; t0 þ dtÞ: This allows us to compute P;
the probability that at least one copy of the mutation
of interest arises de novo during the course of the infec-
tion, survives the bottleneck, and is transmitted to the
new host:

P ¼ 12 lim
N/N

YN21

i¼0

�
12 nðtiÞ tN

�

which by product integration can be succinctly expressed as:

P ¼ 12 e2S : (4)

Beneficial mutations

Our goal is to predict the fate of mutations that may arise de
novo in the viral population. Although most mutations will be
deleterious, we note that the virus population grows by sev-
eral orders of magnitude (possibly up to seven) during a
single infection, and thus deleterious mutations should be
effectively outcompeted, consistent with significant purifying
selection reported in sequencing studies of IAV in humans
(Poon et al. 2016; Debbink et al. 2017; McCrone et al.
2018). Therefore, in this contribution, we focus on neutral
mutations (no phenotypic effect) or rare mutations that con-
fer an adaptive advantage to the virus. For a budding virus,
changes in five life-history traits can confer a selective advan-
tage: a reduction in either the cell death rate, ~D ¼ D2DD; or
clearance rate, ~C ¼ C2DC; an increase in the attachment
rate, ~a ¼ aþ Da; or budding rate, ~B ¼ Bþ DB; or an increase
in the rate at which cells mature and begin budding,
~E ¼ E þ DE:

To estimate the probability that a beneficial mutation
ultimately survives, we substitute the parameters above for
the analogous parameters in the pgf Gðt; x1; x2; x3Þ and nu-
merically evaluate Gðt; x1; 1; 1Þ;which describes the distribu-
tion of free virions in the mutant lineage at time t, as
described in the Appendix. We then compose this function
with the pgf describing disease transmission. The accuracy of
these numerical solutions was verified using an individual-
based Monte Carlo simulation, developed for a reduced
model without target cell limitation, similar to the approach
described by Patwa and Wahl (2009).

Selective advantage

Finally, to compare the fitness of mutations affecting different
traits, we calculate the selective advantage of each mutation.
Following commonexperimental practice,wedefinefitness in
terms of the doubling time, that is, we assume that in the time
required for the founding population to double, the mutant
lineage grows by a factor of 2ð1þ sÞ: Given the founding
growth rate g, we substitute the founding doubling
t ¼ lnð2Þ=g into 2ð1þ sÞ ¼ expð~gtÞ to find the selective
advantage of the mutant, s ¼ 2�s 2 1; where �s ¼ ~g=g2 1: For
the relatively small s values presented here, this definition of
the selective advantage differs from themore appropriate but
less commonly used �s by a constant factor of ln2:

To estimate the average growth rates, g and ~g;we consider
a single cycle of growth, starting from a single free virus at
time 0. In this case, the partial derivative of G with respect to
x1; defined as Z ¼ @Gðt; 1; 1; 1Þ=@x1; gives the expected num-
ber of free virions at time t, illustrated here for the case k ¼ 1
(Grimmett and Welsh 2014). The derivative was calculated
numerically and the average growth rate of the free virus
population is then calculated as g ¼ lnZ=t: Thus, although
growth is not exponential due to target cell limitation, g es-
timates the exponential growth rate that would achieve the
same number of free virions at time t.

Parameter values for IAV

Parameter values were estimated where possible from the
empirical and clinical literature for IAV, and are displayed in
Table 1. Beauchemin and Handel (2011) give a range of
values for several relevant parameters, from which parame-
ter estimates for C,D, and Ewere chosen. Specifically, we take
the clearance time to be 3 hr, the cell death time 25 hr, and
the eclipse time 6 hr (Baccam et al. 2006; Beauchemin and
Handel 2011).

To estimate the time between each budding event, 1=B;we
first consider the total number of virions produced per cell,
the “burst size.” For IAV, the burst size has been estimated to
be between 1000 and 10,000 virions (Stray and Air 2001).
However, not all virions produced are infectious and in fact a
large fraction are unable to infect a host cell; the particle-to-
infectivity ratio for IAV is �50:1 (Martin and Helenius 1991;
Roy et al. 2000). Taking the upper bound of the range for
burst size, of the 10,000 virions produced, only 200 are

Table 1 Parameter estimates for influenza A virus

Parameter Definition Estimate

a Per target cell attachment rate 2:37531029=ðhr  cellÞ
1=B Mean time between each budding event 19 hr=200 infectious virions
1=C Mean clearance time 3 hr
1=D Mean cell death time 25 hr
1=E Mean eclipse time 6 hr
yT ð0Þ Initial number of target cells 43108

vð0Þ ¼ v0 Number of virions to initiate infection 100
k Stages in eclipse phase 30
m Mutation rate (per site per replication) 6:731027
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predicted to be infectious. Recall that budding does not kill
the host cell, therefore budding time depends on the eclipse
and cell death times. An eclipse time of 6 hr and a cell death
time of 25 hr gives a budding time of 19 hr. Therefore, the
time between each infectious budding event, 1=B; is assumed
to be 19=200 hr per infectious virion.

The number of upper respiratory epithelial cells in a
healthy adult is estimated to be 43 108 (Baccam et al.
2006). Consistent with the complete desquamation of the
epithelium observed in murine influenza (Ramphal et al.
1979), we therefore take yTð0Þ ¼ 43 108: In the supplemen-
tal material, we investigate the sensitivity of our main results
to this value. Similarly, as a default value we assume that an
infection is founded by v0 ¼ 100 virions, consistent with re-
cent sequencing studies (Poon et al. 2016; Sobel Leonard
et al. 2017). However, we note that average values of 10–
200 have been previously suggested in the literature (McCaw
et al. 2011; Varble et al. 2014; Peck et al. 2015), with sub-
stantial variability observed across donor–recipient pairs
(Sobel Leonard et al. 2017). Finally, the most recent estimate
from donor–recipient pairs suggests that a typical bottleneck
size during seasonal influenza in a temperate climate may be
as small as one or two viral genomes (McCrone et al. 2018).
Therefore, we will demonstrate results over a range of v0
values and address the implications of these varying esti-
mates in the Discussion.

To allow for realistically distributed eclipse times, we
assume a gamma-distributed eclipse phase by including a
sequence of k infected stages before the budding stage. As
described above, themean eclipse time, 1=E; is set to 6 hr. The
variance of the eclipse period of IAV can then be used to
estimate k. Pinilla et al. (2012) used a best-fit analysis for

kinetic parameters of IAV to predict a mean eclipse time of
6.6 hr, with an eclipse period SD, s, of 1.2 hr. Since the SD for
a gamma distribution with mean m is given by s ¼ m=

ffiffiffi
k

p
;

these values suggest that a realistic value of k is �30.
Wefix the attachment rate,a, such that the peak of the free

viral load occurs within the reported range for IAV of 48–
72 hr postinfection (Wright and Webster 2001; Lau et al.
2010). The attachment rate a ¼ 2:3753 1029/hr/cell pro-
vided in Table 1 yields a peak time of t ¼ 54:5 hr, and implies
amean attachment time, 1=Að0Þ; of just over 1 hrwhen target
cells are plentiful. We assume that disease transmission is
most likely at the peak viral shedding time, and thus study
a transmission event that occurs at this peak time, t. Note that
when we examine the sensitivity of the model, for example
when changing v0; we leave the attachment rate a fixed. We
recompute the time course vðtÞ and assume that the trans-
mission event occurs at the peak value of vðtÞ: The transmis-
sion time, t, then differs slightly between cases. In no case
was t outside the empirically estimated range of 48–72 hr.

The probability that a free virion survives the bottleneck
and is transmitted to the next susceptible individual is defined
as F. This probability is calculated by using the peak number
of free virions, vðtÞ; found by numerically solving model 2. As
only free virions contribute to the infectious dose, the fraction
of free virions surviving the bottleneck is F ¼ v0=vðtÞ; where
again v0 is the founding population size for the next infected
individual.

The mutation rate for IAV, per nucleotide per replication,
has been estimated as m ¼ 23 1026 (Nobusawa and Sato
2006). This estimate was obtained for the IAV nonstructural
(NS) gene during plaque growth and thus does not include
lethal mutations. Neglecting differences in transition and

Figure 2 Probability that at least one copy of a
specific de novomutation arises during the infection
time course and is passed to the next host, for mu-
tations affecting the life history of influenza A virus,
vs. their selective coefficient. Numerical results [P;
Equation (4)] are plotted as symbols (per substitu-
tion, per site); lines are provided to guide the eye.
Parameters as given in Table 1.
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transversion rates, we divide this value by three to estimate
the rate at which a specific, nonlethal nucleotide substitution
occurs. We investigate the sensitivity of our results to this
parameter as well.

Data availability

The authors affirm that all data necessary for confirming the
conclusionsofthisarticlearerepresentedfullywithin thearticle
and its tables and figures. Supplemental material available at
Figshare: https://doi.org/10.25386/genetics.6430487.

Results

Figure 1 illustrates the deterministic dynamics of Equation
(2), showing the time course of the in-host IAV infection. The
free virus peaks at 54.5 hr, just after the peak in the mature
(budding) cell population. Note that in this simplified model,
the availability of target cells limits the infection. As de-
scribed earlier, this model is only accurate while the adaptive
immune response remains negligible; although we illustrate
the full 7 days of infection, we use only the first 54.5 hr in the
subsequent analysis.

Figure 2 shows what we will refer to as the “mutation
transmission probability,” that is, the probability that at least
one copy of a specific mutation arises de novo during an in-
fection time course, survives genetic drift, and is successfully
transmitted to the subsequent host (P; Equation (4)). Model
predictions for beneficial mutations affecting each life-history
trait are shown vs. the selective coefficient, s, while the

intercept at s ¼ 0 shows the prediction for neutral mutations.
Here, we have assumed for comparison that the baseline
mutation rate is equal for all types of mutation; however,
the y-axis in Figure 2 scales approximately linearly with m.
In the supplemental material, we illustrate results for a wide
range of mutation rates.

To interpret these results, the empiricalmutation ratemust
be carefully considered. The rate estimate we use reflects the
probability, per replication, that a specific substitution occurs
at a specific nucleotide in the IAV sequence, given that the
substitution is nonlethal. Thus for example if the substitution
of interest is neutral or effectively neutral, the model predicts
that this substitution would occur de novo in the donor and be
transmitted to a recipient about once in every 2000 transmis-
sion events. If the substitution of interest confers a selective
advantage, the mutation transmission probability would be
higher. Clearly, a large fraction of viable mutations will be
deleterious and would be outcompeted before transmission;
this would correspond to a lower overall mutation rate, as
examined in the supplemental material and outlined further
in the Discussion.

The most striking result of Figure 2 is the predicted evolv-
ability of IAV during a single transmission cycle. The muta-
tion transmission probability of 1 in 2000, per substitution
per site, may contribute substantial diversity since the IAV
genome is a sequence of over 13,000 nucleotides with three
possible substitutions per site. We will return to the interpre-
tation and implications of this prediction in the Discussion.

The near-overlapping lines in Figure 2 indicate that the
mutation transmission probability does not vary widely
across life-history traits, and also illustrates the maximum
selective advantage made possible by improvements to each
trait. For example, clearance and cell death rates can only be
reduced to zero, limiting the range of s for these traits. Al-
though there is no upper bound on the rates of attachment or
maturation to budding (eclipse rate), once these rates are
effectively instantaneous, further increases do not apprecia-
bly change the growth rate, and so higher s values are also
inaccessible for these traits. Similarly, increases to the bud-
ding rate cannot improve the growth rate without bound, due
to target cell limitation.

Results in Figure 2 assume the default parameter set (Ta-
ble 1); in particular, 100 virions are chosen at random from
the free virus population and transmitted to the new host. In
Figure 3, we fix the selective coefficient ðs ¼ 0:05Þ but vary
the size of this transmission bottleneck. We find that the
mutation transmission probability increases roughly linearly
with bottleneck size.

The results above comparemutations that have equivalent
effects on the overall growth rate of the virus, assuming that
the underlying mutation rate is the same for all mutations.
Although the question of mutational accessibility is beyond
our focus, some sense of the degree to which these mutations
might be physiologically achievable can be obtained by con-
sidering the relative changes required to the trait value.To this
end, Figure 4 shows the relative change in each life-history

Figure 3 Probability that at least one copy of a de novo mutation arises
during the infection time course and is passed to the next host, for
mutations affecting the life history of influenza A virus, vs. the number
of virions in the transmission bottleneck. All mutations have a selective
advantage of s ¼ 0:05; except for the line marked neutral, for which
s ¼ 0: Other parameters as provided in Table 1. The inset shows the same
results for small bottleneck sizes. Numerical results [P; Equation (4)] are
plotted as symbols (per substitution, per site); lines are provided to guide
the eye.
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parameter necessary to achieve a specific increase in growth
rate (selective coefficient). To incur an advantage of
s ¼ 0:08; for example, requires less than a 10% change in
the rate at which cells leave the eclipse phase and begin
budding; in contrast, the attachment rate would need to dou-
ble (change by over 100%) to achieve the same selective
advantage. Note again that clearance and cell death rates
can only be reduced by at most 100%, limiting the range of
their possible effects. For the other three traits, as described
previously, beneficial mutations can produce selection coeffi-
cients in the approximate range 0, s, 0:2; but further rate
increases produce diminishing returns and fitness saturates.

Figure 2 gives the overall probability that a de novomuta-
tion is generated and passed on. As described in theMethods,
this value reflects the integrated probability of occurrence
and survival for mutations that could first occur at any time
during the infection time course. To better understand the
dynamics of this process, in Figure 5 we show the predicted
survival probability, the probability that the mutation sur-
vives and is transmitted to the next host, for mutations that
arise at time t0 during the infection time course; survival is
typically reduced for lineages that arise later in the infection.
However, for mutations that first occur immediately previous
to the bottleneck, this trend is briefly reversed (see inset),
presumably because newly released virions have a lower
chance of being attached to a host cell at the transmission
time. Overall, Figure 5 gives the impression that mutations
that arise after about the first 10 hr of infection have little
chance of survival.

The results in Figure 5 are mitigated by the fact that many
more replication events occur later during the growth phase.

To investigate the rate at which surviving mutations (muta-
tions that are transferred to the next host) first occur, we
consider the product of the transmission probability for mu-
tations that arise at each time and the number of new virions
produced at that time, ByBðt0Þ: Figure 6 shows these results.
The model predicts that transmitted mutations occur
throughout the infection time course, except during the first
few hours of infection, when very few new virions are pro-
duced, and for a brief window�10 hr before the transmission
event. The latter effect presumably occurs because virions
produced in this window are unlikely to be free at the time
of transmission (infected cells are not transmitted). The os-
cillations in these curves occur because the founder virions
start synchronously at t ¼ 0 as free virions, and must attach
and complete the eclipse phase before new virions can be
produced.

Discussion

We develop a model of within-host pathogen evolution and
use this to predict the fate of de novo mutations that occur
during disease transmission cycles. Using parameter values
for IAV and estimating the founding inoculum size as 100 viral
particles, our results predict that the probability that at least
one copy of a de novo nucleotide substitution is transmitted to
the subsequent host is �531024 per substitution per site.
Multiplying by three possible nucleotide changes and the
�13,600 sites in the IAV genome yields an estimate that as
many as 20 sites in the founding dose for the recipient may
contain substitutions that occurred de novo in the donor.
However, this upper bound must be corrected by two factors:

Figure 4 The change in selective coefficient
achieved by a given absolute percent change
in trait value for mutations affecting the five
life-history traits. For example, large changes
in attachment rate would be required to
achieve the same advantage as relatively
small changes in eclipse timing. Numerical
results plotted as symbols; lines provided to
guide the eye.
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the fraction of nonlethal mutations that are either neutral or
beneficial, and the inoculum size. If approximately half of all
nonlethal mutations are neutral or beneficial, consistent with
estimates in both influenza and in another single-stranded
RNA virus with a similar genome length (Sanjuán et al.
2004; Visher et al. 2016), we predict each recipient founding
dose will contain �10 de novo substitutions. If the fraction of
neutral or beneficial mutations, among nonlethal mutations,
is closer to 10% [see Eyre-Walker and Keightley (2007) for
review], we predict around two new substitutions in each
founding dose.

As demonstrated in Figure 3, these estimates scale linearly
with the size of the transmission bottleneck. Thus, if a single
virion founds the infection (Debbink et al. 2017; McCrone
et al. 2018), rather than 2–10 new substitutions per trans-
mission, we predict around one new substitution in the IAV
genome every 10–50 transmission events. The longer-term
fate of these new substitutions also critically depends on the
size of the founding virus population. Clearly, if only a single
viral particle founds the new infection, transmission implies
fixation; genetic heterogeneity that arises during the infec-
tion will be lost, consistent with the extinction or fixation
of minor variants observed during seasonal influenza in a
temperate climate (Debbink et al. 2017; McCrone et al.
2018). In contrast, if the founding inoculum contains $ 100
viral particles, the long-term picture is more complex.
Our assumption that the founding infectious dose in the do-
nor is phenotypically uniform only holds as an approxima-
tion, and the predicted de novo mutations may occur on
different genetic backgrounds circulating within the donor.

Recent evidence from IAV transmissions in Hong Kong sug-
gests that multiple lineages can be transmitted, including
minor variants that are shared between donor and recipient
(Poon et al. 2016; Sobel Leonard et al. 2017). Thus, a clear
direction for future work would be to expand our approach
to track multiple distinct lineages within the host and pre-
dict the longer-term fates of mutations occurring on these
backgrounds.

We can also take our estimate of (1:53 1023 nonlethal
substitutions per site per transmission event) 3 (10–50%
neutral or beneficial) to predict 1:527:53 1024 substitu-
tions per site per transmission event. These values are con-
sistent with the observed evolutionary rate of IAV throughout
a seasonal epidemic, 22 531023 substitutions per site per
year in the NS gene (Kawaoka et al. 1998; Rambaut et al.
2008), if the chain of influenza transmission involves 3–30
transmission events per season.

Although transmission bottlenecks in IAV, as in many other
pathogens, can be extremely severe, our results are consistent
with previous work demonstrating that the period of growth
between population bottlenecks can have a greater impact on
diversity than the bottlenecks themselves (Wahl et al. 2002);
this period of sustained population expansion promotes the
survival of newmutations, as seenmore generally in any grow-
ing population (Otto andWhitlock 1997). The rapid growth of
influenza during early infection, from a relatively small infec-
tious dose to peak viral loadsmany orders ofmagnitude larger,
implies that neutral substitutions, or mutations conferring
even a small benefit, will have ample opportunity to compete
with founder strains. This further implies that the life history of
IAV should bewell adapted to the disease transmission cycle in
humans; in other words, selection has the opportunity to rap-
idly fine-tune the life histories of pathogens experiencing ex-
treme transmission bottlenecks.

This result is consistentwith previous theoretical (Bergstrom
et al. 1999) and experimental work on viral evolution (Duarte
et al. 1993; Novella et al. 1995, 1996). The latter work focused
on the loss of fitness due to population bottlenecks, but fit-
ness could be maintained or improved when the bottleneck
size was as large as 5 or 10 individuals (Novella et al. 1996).
Similarly, Bergstrom et al. (1999) predicted that viral patho-
gens would be well adapted if the bottleneck size is large (or
order 5 or 10), and the number of generations between bot-
tlenecks is large (of order 25 or 50). The parameter values we
explored for IAV correspond to over 25 population doublings
between transmission events. With bottleneck sizes of 10–
200, our model is consistent with a parameter regime in
which the pathogen is able to improve or maintain fitness.
However, if only one or two virions found each infection
(McCrone et al. 2018), the theoretical expectation would
be that viral fitness should decline due to the accumulation
of deleterious mutations [see LeClair and Wahl (2017) for
review]. An interesting speculation is that the founding dose
may in fact be one-to-two virions during seasonal IAV epi-
demics in temperate zones, but could be two orders of mag-
nitude larger in tropical regions (Xue et al. 2018). Our model

Figure 5 Given that a de novo mutation first occurs at time t0 after the
start of the infection, the probability that at least one copy of it is trans-
mitted to the next host, ð12XÞ; vs. t0: All mutations have a selective
advantage of s ¼ 0:05; except for the curve marked neutral, for which
s ¼ 0: Parameters as provided in Table 1. The inset shows the same
results in a semilog plot, illustrating that the survival probability increases
slightly for mutations that first occur just before the bottleneck (see text).
Note that in this figure numerical results are plotted by both lines and
symbols.
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would then predict multiple de novo substitutions arising per
transmission event in the tropics, whereas in temperate cli-
mates substitutions are relatively rare (but tend to fix when
they occur). This would also be consistent with the source-
sink hypothesis for the global evolution of influenza
(Rambaut et al. 2008).

The use of a specific life-history model imposes natural
limits on thegrowth rate and thus the selective advantage that
can be achieved by budding viruses. For the parameters
specific to IAV, changes to the clearance rate of the free virus
or death rate of infected cells could only achieve a selective
advantage of s, 0:1: This occurs mathematically because
these rates cannot be reduced below zero; it follows intui-
tively because even if infected cells or virus never die or lose
infectivity, growth remains limited by other processes. Muta-
tions with larger beneficial effects, in the range 0:1, s, 0:2;
are accessible only by reducing the eclipse phase, or through
very large-magnitude changes to the attachment or budding
rates. Given that predicted differences in survival probability
for the different traits are rather modest (Figure 5), these
results suggest that small magnitude changes in the eclipse
timing of IAV will be subject to selective pressure. The limits
we observe in the achievable growth rate suggest that larger
effect beneficial mutations in IAV are not only unlikely, they
may not be physically possible given the life history of this
virus.

We have focused this study on the in-host life history of the
virus. However, in principle, a beneficial mutation could also
affect the transmissibility of the lineage (parameter F), pro-
ducing virions that are preferentially transferred to a new

host (Handel and Bennett 2008). This would be distinct from
mutations that increase viral load; mutations affecting F
would increase the probability that an individual viral parti-
cle is transmitted, for example by prolonging the stability of
the virion in the external environment. In addition, viral life-
history traits that are important for establishing a new
infection may differ from those that maximize growth once
established, such that the transmission bottleneck itself is
highly selective, as evidence suggests for human immunode-
ficiency virus (Joseph et al. 2015; Kariuki et al. 2017). Un-
derstanding the effects of selective transmission on de novo
diversity remains an open question.

These results explore mutations affecting a single trait in
isolation. Clearly, higher fitness could be achieved by muta-
tions that affect several traits if beneficial pleiotropic muta-
tions are available. Previous work suggests that the survival
probability of pleiotropicmutations typically falls between the
predictions obtained for single-trait mutations of equivalent
selective effect (Wahl and Zhu 2015). In addition, we have
investigated the transmission of de novo mutations when
rare. Given the magnitude of the viral loads measured
in IAV, it is clear that multiple beneficial mutations could
emerge and compete before the virus is transmitted to a
new host. Thus, we would expect that clonal interference
and multiple mutation dynamics might come into play in
describing the adaptive trajectory more fully (Desai and
Fisher 2007; Desai et al. 2007).

A limitation of themodel is that the immune response is not
explicitly included as a dynamic variable. Innate immunity is
activated when an infection is detected, which is usually
within the first few hours of infection. However, adaptive
immunity is activated, at the earliest, 3 days postinfection
(Tamura and Kurata 2004). Since our model addresses early
infection (up to 54.5-hr postinfection), adaptive immune ef-
fects are assumed negligible. However, the innate immune
response cannot be neglected, as its main purpose is to limit
viral replication (van de Sandt et al. 2012). In our approach,
innate immune mechanisms are included in the viral clear-
ance and infected cell death rates, but are assumed to be
constant throughout this early stage of the infection. This
phenomenon has been reviewed in some detail in previous
work (Baccam et al. 2006; Beauchemin and Handel 2011;
Smith and Perelson 2011; Boianelli et al. 2015), from which
it is clear that directly incorporating the immune response is
necessary for an accurate representation of the full time
course of infection (Boianelli et al. 2015). Even when limiting
our attention to early infection only, interferon-I and natural
killer cells could be included tomore accurately model innate
immunity (Boianelli et al. 2015). However, the complexity of
the immune system creates a significant challenge in accu-
rately modeling IAV dynamics, even during this initial time
period (Boianelli et al. 2015). In particular, many key param-
eters of immune kinetics remain unquantified, creating addi-
tional uncertainty (Dobrovolny et al. 2013).

Finally, it is well understood that antigenic drift is associ-
ated with the evolution of IAV (Carrat and Flahault 2007).

Figure 6 The rate at which transmitted mutations appear [n, Equation
(3)] vs. the time at which they first appear, t0: For this figure, the prob-
abilities of being passed on to the next host illustrated in Figure 5 are
multiplied by the number of new virions produced at each time. Thus the
figure illustrates the relative numbers of ultimately transmitted mutations
that occur at each time during the infection time course, per substitution,
per site. Note that in this figure numerical results are plotted by both lines
and symbols.
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Antigenic drift would be formalized in our model as a reduc-
tion in the death rate of infected cells or the clearance rate of
free virions, as these life-history parameters would be im-
proved by any immune evasion. In fact, Figure 2 predicts that
for mutations with small selective effects ðs, 0:08Þ; of all
possible mutations with the same selective effect, clearance
mutations are the most likely to survive when rare. Thus,
mutations affecting the viral clearance rate are most likely
to adapt. This could shed light on themechanisms underlying
themaintenance of antigenic drift; however, much remains to
be understood about the complex transmission and evolu-
tionary dynamics of IAV. It is our hope that predicting the
fate of de novo mutations affecting IAV life history is an im-
portant piece of this interesting puzzle.
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Appendix

Let plmnðtÞ be the probability that l free virions, m infected cells, and n mature cells exist in the focal lineage at time t, and let
AðtÞ denote the time-dependent per virion attachment rate, which depends on the available target cells, yTðtÞ; as predicted in
the deterministic model 1. Parameters B, C, and D represent the budding, clearance, and cell death rates, while E denotes the
rate at which cells exit the eclipse phase and begin budding. Although the stochastic model follows the mutant lineage, for
simplicity we will use A as opposed to ~A; etc., throughout the Appendix. Also, for notational clarity, we illustrate the case k ¼ 1:
Taking into account the stochastic events of attachment, budding, clearance, cell death, and cell maturation, it is straightfor-
ward to demonstrate that the pgf describing the time evolution of the lineage must satisfy:
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Taking the limit as Dt/0; Equation (5) yields the following linear partial differential equation:
@G
@t

¼ ðAðtÞx2 þ C2 ðAðtÞ þ CÞx1Þ @G
@x1

þð2ðE þ DÞx2 þ Ex3 þ DÞ @G
@x2

þðBx1x3 þ D2 ðDþ BÞx3Þ @G
@x3

(6)

Equation (6) can be converted to a system of ODEs using the standard method of characteristics, which yields the following
system of ODEs

dx1
dT

¼ AðtÞx2 þ C2 ðAðtÞ þ CÞx1
dx2
dT

¼ 2 ðE þ DÞx2 þ Ex3 þ D

dx3
dT

¼ Bx1x3 þ D2 ðDþ BÞx3
dt
dT

¼ 2 1

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

:

The value ofG is constant along any trajectory in the system above, and thus the system can be solved numerically to determine
the value ofG at time t, given an appropriate initial condition. To study the fate of a de novomutation that first occurs at time t0;
we use the initial condition corresponding to a single free virus existing in the lineage, with probability one, at t0 :

Gðt0; x1; x2; x3Þ ¼ x1:
For notational convenience, we define Gðt0; x1Þ as shorthand forGðt; x1; 1; 1Þwhen evaluatedwith this initial condition. The

function Gðt0; x1Þ thus gives the distribution of free virions at time t, just before disease transmission, given that the lineage
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began with a single virion at time t0: Composing this with the pgf of the bottleneck process, we obtain Gðt0; 12 F þ Fx1Þ as the
pgf describing the distribution of free virions transmitted to a new host (given that one new host is infected). The probability
that a given lineage, that arose at time t0; is not transmitted to the new host is obtained by evaluating at x1 ¼ 0 :

Xðt0Þ ¼ Gðt0; 12 FÞ:

Asdescribed in themain text,we thenuse this tocompute theexpected rateatwhichsurvivingmutant lineages (lineages thatwill
eventually be transmitted to the next host) appear during the infection time course.

For the supplemental figures, we also compute the expected number of mutant virions transmitted to the recipient host,N :

We do this by first computing @xGðt0; xÞjx¼1;which gives the expected number of mutant virions at time t, given that a mutant
virionwas produced at time t0:Wemultiply this value by the number ofmutant virions being produced at time t0;mByBðt0Þ; and
integrate from 0 to t, to get the total expected number of mutant virions at time t. Multiplying by the bottleneck fraction, F,
gives the expected number of mutant virions transmitted to the recipient host:

N ¼ F
Z t

0
mByBðt0Þ � @xGðt0; xÞjx¼1dt0:

Note that S (defined in the main text) and N differ because each de novomutation produces a lineage that could in principle
contribute more than one virion to the recipient.
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