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Abstract
We measured and compared heritability estimates for measures of functional brain connectivity

extracted using the Enhancing Neuroimaging Genetics through Meta-Analysis (ENIGMA) rsfMRI

analysis pipeline in two cohorts: the genetics of brain structure (GOBS) cohort and the HCP (the

Human Connectome Project) cohort. These two cohorts were assessed using conventional

(GOBS) and advanced (HCP) rsfMRI protocols, offering a test case for harmonization of rsfMRI

phenotypes, and to determine measures that show consistent heritability for in-depth genome-

wide analysis. The GOBS cohort consisted of 334 Mexican-American individuals (124M/210F,

average age = 47.9 � 13.2 years) from 29 extended pedigrees (average family size = 9 people;

range 5–32). The GOBS rsfMRI data was collected using a 7.5-min acquisition sequence (spatial

resolution = 1.72 × 1.72 × 3 mm3). The HCP cohort consisted of 518 twins and family mem-

bers (240M/278F; average age = 28.7 � 3.7 years). rsfMRI data was collected using 28.8-min

sequence (spatial resolution = 2 × 2 × 2 mm3). We used the single-modality ENIGMA rsfMRI

preprocessing pipeline to estimate heritability values for measures from eight major functional

networks, using (1) seed-based connectivity and (2) dual regression approaches. We observed

significant heritability (h2 = 0.2–0.4, p < .05) for functional connections from seven networks

across both cohorts, with a significant positive correlation between heritability estimates across

two cohorts. The similarity in heritability estimates for resting state connectivity measurements

suggests that the additive genetic contribution to functional connectivity is robustly detectable

across populations and imaging acquisition parameters. The overarching genetic influence, and

means to consistently detect it, provides an opportunity to define a common genetic search

space for future gene discovery studies.
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1 | INTRODUCTION

Resting state functional MRI (rsfMRI) connectivity analysis takes

advantage of temporal coherence in low-frequency blood oxygenation

level-dependent fluctuations, when the brain is not engaged in a goal-

directed activity (Fox & Raichle, 2007; Smith et al., 2009). This activity

is synchronized across interconnected brain regions and may be used

to link them into functional networks (Biswal, Yetkin, Haughton, &

Hyde, 1995; Fox & Raichle, 2007; Margulies et al., 2007; Smith et al.,

2009). Functional networks identified during the resting state are also

detectable when the brain is engaged in cognitive activities. Func-

tional networks may also be derived through independent component

analysis of brain activation maps, such as these stored in the Brain-

Map, the largest database (over 100,000) of functional imaging studies

(Smith et al., 2009). These functional networks are even stable enough

to be detectable to some extent when a person is asleep, in a coma,
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or under anesthesia, and are present in infants and in nonhuman pri-

mates (Chen et al., 2017; Mitra et al., 2017; Wey et al., 2014; Wu

et al., 2016). The stability and reproducible structure of functional net-

works suggests that they are a fundamental property of the brain,

making it of interest to what extent individual variance depends on

genetics versus other factors. We examined and compared heritability

estimates of resting state phenotypes in two independent genetically

informed cohorts collected using two familial study designs (family

and twin-siblings), though the datasets were collected 10 years

apart—using a conventional rsfMRI and state-of-the-art connectivity

protocols.

Genetic analyses of rsfMRI phenotypes can be challenging due to

limitations in statistical power and methodological differences in the

available analysis approaches. One way to improve statistical power

and consistency of the outcomes is by pooling data from multiple

cohorts. As has been noted for other phenotypes from structure MRI

and diffusion MRI, very large, highly powered, and representative

samples are difficult to collect at a single site (Ioannidis, 2014; Jahan-

shad et al., 2013), although there are some notable exceptions, for

example, the UK Biobank (Elliott et al., 2017). Multisite studies can

collect larger and more representative samples but require pre-

processing steps to address site-specific sources of methodological

variance. The ENIGMA consortium developed an rsfMRI analysis pipe-

line to perform consistent analysis and extraction of resting state con-

nectivity measures across data collected using diverse protocols

(Adhikari et al., 2017). Here, we used this pipeline to (i) replicate find-

ings in the first report that demonstrated significant additive genetic

contribution to the inter-subject variance in the default mode network

using the original (N = 334) genetics of brain structure (GOBS) cohort

(Glahn et al., 2010); (ii) extend this analysis to other resting state net-

works and (iii) replicate these findings in an independent dataset from

the Human Connectome Project (HCP; Van Essen et al., 2013). The

motivation for this work is to show that genetic effects on resting

state connectivity measures are robust enough to serve as targets for

cross-site discovery of genetic variants that affect cerebral connectiv-

ity. A key milestone in this quest is to determine resting state connec-

tivity measures that are reliable and consistently heritable regardless

of the population and/or data collection protocols.

The ENIGMA rsfMRI pipeline differs from other pipelines in two

respects. Many fMRI analysis pipelines require a structural

T1-weighted (T1w) brain MRI scan to regress out signal measured in

the cerebrospinal fluid (CSF) and cerebral white matter and for regis-

tration of all data to a common atlas space (Jenkinson, Beckmann,

Behrens, Woolrich, & Smith, 2012; Smith et al., 2004). In the spirit of

ENIGMA, this pipeline is a single-modality and uses a deformable tem-

plate created from 1,100 individual images provided by ENIGMA sites

to incorporate and compensate for shape distortions common to fMRI

images (Adhikari et al., 2017). This alleviates potential pitfalls of site-

to-site variance in the quality of T1w data and coregistration biases

that may influence extraction of rsfMRI phenotypes. Clearly both

approaches are possible, and the current approach offers a reasonable

and feasible approach to test and apply across sites.

Another notable difference is that the ENIGMA rsfMRI pipeline

uses a noise reduction technique based on the Marchenko–Pastur

Principal Component Analysis (MP-PCA) to improve signal-to-noise

ratio (SNR). The MP-PCA approach takes advantage of the redun-

dancy in the time-series data (such as that in fMRI and/or diffusion

tensor imaging) to quantify the contribution of the thermal noise to

the voxel-wise signal. MP-PCA-based denoising reduces signal fluctu-

ations to increase the temporal SNR (tSNR) without altering the spa-

tial resolution of the data (Adhikari et al., 2017). The thermal noise-

selective is based on data redundancy in the PCA domain (Veraart,

Novikov, et al., 2016b). The bulk of the PCA eigenvalues arise due to

noise and can be approximated by the universal Marchenko–Pastur

distribution. This Marchenko–Pastur parameterization allows us to

estimate the noise level in a local neighborhood based on the singular

value decomposition of a matrix combining neighborhood voxels

(Veraart, Fieremans, & Novikov, 2016a). Regression of these compo-

nents enhances SNR by suppression of the noise contribution to the

signal.

The advantages of improving SNR using an MP-PCA approach

has already been demonstrated for homogenization of multi-site ana-

lyses of diffusion MRI data (Kochunov et al., 2018). In addition, the

spatial map of the thermal noise serves as an important quality assur-

ance measurement (Kochunov et al., 2018). Thermal noise contribu-

tion to the image is expected to be regionally uniform and any

regional variations in the thermal noise can indicate nonlinearity in the

RF-receiving system or other scanner problems (Kochunov

et al., 2018).

Additive genetic effects on brain metrics can be detected and

estimated by modeling the degree of relatedness across individuals

when studying the variance in a database of brain scans. First, we

computed heritability measures from two commonly used familial

study designs: GOBS subjects were recruited from an extended pedi-

gree, and HCP participants were recruited from a twin/siblings regis-

try. To examine some alternative metrics, we used two

complementary measures of functional connectivity commonly used

in brain mapping research: region-based (or “seed”-based) analysis,

and dual regression. In the first approach, the connectivity strength is

estimated based on the degree of covariance in the signal measured

from two or more regions. In the second approach, the “group-wise-

average” trend is regressed from the data, yielding a statistical infer-

ence on how individual subjects differ from the group average. To

reduce the biases inherent in having to extract resting state networks

from different cohorts, we used the pattern derived through the

meta-analysis of functional activations stored in the BrainMap data-

base (Smith et al., 2009). Overall, similarity in the heritability measure-

ments across two diverse cohorts is helpful to offer further evidence

for the suitability of the ENIGMA rsfMRI protocol and connectivity

measures for more in-depth multisite genetic analyses of cerebral

functional connectivity.

2 | METHODS AND MATERIALS

2.1 | Study subjects and imaging protocols

We performed analyses in two independently collected rsfMRI data-

sets: GOBS and HCP, detailed below.
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2.1.1 | GOBS and function study

This cohort consisted of 334 Mexican-American individuals

(124M/210F, age: 47.9 � 13.2 years) from 29 extended pedigrees

(average family size, 9 people; range 5–32) who participated in the

GOBS and Function study (Glahn et al., 2010). Individuals were

selected from the community as part of a large family epidemiological

study focused on the San Antonio, TX region. Individuals with a his-

tory of neurological illness, stroke, or other major neurological events

were excluded, as were people with brain MRI contraindications. All

participants provided written informed consent on forms approved by

the institutional review board at the University of Texas Health Sci-

ence Center San Antonio (UTHSCSA).

All imaging was performed at the Research Imaging Institute,

UTHSCSA, on a Siemens 3 T Trio scanner, using a multichannel

phased array head coil. Whole-brain, resting-state functional imaging

was performed using a gradient-echo echo planar imaging (EPI)

sequence sensitive to the BOLD effect. The acquisition parameters

were: repetition and echo times TR/TE = 3,000/30 ms, spatial resolu-

tion = 1.72 × 1.72 × 3 mm3, flip angle = 90�. The resting-state proto-

col included 43 slices acquired parallel to the sagittal plane containing

the anterior and posterior commissures; the total scan time was

7.5 min.

2.1.2 | Human connectome project

Human connectome project (HCP) cohort consisted of 518 partici-

pants (240M/278F, average age 28.7 � 3.7) from the HCP dataset,

released in March 2017. Participants were recruited from the Missouri

Family and Twin Registry (Van Essen et al., 2013). All HCP participants

were from young adult sibships of average size 3–4 that included a

monozygotic (MZ) or dizygotic (DZ) twin pair and (where available)

their nontwin siblings. Out of 518 participants, 128 were MZ twins

and 89 were DZ twins. The zygosity of the same-sex twins was veri-

fied based on the genetic screening. Subjects ranged in age from

22 to 37 years. This age range corresponds to a period after neurode-

velopment is largely completed and before the typical age of onset of

neurodegenerative changes. The inclusion and exclusion criteria are

detailed elsewhere (Van Essen et al., 2013). The HCP subjects are

healthy young adults within a restricted age range and free from major

psychiatric or neurological illnesses (Edens, Glowinski, Pergadia,

Lessov-Schlaggar, & Bucholz, 2010; Sartor et al., 2011). All subjects

provided written informed consent on forms approved by the Institu-

tional Review Board of Washington University in St. Louis.

All HCP subjects are scanned on a customized Siemens 3 T “Con-

nectome Skyra” scanner at Washington University in St. Louis, using a

standard 32-channel Siemens receive head coil. RsfMRI data consisted

of two runs in one session. Within a session, oblique axial acquisitions

alternated between phase encoding in a right-to-left direction in one

run and phase encoding in a left-to-right direction in the other run.

Resting state images were collected using a gradient-echo echo planar

imaging (EPI) sequence. The acquisition parameters were: TR/TE =

720 and 33.1 ms, flip angle = 52�, field of view (FOV) = 208 ×

180 mm, matrix = 104 × 90, 2.0 mm isotropic voxels, 72 axial slices,

multiband factor = 8; scan time was 28.8 min.

2.2 | Functional image analysis

2.2.1 | ENIGMA resting state analysis

ENIGMA developed a single-modality resting state analysis pipeline

(Adhikari et al., 2017) by implementing it in the Analysis of Functional

NeuroImages (AFNI) software (Cox, 1996) (Figure 1). It includes the

application of principal components analysis (PCA)-based denoising

(Veraart, Fieremans,et al., 2016a; Veraart, Novikov, et al., 2016b). The

denoising is the first step in this analysis pipeline to improve SNR and

tSNR properties of the time series data (Adhikari et al., 2017), without

losing image spatial resolution, and avoids introducing of additional

partial volume effects that complicate further analyses. The MP-PCA

approach does not alter the resting state network activation patterns,

whereas spatial smoothing using a Gaussian kernel leads to partial

voxel averaging, spreading the activations across gray and white mat-

ter regions and removing smaller nodes. Finally, the noise-maps pro-

duced by the MP-PCA approach provide valuable information for

quality control—deviations from the expected uniform pattern of ther-

mal noise, or one that slowly varies in space, may indicate problems

with the coil or other scanner hardware.

In the next step, supplementary data, if provided, is used to cor-

rect spatial distortions associated with long-TE gradient echo imaging.

Two available corrections are the gradient-echo “fieldmap” or the

reversed-gradient approach. Here, we implemented the spatial distor-

tion corrections in the HCP dataset but distortion correction data was

not collected in GOBS dataset. In the next step, a transformation is

computed registering the base volume to the ENIGMA EPI template

that was derived from 1,100 datasets collected across 22 sites

(Adhikari et al., 2017) to develop a spatial template and spatial atlas.

This atlas has a dual purpose: it is used for regression of the global sig-

nal, but it also offers a common anatomical spatial reference frame.

Next, correction for head motion is performed by registering each

functional volume to the volume with the minimum outlier fraction

(suggesting it has little motion), where each transformation is

FIGURE 1 Flowchart of ENIGMA rsfMRI analysis pipeline
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concatenated with the transformation to standard space, to avoid

unnecessary interpolation. Nuisance variables such as the linear trend,

6 motion parameters (3 rotational and 3 translational directions), their

6 temporal derivatives (rate of change in rotational and translational

motion), and time courses from the local white matter and cerebrospi-

nal fluid (CSF) from lateral ventricles are modeled using multiple linear

regression analysis, which were then removed as regressors of no

interest. Time points with excessive motion (>0.2 mm), estimated as

the magnitude of displacement from one time point to the next,

including neighboring time points and outlier voxels fraction (>0.1) are

censored from statistical analysis. Images were spatially normalized to

the ENIGMA EPI template in Montreal Neurological Institute (MNI)

standard space for group analysis.

2.3 | Functional connectivity analysis

Resting state network templates were defined based on the probabi-

listic regions of interest (ROIs) from 20-component analysis of the

BrainMap activation database and resting fMRI dataset (Smith et al.,

2009). We defined the binary masks of the resting state template

regions from auditory network (AN), attention network (AttN), default

mode network (DMN), executive control network (ECN), fronto-

parietal network (FPN), salience network (SN), sensorimotor network

(SMN), and visual network (VN) (Figure 2). The colored regions in

Figure 2 represent the “seeds” for the functional connectivity analysis.

Mean time series were extracted from the seed regions of each net-

work and connectivity maps corresponding to each seed region were

obtained by accessing correlations along the time series for different

regions. Next, Fisher’s r-to-z transformations were applied to obtain a

normal distribution. We calculated seed-based functional connectivity

values between seed regions in each network and performed herita-

bility calculation. Furthermore, we performed dual regression analysis

for these all network template ROIs, and calculated the functional

connectivity measures and hence heritability estimates on both data-

sets. (The same GOBS dataset was used in a prior study by Glahn

et al. [2010]).

We developed a modification of the dual regression approaches

as implemented in the FSL software (Beckmann, Mackay, Filippini, &

Smith, 2009; Filippini et al., 2009). FSLs dual regression approach uses

the spatial maps from the group-average analysis to generate subject-

specific spatial maps, and extract subject-specific time series. For each

subject, the group-average set of spatial maps is regressed into the

FIGURE 2 Resting state network template ROIs based on the BrainMap activation database (Smith et al., 2009). Here, L = left, R = right, in

(a) a1/a2 = left/right primary and association auditory cortices, in (b) r1 = posterior cingulate/precuneus, r2 = bilateral temporal–parietal regions
and, r3 = ventromedial frontal cortex, in (c) f1/f2 = left/right frontal area and p1/p2 = left/right parietal area, in (d) m1/m3 = left/right motor area
and m2 = supplementary motor area, in (e) v1 = medial visual areas, v2 = occipital visual areas, and v3 = lateral visual areas, in (f ) r1 = anterior
cingulate cortex and r2 = bilateral medial frontal gyrus, in (g) r1 = anterior cingulate cortex and r2/r3 = left/right insula, in (h) f1/f2 = left/right
middle frontal gyrus and p1/p2 = left/right superior parietal lobule [Color figure can be viewed at wileyonlinelibrary.com]
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subject’s 4D space–time dataset. This results in a set of subject-

specific time series, one per group-level spatial map. Next, those time

series are regressed into the same 4D dataset, resulting in a set of

subject-specific spatial maps, one per group-level spatial map.

We have used the spatial maps template of resting networks from

independent component analysis (ICA)-based analyses of the Brain-

Map database. Following the pre-processing steps, we computed the

average time series for the ROIs included in the given network tem-

plate for each subject. We obtained the average time series from all

subjects to represent the group’s time-trend for the corresponding

network. We regressed out this trend from individual subject’s data.

This was performed by including the group average trend for a net-

work as an additional regressor appended to the matrix. This was

achieved by re-running the step 10 (in Figure 1) because the group

average trend is not expected to be orthogonal to the other nuisance

regressors for any given subject (e.g., motion parameters). After

regressing out the effects of the group average trend, we calculated

correlation maps corresponding to each seed region for a given net-

work, performed Fisher’s r-to-z transformations and calculated FC

values between seed regions in each network template before per-

forming heritability calculation on these measures. The dual regression

approach provides a statistical inference on how the individual sub-

jects differ from the group average.

2.4 | Genetic analyses

We estimated the degree of additive genetic variance (heritability) in

the intersubject variability in the FC values. The first set of analyses

was focused on replicating findings of significant heritability in the

default mode network reported in the GOBS cohort (Glahn et al.,

2010). The same subjects and the same genetic analyses were used to

estimate the additive and environmental components of the pheno-

typic variance. Specifically, we used the variance components method,

as implemented in the Sequential Oligogenic Linkage Analysis Rou-

tines (SOLAR) Eclipse software package (http://www.solar-eclipse-

genetics.org) (Almasy & Blangero, 1998). SOLAR uses maximum likeli-

hood variance decomposition methods, extensions of the strategy

developed by Amos and colleagues (Amos, 1994). The covariance

matrix Ω for a pedigree is given by: Ω=2Φσ2g+Iσ
2
s , where σ2g is the

genetic variance due to the additive genetic factors, φ is the kinship

matrix representing the pair-wise kinship coefficients among all indi-

viduals, σ2s is the variance due to individual—unique environmental

effects and measurement error, and I is an identity matrix (under the

assumption that all environmental effects are uncorrelated among

family members). Narrow sense heritability is defined as the fraction

of phenotypic variance σ2p attributable to additive genetic factors,

h2 =
σ2g
σ2p

The variance parameters are estimated by comparing the

observed phenotypic covariance matrix with the covariance matrix

predicted by kinship (Almasy & Blangero, 1998). Significance of the

heritability estimate is tested by comparing the likelihood of the

model in which σ2g is constrained to zero with that of a model in which

σ2g is estimated. Twice the difference between the log-likelihoods of

these models yields a test statistic, which is asymptotically distributed

as a 1/2:1/2 mixture of x2 variables with 1-of-freedom and a point

mass at zero (Beasley, Erickson, & Allison, 2009). Prior to the heritabil-

ity estimation, phenotype values (FC measures) from each dataset

were adjusted for covariates including sex, age, age2, age × sex inter-

action, and age2 × sex interaction. Inverse Gaussian transformation

was also applied to ensure normality of the distribution. Outputs from

SOLAR include the heritability estimate (h2), the significance value (p),

and the standard error for each trait (SE).

3 | RESULTS

3.1 | Seed-based analysis

Heritability estimates of seed-based connectivity phenotypes for both

cohorts are summarized in Table 1. We replicated the significant heri-

tability for default mode network (DMN) functional connectivity from

the posterior cingulate/precuneus to bilateral temporal–parietal

regions (h2 = 34%, p = .014) and ventromedial frontal cortex

(h2 = 35%, p = .014) in the GOBS dataset. We further replicated sig-

nificant heritability of these phenotypes, in the HCP dataset. Both

datasets showed the significantly heritable functional connectivity

between the fronto-parietal network nodes. In case of the attention

network, significant heritable functional connectivity was found

between right middle frontal gyrus and superior parietal lobule, for

both datasets. The right and left motor cortices are characterized by

the significantly heritable functional connections for both datasets.

Heritability estimates in these and other networks showed a similar

pattern of genetic control in both the GOBS and the HCP with greater

evidence for statistical significance (i.e., lower p-values) observed in

the HCP subjects.

3.2 | Dual regression analysis

Heritability estimates of dual-regression-based connectivity pheno-

types for both cohorts are summarized in Table 2. Heritability esti-

mates were similar for the connectivity values calculated by the seed-

based and dual regression approaches. For example, in the GOBS

dataset, connectivity values for the DMN ROIs were significantly heri-

table from posterior cingulate/precuneus to bilateral temporal–

parietal regions (h2 = 30%, p = .014) and ventromedial frontal cortex

(h2 = 25%, p = .038) (Table 2). The connection from bilateral

temporal–parietal regions to posterior cingulate/precuneus was like-

wise significantly heritable (h2 = 26%, p = .035). The HCP dataset

showed the greater evidence of statistical significance (heritability

from posterior cingulate/precuneus to bilateral temporal–parietal

regions; h2 = 31%, p = 4.0 × 10−8 and from bilateral temporal–parietal

regions to posterior cingulate/precuneus; h2 = 30%, p = 3.8 × 10−8).

Heritability estimates in other networks showed a similar pattern of

genetic control in both datasets. We found some additional signifi-

cantly heritable functional connections in the dual regression analysis

compared with the seed based analysis approach for both datasets.

For GOBS dataset, the mean heritability estimate for the regions that
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showed significantly heritable FC within DMN, using a dual regression

approach implemented in the FSL software, was 0.35 (�0.06) (Glahn,

et al., 2010). With a modification of this approach, the mean heritabil-

ity estimate for the functional connections that showed significantly

heritable FC measures was 0.27 (�0.03). The mean heritability value

was 0.34 (�0.01) in the seed-based analysis. For HCP dataset, mean

heritability estimates were 0.22 (�0.08) for dual regression, and 0.21

(�0.06) for the seed-based analysis.

3.2.1 | Comparison of GOBS and HCP heritability
measurements

Heritability estimates for functional connectivity measures in the

GOBS cohorts were plotted versus heritability estimates for these in

the HCP cohorts for seed-based analysis and dual regression analysis

approaches (Figure 3). The lines represent the result of the linear cor-

relation between two cohorts. There was a significant and positive

correlation (r = .38, p = .023 for seed-based analysis approach and

TABLE 1 Heritability estimates for measures derived from resting state networks (RSNs) from seed-based analysis approach

GOBS (N = 334) HCP (N = 518)

Network Connectionsa Heritabilityb p-value Heritabilityb p-value

Auditory network (AN) Auditory cortices L–Auditory cortices R 0.12 (0.16) .209 0.05 (0.09) .275

Auditory cortices R–Auditory cortices L 0.05 (0.14) .356 0.05 (0.08) .260

Attention network (AttN) Middle FG L–SPL L 0.20 (0.12) .031 0.10 (0.15) .288

SPL L–Middle FG L 0.21 (0.12) .024 0.08 (0.11) .213

Middle FG R–SPL R 0.32 (0.12) .001 0.27 (0.14) .018

SPL R–Middle FG R 0.31 (0.12) .002 0.32 (0.14) .005

Default mode network (DMN) PCC/precuneus–Bilateral
temporal–parietal region

0.34 (0.16) .014 0.27 (0.09) 1.0 × 10−7

Bilateral temporal–parietal region–vmFC 0 .500 0.14 (0.09) .008

vmFC–PCC/precuneus 0.09 (0.15) .276 0.15 (0.11) .025

Bilateral temporal–parietal
region–PCC/precuneus

0.09 (0.13) .244 0.27 (0.09) 4.6 × 10−8

vmFC– Bilateral temporal–parietal region 0 .500 0.23 (0.12) .002

PCC/precuneus–vmFC 0.35 (0.17) .014 0.09 (0.1) .120

Executive control network (ECN) ACC–Bilateral medial FG 0.17 (0.14) .088 0.17 (0.11) .023

Bilateral medial FG–ACC 0.23 (0.14) .034 0.23 (0.11) .003

Fronto-parietal network (FPN) Frontal area L–Parietal area L 0.14 (0.14) .149 0.16 (0.11) .019

Parietal area L–Frontal area L 0.13 (0.14) .169 0.16 (0.11) .018

Frontal area R–Parietal area R 0.31 (0.15) .016 0.19 (0.14) .034

Parietal area R–Frontal area R 0.29 (0.15) .025 0.27 (0.14) .042

Salience network (SN) ACC–INS L 0.20 (0.13) .062 0.07 (0.09) .121

INS L–INS R 0.24 (0.12) .019 0.25 (0.11) .002

INS R–ACC 0 .500 0.13 (0.08) .005

INS L–ACC 0.16 (0.12) .084 0.20 (0.11) .002

INS R–INS L 0.18 (0.12) .049 0.31 (0.12) 3.8 × 10−4

ACC–INS R 0 .500 0.05 (0.06) .142

Sensorimotor network (SMN) Motor area L–SMA 0.09 (0.14) .255 0.29 (0.15) .017

SMA–Motor area R 0 .500 0.14 (0.12) .113

Motor area R–Motor area L 0.32 (0.20) .041 0.27 (0.14) .009

SMA–Motor area L 0.06 (0.12) .302 0 .500

Motor area R–SMA 0 .500 0.15 (0.13) .108

Motor area L–Motor area R 0.32 (0.20) .045 0.25 (0.13) .008

Visual network (VN) Medial visual areas–occipital visual areas 0.21 (0.15) .062 0.14 (0.09) .021

Occipital visual areas–lateral visual areas 0.36 (0.14) .004 0.17 (0.11) .029

Lateral visual areas–Medial visual areas 0.12 (0.14) .168 0.03 (0.04) .191

Occipital visual areas–medial visual areas 0.32 (0.15) .009 0.13 (0.09) .042

Lateral visual areas–occipital visual areas 0.13 (0.14) .161 0.15 (0.09) .040

Medial visual areas–Lateral visual areas 0.17 (0.14) .100 0.06 (0.05) .060

GOBS = genetic of brain structure and function study; HCP = human connectome project; L = left; R = right; FG = frontal gyrus; SPL = superior parietal lob-
ule; PCC = posterior cingulate cortex; vmFC = ventromedial frontal cortex; ACC = anterior cingulate cortex; INS = insula; SMA = supplementary
motor area.
a Bolded figures are significant at 5% false discovery rate (FDR). Regions are based off of Figure 2.
b Estimated heritability, h2 (SE).
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r = .50, p = .002 for dual regression analysis approach) between heri-

tability estimates for functional connectivity measurements in the

GOBS and HCP cohorts.

3.2.2 | Execution time

All analyses were carried out at the Washington University Center for

High-Performance Computing. Dual regression analysis of GOBS rest-

ing data took about 30 min per subject/network on a modern linux

server node. Analysis of HCP data consisting of N = 2,400 fMRI vol-

umes took about 6 hr per subject/network.

4 | DISCUSSION

We performed heritability analyses of the connectivity phenotypes

extracted from GOBS and HCP. We used two BigData developments:

TABLE 2 Heritability estimates for measures derived from resting state networks (RSNs) from dual regression analysis approach

GOBS (N = 334) HCP (N = 518)

Network Connectionsa Heritabilityb p-value Heritabilityb p-value

Auditory network (AN) Auditory cortices L–Auditory cortices R 0.07 (0.13) .479 0.07 (0.09) .188

Auditory cortices R–Auditory cortices L 0 . 500 0.06 (0.08) .221

Attention network (AttN) Middle FG L–SPL L 0.25 (0.15) .041 0.27 (0.15) .031

SPL L–Middle FG L 0.25 (0.15) .043 0.17 (0.13) .091

Middle FG R–SPL R 0.29 (0.15) .029 0.31 (0.13) .009

SPL R–Middle FG R 0.36 (0.16) .010 0.40 (0.12) .002

Default mode network (DMN) PCC/precuneus–Bilateral
temporal–parietal region

0.30 (0.16) .014 0.31 (0.09) 4.0×10−8

Bilateral temporal–parietal
region–vmFC

0 .500 0.15 (0.09) .010

vmFC–PCC/precuneus 0.09 (0.11) .279 0.14 (0.10) .038

Bilateral temporal–parietal
region–PCC/precuneus

0.26 (0.16) .035 0.30 (0.09) 3.8×10−8

vmFC– Bilateral
temporal–parietal region

0 .500 0.20 (0.11) .004

PCC/precuneus–vmFC 0.25 (0.17) .038 0.08 (0.09) .131

Executive control network (ECN) ACC–Bilateral medial FG 0.26 (0.14) .026 0.20 (0.12) .016

Bilateral medial FG–ACC 0.26 (0.13) .024 0.22 (0.10) .009

Fronto-parietal network (FPN) Frontal area L–Parietal area L 0.13 (0.14) .159 0.17 (0.12) .022

Parietal area L–Frontal area L 0.10 (0.15) .235 0.15 (0.11) .027

Frontal area R–Parietal area R 0.33 (0.14) .010 0.23 (0.14) .041

Parietal area R–Frontal area R 0.30 (0.16) .027 0.30 (0.14) .023

Salience network (SN) ACC–INS L 0.26 (0.15) .047 0.07 (0.08) .116

INS L–INS R 0.26 (0.16) .043 0.26 (0.12) .001

INS R–ACC 0.07 (0.15) .318 0.15 (0.09) .004

INS L–ACC 0.14 (0.14) .160 0.20 (0.11) .002

INS R–INS L 0.25 (0.14) .037 0.35 (0.12) .001

ACC–INS R 0 .500 0.07 (0.06) .099

Sensorimotor network (SMN) Motor area L–SMA 0.12 (0.14) .179 0.30 (0.13) .013

SMA–Motor area R 0.05 (0.18) .397 0.24 (0.14) .009

Motor area R–Motor area L 0.37 (0.18) .013 0.27 (0.13) .008

SMA–Motor area L 0.13 (0.13) .151 0.26 (0.14) .009

Motor area R–SMA 0.06 (0.16) .352 0.16 (0.14) .088

Motor area L–Motor area R 0.40 (0.16) .012 0.13 (0.12) .135

Visual network (VN) Medial visual areas–occipital visual areas 0.25 (0.15) .044 0.24 (0.08) .006

Occipital visual areas–lateral visual areas 0.35 (0.14) .005 0.32 (0.11) .001

Lateral visual areas–Medial visual areas 0.14 (0.14) .135 0.04 (0.05) .194

Occipital visual areas–medial visual areas 0.31 (0.14) .012 0.22 (0.11) .009

Lateral visual areas–occipital visual areas 0.16 (0.14) .121 0.15 (0.09) .044

Medial visual areas–Lateral visual areas 0.22 (0.13) .050 0.12 (0.06) .026

GOBS = genetic of brain structure and function study; HCP = human connectome project; L = left; R = right; FG = frontal gyrus; SPL = superior parietal lob-
ule; PCC = posterior cingulate cortex; vmFC = ventromedial frontal cortex; ACC = anterior cingulate cortex; INS = insula; SMA = supplementary
motor area.
a Bolded figures are significant at 5% FDR. Regions are based off of Figure 2.
b Estimated heritability, h2 (SE).
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the ENIGMA rsfMRI pipeline and the spatial patterns of resting state

networks derived from BrainMap database. We show that about

approximately 31% of the variance in functional connectivity may be

explained by additive genetic contribution. We performed these ana-

lyses in two datasets collected 10 years using a conventional and

state-of-the-art connectivity protocols. We observed good consis-

tency in the magnitude of genetic influences on resting state connec-

tivity. Building on prior work in individual cohorts, this experiment

provides direct evidence that connectivity within the DMN and other

intrinsic brain networks is influenced by genetic factors. Establishing

heritability of resting state functional connectivity provides important

information to support the use of these measures as phenotypes for

genetic studies or functionally characterize genes influencing brain

functions in health and illness. Showing significant heritability is the

first step before these metrics they can be considered an intermediate

phenotype or endophenotype for neurological or mental illnesses

(Glahn et al., 2012). Overall, our study demonstrated robust estimates

of additive genetic variability for functional connectivity measure-

ments and showed a good agreement between two independent

cohorts and with the previously reported values (Glahn et al., 2010).

We showed that functional connectivity measurements showed a

consistent heritability pattern in two independent cohorts collected

10 years apart and using different recruitment and imaging protocols.

Some discrepancies in heritability estimates and ACE decomposition

are expected between cohorts as different as the ones chosen, and

some proportion of the differences in heritability are likely to be real.

For instance, the GOBS study recruited members of the extended

families, aged 18–80 years; HCP collected data from twins and

siblings in a narrow age range to minimize age-related phenotypic var-

iance and the age-by-genotype interaction (Batouli et al., 2013;

Brouwer et al., 2012; Glahn et al., 2013). GOBS data was collected

with the conventional rsfMRI protocol; HCP data was collected using

a state-of-art temporal and spatial resolution enabled by advanced

gradient system. Despite these differences, we still observed very sim-

ilar heritability values and the pattern between two datasets. The find-

ings are consistent with prior studies that showed similarities in

heritability values and pattern between HCP and conventional data-

sets. For instance, the spatial pattern of heritability values for the frac-

tional anisotropy of water diffusion calculated from aggregated

ENIGMA datasets that included GOBS data was predictive of the heri-

tability pattern in HCP data (Kochunov, Jahanshad, et al., 2015a). Like-

wise, there was an excellent agreement in the genetic relationship

between processing speed and white matter integrity measured in

HCP and members of Amish Connectome Project (Kochunov, Thomp-

son, et al., 2015b). Overall, these data show that the resting state con-

nectivity metrics are under a modest-to-moderate genetic control and

its heritability is stable across populations and in terms of image acqui-

sition, in legacy, and state-of-the art samples.

4.1 | Relationship to other analysis approaches

The ENIGMA-rsfMRI pipeline is uni-modal and is based on a population-

based brain template. Prior works on rsfMRI analysis are generally multi-

modal and use functional and structural data (Calhoun et al., 2017). In

such approaches, a spatial transformation of the functional data to the

structural image for each subject is followed by nonlinear registration of

the structural data to an anatomic template. The transformation field is

then applied to the rsfMRI data for regressions of global connectivity sig-

nals and ROI analyses in a common anatomical frame. Arguably, a disad-

vantage of this approach is that spatial distortions in rsfMRI data may

prevent consistent registration with the structural data unless corrected

for. Calhoun et al. examined the unimodal and multimodal approaches in

four datasets and registering functional data to a population template led

to superior registration quality, lower inter-subject variance, and higher

statistical significance when compared with the multimodal approach

(Calhoun, et al., 2017). This problem is likely to be encountered in

ENIGMA studies that aggregate data collected over the past 20 years.

The site-to-site variability in the quality of the T1w data and the variance

in registration quality between T1w and rsfMRI images is likely be more

prominent for ENIGMA studies and therefore poses a risk of influencing

the results of the overall rsfMRI analysis. Likewise, we showed that the

use of a deformable template improved registration for individual EPI

images, including ventricular overlap, when compared with the standard

ICBM-152 template (Adhikari et al., 2017).

Our analysis pipeline incorporates the MP-PCA denoising algo-

rithm that improves SNR/tSNR properties of the time series data

(Veraart, Fieremans, et al., 2016a; Veraart, Novikov, et al., 2016b),

with no loss of spatial resolution of the image. MP-PCA removes ther-

mal noise artifacts that can have prominent site-specific spatial pat-

terns. In a multi-site study of diffusion MRI findings in schizophrenia,

the MP-PCA approach improved the agreement in findings across

three sites and improved the overall agreement with the previous

meta-analytic findings in this disorder (Kochunov et al., 2018). The

FIGURE 3 Heritability estimates for functional connectivity measured

in the GOBS are presented as a scatter versus heritability estimates
calculated in the HCP cohorts using seed-based analysis approach
(a) and dual regression analysis approach (b). The line represents the
result of the linear correlation between two cohorts that reported a
positive and significant correlation [r = .378, p = .023 for seed-based
approach (a) and r = .497, p = .002 for dual regression approach (b)]
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MP-PCA improvements were especially prominent in the HCP data.

The HCP protocol pushed the limits of spatial and temporal resolution

of the rsfMRI but the tSNR values in this dataset (~21) were less than

the suggested minimum tSNR (30–40) (Murphy, Bodurka, & Bandet-

tini, 2007). MP-PCA approach improved the average tSNR value to

40 without introduction of spatial or temporal smoothing that may

have partially negated the advantages of this protocol.

The ENIGMA rsfMRI pipeline is built using NIH-supported

software—AFNI—that is freely available to both noncommercial and

commercial users. Free-license software opens ENIGMA collaboration

to commercial entities such as pharmacological companies. It is a

unimodal analysis workflow designed for consistent retrospective ana-

lyses of state-of-the-art and legacy data. The pipeline incorporates

stringent quality assurance (QA) and quality control steps. It incorpo-

rates traditional QA measurements to detect and censor motion and

other types artifacts that are detectable visually. It also uses novel

analysis of the heterogeneity of the thermal noise within imaging vol-

ume to enable identification of more subtle artifacts such as time-and-

space related variability in coil sensitivity profiles. Efforts are now

ongoing to compare the performance of ENIGMA rsfMRI analysis

pipeline across multiple cohorts with other rsfMRI analysis pipelines.

4.2 | Limitations

Reduction of methodological differences between two cohorts through

regression of thermal noise and harmonization analyses should lead to an

overall decrease in the noise (random environment) component of the

variance and improved agreement in heritability values. However, this

may also lead to an elevation in the shared environmental variance if

some or all family members tend to be scanned on the same day. The

impact of common environmental factors was not evaluated here, in

order to maintain the same design as in the prior study (Glahn et al.,

2010). Moreover, there was a good agreement between heritability esti-

mates in GOBS cohort where data collection for extended family mem-

bers were separated in time and HCP (twin data were collected on the

same day). This suggests that the effects of elevation in common envi-

ronmental variance due to improvements in SNR and homogenization

approaches are likely to be minor.

This study was aimed at replicating previous heritability findings

using a novel resting state analysis workflow. Additional work will be

needed to formally evaluate the differences in the heritability

between two cohorts.
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