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Abstract

Mitochondria are functionally versatile organelles. In addition to their conventional role of 

meeting the cell’s energy requirements, mitochondria also actively regulate innate immune 

responses against infectious and sterile insults. Components of mitochondria, when released or 

exposed in response to dysfunction or damage, can be directly recognized by receptors of the 

innate immune system and trigger an immune response. In addition, despite initiation that may be 

independent from mitochondria, numerous innate immune responses are still subject to 

mitochondrial regulation as discrete steps of their signaling cascades occur on mitochondria or 

require mitochondrial components. Finally, mitochondrial metabolites and the metabolic state of 

the mitochondria within an innate immune cell modulate the precise immune response and shape 

the direction and character of that cell’s response to stimuli. Together, these pathways result in a 

nuanced and very specific regulation of innate immune responses by mitochondria

Introduction:

Theories that mitochondria evolved from an independent prokaryotic organism to a 

symbiont residing within the cytosol of the eukaryotic cell suggest that this affiliation was to 

mutual benefit, with the mitochondrion generating energy for the cell and the cell providing 

reagents and security for the mitochondrion (1,2). This theory of a bacterial origin for 

mitochondria fits nicely with findings that the unique components of mitochondria, when 

exposed, reveal their prokaryotic history and are recognized as foreign by innate immune 

receptors triggering an inflammatory response. Intriguingly, more recent studies suggest that 

the relevance of mitochondria to the innate immune response extends beyond their 

identification as invading bacteria and instead profoundly impact many separate aspects of 

innate immune responses.

Mitochondria are dynamic organelles with inner and outer membranes and an internal 

negatively charged matrix. Their most described function is to provide energy for the cell as 

the site of oxidative phosphorylation, generating 32 molecules of ATP per molecule of 

glucose. The vast majority of mitochondrial proteins are encoded by the nuclear DNA, 

transcribed and translated by the eukaryotic machinery, and then transported to their 

functional sites in the mitochondrion (3). Mitochondria do have their own circular DNA that 

encodes thirteen proteins necessary for oxidative phosphorylation along with the ribosomal 
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and transfer RNAs needed for their translation (4). While a basic view of mitochondria may 

be to regard them as simply a source of ATP, the paths by which ATP is made as well as the 

other functions and activities of mitochondria are more complex with significant impacts 

upon the cell and the organism. Mitochondria are neither static nor discrete structures. In 

response to the conditions within the cell and both the state of and the demands being placed 

on the mitochondrion, mitochondria undergo fusion to combine with other mitochondria or 

fission to separate and form new mitochondria (5, 6). The balance of fusion and fission 

events has relevance beyond just determining the number of mitochondria to a cell as these 

processes also impact calcium regulation, generation of reactive oxygen species, and impact 

oxidative phosphorylation (7).

Generation of ATP by mitochondria requires the negatively charged matrix that allows the 

passage of electrons over the electron transport chain, which consists of specialized 

complexes arranged on the inner mitochondrial membrane. Disruption of the negative charge 

of the matrix occurs in response to a number of stressors including antioxidants, oxidative 

phosphorylation substrates, and membrane uncoupling agents. This loss of negative potential 

results in a failure of ATP production and the generation and release of reactive oxygen 

species (ROS) that have the potential to cause widespread damage. Further, dysfunctional 

mitochondria can lose membrane integrity, allowing previously sequestered mitochondrial 

components to leak into the cytosol or out of damaged cells to the circulation (8–10). To 

limit the negative effects of ROS, damaged and dysfunctional mitochondria are removed 

through a process known as mitophagy (11).

The innate immune response has a critical role in the detection and correction of both 

infectious and sterile insults. The response begins with the recognition of the insult, 

commonly through germline encoded receptors termed pattern recognition receptors (PRRs). 

These receptors bind to conserved features of microbes that identify them as foreign, or to 

endogenous molecules with specific modifications or in locations that reveal tissue or 

cellular injury (12, 13). This recognition of the insult, with the PRR bound by its specific 

activating ligand, triggers the immune response. While the precise characteristic of that 

immune response reflects both the type of innate immune cell being activated and the 

specific receptor and ligand, in general these innate responses are initiated quickly and also 

quickly escalate and alert additional cells and tissues of the disorder. These early signals of 

the initial innate immune response have effects throughout the organism, driving recruitment 

of additional innate immune cells to the site, alerting and activating the more specific 

adaptive immune response, and triggering the production of molecules needed for 

inflammation and repair by numerous tissues (14–18).

Both structural and functional aspects of the mitochondria can impact the innate immune 

response. There are two broad categories by which this occurs: first, by directly activating 

the immune response and second, by modulating a response. Direct activation commonly 

reflects mitochondrial damage or pathology while modulation can occur as a byproduct of 

normal mitochondrial functions and processes. In this review, we will discuss the current 

literature that defines the interactions between mitochondria and the innate immune 

response.
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Mitochondria derived alarmins of innate immunity:

Pathogen associated molecular patterns, or PAMPs, are conserved features of invading 

organisms that serve to identify these organisms as foreign, while damage associated 

molecular patterns, or DAMPs, are endogenous molecules released or modified by sterile 

insults. Both DAMPs and PAMPs are specifically recognized as alarmins by discrete 

receptors of the innate immune system and trigger the appropriate immune response (12, 

13). Their release by mitochondria is in response to cell stress and loss of homeostasis, 

similar to more typical DAMPs, but the recognition of these alarmins by PRR depends on 

their structural similarity to the PAMPs of invading microbes. In this review, we will refer to 

these alarmins as DAMPs to emphasize their pivotal function as markers of cell stress. The 

DAMPs that are released by mitochondria include the structural phospholipid cardiolipin, n- 

formyl peptides (n-fp), reactive oxygen species (ROS) and mitochondrial DNA (mtDNA). 

While the exact mechanism by which these mitochondrial alarmins are released has not been 

elucidated completely, studies have suggested loss of mitochondrial membrane integrity 

results in the escape of mitochondrial components to the cytosol. There are discrete 

pathways by which the inner and outer mitochondrial membranes are disrupted, through 

sustained opening of a mitochondrial permeability transition (MPT) pore and mitochondrial 

outer membrane permeabilization (MOMP), respectively (19, 20). Despite being recognized 

very early, the details of the structure of the MPT pore as well as the triggers that lead to its 

formation and opening are not yet clear (21). In general, the MPT pore opens and remains 

open after insults to the mitochondrion that are associated with disruption of calcium levels 

or oxidative stress, consistent with the insults believed to be associated with release of 

mitochondrial DAMPs (22). Similar gaps exist in our knowledge of the structure and 

regulation of MOMP. MOMP has been studied extensively as a trigger for apoptosis, when 

BCL-2 family members induce the formation of pores in the outer mitochondrial membrane 

in response to either death receptors or various cellular or mitochondrial stresses (23). 

However, MOMP has been reported to occur in the absence of cell death, providing a 

potential pathway by which MOMP could be associated with the release of mitochondrial 

contents leading to an innate immune response (24, 25). A recent breakthrough shows the 

large pore induced in the outer mitochondrial membrane during intrinsic apoptosis is 

associated with a herniation of the inner mitochondrial membrane. In the cases where this 

herniated membrane ruptures, mitochondrial DAMPs were released to the cytosol where 

they could be sensed by various PRRs (24). While the exact pathways and pores or channels 

that are associated with the release of mitochondrial alarmins are only beginning to be 

defined, it is clear that after escaping the mitochondrion these molecules are recognized by 

separate receptors and trigger discrete inflammatory pathways that culminate in the 

restoration of normal cellular function.

n-FP:

In a mann r to the initiation of protein translation in prokaryotes, mitochondrial initiation of 

protein translation requires N-formylated methionine (fMet), as mitochondrial translational 

initiation factor 2 can utilize only the formylated form of methionine, while unformylated 

methionine is used specifically for protein elongation (26). This unique characteristic of 

bacterial and mitochondrial proteins was proposed as a potential immune target well before 

the receptors and signaling pathways had been defined (27, 28). In the absence of tissue 
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stress or injury these bacteria-like n-formyl peptides (n-FP) are sequestered within the 

mitochondria. However, during traumatic injury and cell death associated with infection, n-

FP are released and bind specific receptors, formyl peptide receptors (FPRs) that in turn 

recruit immune cells and trigger an extensive inflammatory response as discussed below 

(29–31).

Cardiolipin:

Cardiolipin is a unique phospholipid that was first identified in animal heart tissue and thus 

the family is known as cardiolipins. While the structure of cardiolipin varies, in general 

cardiolipin contains two phosphatidyl groups linked through a glycerol moiety. Cardiolipins 

are found in many prokaryotic membranes but in eukaryotic cells are limited to the 

mitochondrial membranes, primarily the inner mitochondrial membrane during normal 

mitochondrial function (32, 33). Cardiolipin contributes to the structural composition and 

integrity of the mitochondria membrane and constitutes about 20% of the phospholipid 

content of the mitochondrial inner membrane (34–36). In addition to its structural role, 

cardiolipin has numerous non-redundant roles in the mitochondria that reflect its remarkable 

ability to interact via non-covalent bonds with a wide variety of unrelated molecules. This 

unique binding capability allows cardiolipin to serve as a discretely controlled regulator of 

numerous otherwise separate mitochondrial pathways, including mitochondrial dynamics 

(fission and fusion), the import of cargo from cytosol, metabolic functions, innate immune 

responses, ROS generation, and apoptotic signaling (37, 38). These functions of cardiolipin 

occur in its normal environment within mitochondria, while other functions of cardiolipin, in 

particular its ability to drive innate immune responses, occur after its release from or 

externalization on the surface of the mitochondrion during conditions of mitochondrial 

dysfunction, stress, or damage (39). It is in this context that cardiolipin may play a role in 

activation of the NLRP3 inflammasome (40, 41). In a separate pathway, following ischemia/

reperfusion injury, cells release oxidized phospholipids, including cardiolipin, that serve as 

DAMPs and trigger multiple types of innate immune responses (42). In contrast to these pro-

inflammatory roles for exposed or released cardiolipin, externalized cardiolipin has been 

reported to downregulate innate cytokine responses by upregulating mitophagy pathways 

(43, 44).

mtDNA:

Mitochondrial DNA is a circular double strand of approximately 17Kbp that contains 13 

mRNAs that encode the unique proteins of oxidative phosphorylation as well as related 

ribosomal RNAs and tRNAs. Similar to the mitochondrial use of bacterial-like machinery 

for protein translation discussed above, mitochondria DNA has characteristics consistent 

with prokaryotic nucleic acid. Mitochondrial DNA is a small molecule with methylation 

patterns discrete from nuclear DNA and is present at hundreds of copies per cell. Under 

normal conditions, mtDNA is contained within the mitochondrial matrix where 

mitochondria have unique mechanisms to repair DNA damage as well as to preserve genetic 

integrity through the selective amplification of intact copies of mtDNA (45, 46). These 

repair pathways may also modify the mtDNA in such a way to mark it as non-self to innate 

immune sensors. During cell death or mitochondrial damage the mtDNA can be released 

into the cytosol or the circulation where it can be sensed by a number of innate immune 
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receptors and trigger inflammatory responses as detailed below. This release of mtDNA 

associated with inflammation is supported by the finding of elevated levels of circulating 

mtDNA in patients suffering from trauma, rheumatoid arthritis, and femur fracture as well as 

in animal models of trauma and shock (47–51).

mROS:

Mitochondrial reactive oxygen species (mROS) generation occurs via the electron transport 

chain (ETC) in response to altered substrate availability, hypoxia, or other abnormal 

mitochondrial or cellular conditions (52, 53). Electrons that leak from the matrix ETC chain 

at complex I-III react with oxygen to result in superoxide radicals. While it has long been 

held that these reactive molecules augment the immune response by attacking intracellular 

pathogens (54, 55), it is now established that their relevance to the immune response is 

significantly more extensive, as mROS can modify innate cellular responses both directly 

and indirectly. mROS has been shown to directly modify cellular functions through their 

interaction with the pivotal transcription factors HIF-1α (hypoxia-inducible factor-1α) and 

NFKB (nuclear factor KB) (56, 57). Their indirect effects are through their ability to interact 

with and modify other molecules, including mtDNA, that results in heightened sensing by 

innate immune receptors.

Just as the production of mROS is tightly regulated, so is the removal of mROS. Scavenging 

enzymes of the superoxide dismutase family convert superoxide to hydrogen peroxide, 

which is then further reduced to water by catalase, glutathione peroxidases, and 

peroxidredoxins (58–60). Uncoupling proteins downregulate mROS production by 

decreasing the mitochondrial membrane potential (61). Finally, removal of mROS-producing 

damaged mitochondria by mitophagy reduces mROS and downregulates innate immune 

responses, while blockade of mitophagy is associated with an increase in inflammation (62).

Additional mitochondrial alarmins include ATP that is expelled extracellularly by apoptotic 

or necrotic cells and sensed through P2X7 purinergic receptors to trigger innate immune 

responses including the NLRP3 inflammasome (63, 64). Mitochondrial transcription factor 

A (TFAM) is structurally homologous to the nuclear alarmin molecule high mobility group 

box protein 1 (HMGB1), and is released from damaged mitochondria (65). TFAM have been 

reported to activate dendritic cell subsets, amplify TLR9 signaling, and trigger inflammatory 

cytokine release (66, 67).

Mitochondria and innate immune responses:

The many DAMPs of mitochondria can be released into the cytosol or extracellularly 

following infection, injury, or loss of cellular or mitochondrial homeostasis. These DAMPs 

can then be sensed by the numerous PRRs, which are germline encoded receptors that 

recognize the unique signatures of PAMPs and DAMPs and upon activation trigger the 

innate immune response (68). Based on their structures, locations, and functional 

specificities, PRRs are separated into discrete families that include the membrane bound 

Toll-like receptors (TLRs) and C-type lectin receptors (CLRs) and the cytosolic NOD 

(nucleotide-binding oligomerization domain)-like receptors (NLRs) and RIG (retinoic acid-

inducible gene)-l-like receptors (RLRs). Upon activation, these receptors trigger the release 
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of cytokines and chemokines that recruit and activate other immune cells as well as regulate 

organism-wide responses to the specific insult that lead to (69).

Mitochondria and TLR activation and signaling:

The TLRs are a PRR, first identified in Drosophila, that are activated by ligand binding to 

their carboxy-terminal leucine rich repeat (LRR). Ten TLRs have been identified in humans, 

with TLRs 1,2, 4, 5, 6, and 10 found on the cell surface and TRLs 3, 7, 8, and 9 spanning the 

endosomal membrane. Activation of TLRs results in signaling through the p38 and MAPK 

pathways with the resultant activation and nuclear localization of NFKB triggering the 

expression of pro-inflammatory genes. While TLRs are activated by pathogens and non-

mitochondrial DAMPs, a number have been shown to be activated by mitochondrial 

components. For example, mtDNA, with its prokaryote like structure, can be recognized by 

TLR9 (Figure 1) (47). However, mitochondria are implicated in TLR signaling beyond 

acting as direct activators. Activated TLRs can signal through TRAF6 (tumor necrosis factor 

receptor-associated factor 6), which translocates to the mitochondrion and ubiquitinates the 

mitochondrial complex l-associated protein ECSIT (evolutionarily conserved signaling 

intermediate in Toll pathways). This causes the mitochondrion to both move to the 

phagosome and enhance mROS production, resulting in direct antimicrobial killing (55, 70). 

Additional studies have shown relevance for mitochondria in the signaling pathways 

downstream of TLR activation. Early studies linked LPS- (lipopolysaccharide) induced ROS 

to TLR4 signaling and dsRNA-induced ROS to TLR3 signaling, with loss of ROS associated 

with downregulation of NFKB activation (71). Subsequent studies linked ROS to p38 

signaling activation, with the ROS generated by TLR4 activation necessary for TRAF6 and 

ASK1 (apoptosis signal-regulating kinase 1) to trigger p38, but not NFҡB signals (72). More 

recently, NFҡB signaling following TLR4 activation has been confirmed to be dependent 

upon mitochondria, although not specifically ROS, with TLR4 activation drives the 

interaction of mitochondrial ECSIT with both TRAF6 and TAK1 (transforming growth 

factor- β-activated kinase 1), and that this interaction is required for downstream NFKB 

signaling (73). TLR7 signaling by viral nucleic acid is also modulated by mitochondrial 

components as the mitochondrial outer membrane ubiquitin ligase MARCH5 (membrane-

associated ring finger (C3HC4) 5) has been shown to interact with and ubiquitinate TANK 

(TRAF family member- associated NFҡB activator) in response to TLR7 stimuli. This 

interaction prevents TANK from inhibiting TRAF6 and leads to enhanced TLR7-induced 

responses (74).

The interactions between TLR signals and mitochondria is bidirectional, as TLR activation 

impacts mitochondrial characteristics as well. Mitochondrial gene expression is upregulated 

downstream of both TLR2 and TLR4 through activity of members of the PPAR-γ 
coactivator family (75, 76). Separate studies have shown upregulation of mtDNA 

downstream of TLR2 and TLR4 activation through functions of the transcription factors 

NFҡB, CREB (CAMP response element binding protein), NRF2 (nuclear factor erythroid 2-

related factor 2), IRF (interferon regulatory factor)3, and IRF7 (77, 78). Thus, mitochondria 

can both directly activate TLR pathways and also modulate their signaling to regulate the 

resulting innate immune response.
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Mitochondria and the NLR family:

Unlike the membrane-associated TLRs, the NLR family of pattern recognition receptors are 

localized in the cytoplasm of the cell where they are activated by PAMPs and/or DAMPs. 

Most members of the NLR family have a tripartite domain structure: carboxy-terminal LRR, 

a central nucleotide binding domain (NBD), and a variable amino- terminal domain that is 

involved in protein-protein interactions. NLRs are divided into subfamilies by the class of 

amino-terminal domain: an acidic transactivation domain (AD), a baculoviral inhibitory 

repeat (BIR)-like domain, a caspase recruitment domain (CARD), a pyrin domain, or a 

domain of unknown function. A unique feature of some NLRs is, upon activation, their 

formation of a multi-protein complex termed an “inflammasome”. The core structure of an 

inflammasome is the NLR as the sensory component, bound at the amino-terminal domain 

to the adaptor ASC (apoptosis-associated speck-like protein containing a CARD), that forms 

a bridge to the CARD domain of pro-caspase-1, which is the inactive pro-enzyme of the 

effector cysteine protease caspase-1. Inflammasome assembly triggers auto-catalysis of pro-

caspase-1 to active caspase-1 that in turn cleaves inactive pro-IL (interleukin)- 1β and pro-

IL-18 to their active, secreted forms that have broad pro-inflammatory effects. Active 

caspase-1 also cleaves gasdermin D that can introduce pores in the cell membrane through 

which IL-1 β and IL-18 are secreted and that can also induce inflammasome-associated 

pyroptotic cell death (79, 80). A number of NLRs have been suggested to form 

inflammasomes that culminate in caspase-1 activation, while some have been reported to 

have inflammasome-independent functions. Thus far, a defined role for mitochondria in 

NLR activation and function has only been confirmed for NLRP3 and NLRX1 as detailed 

below.

NLRP3:

NLRP3 was first described when its mutation was found to be causative to a group of 

autoinflammatory disorders, now collectively known as CAPS (cryopyrin-associated 

periodic syndromes) (81–83). Subsequently, activation of the NLRP3 inflammasome has 

been linked to a wide array of infectious and sterile inflammatory disorders, including but 

not limited to bacterial, viral, and fungal infections, metabolic syndrome, ischemia-

reperfusion injury, atherosclerosis, Alzheimer’s disease, and gout (39). NLRP3 is expressed 

in macrophages, monocytes, dendritic cells, neutrophils, as well as in numerous non-

hematopoietic cells (84). Although NLRP3 is the most studied member of the NLR family, 

significant gaps remain in our understanding of its activation. NLRP3 activation occurs in 

response to two discrete steps, termed priming and activation. While it has been established 

both steps must occur, with priming preceding activation, the precise events that occur 

during each step to allow inflammasome activation to proceed are defined incompletely. In 

priming, an inflammatory stimulus such as TLR activation or binding of a cytokine to a 

receptor signal through the adaptor molecule MyD88 (myeloid differentiation primary 

response 88) or TRIF (TIR-domain-containing adapter- interferon β) with subsequent 

activation of NFKB (85, 86). This induces the upregulation of expression of both NLRP3 and 

pro-1 L-1 β, although increased protein levels are neither sufficient nor required for priming 

to occur (85, 87, 88). Additional steps implicated in priming include multiple post- 

translational modifications to inflammasome components, including the de-ubiquitination 

and phosphorylation of NLRP3 and the ubiquitination and phosphorylation of ASC (87, 89–
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95). The activation step is induced by a wide array of structurally diverse molecules, 

including endogenous and exogenous crystals that require phagocytosis, ATP via the cell 

surface P2X7 receptor, and pathogen-derived toxins. As none of these activators has been 

shown to directly associate with NLRP3, studies have focused on the identification of a final 

common pathway downstream of these divergent stimuli to determine the mechanism by 

which the NLRP3 inflammasome is activated. These studies have led directly to the 

mitochondrion, showing that activated NLRP3 inflammasomes co-localize with 

mitochondria (96). Recent work by our group has shown the use of mitochondria as a 

scaffold for inflammasome assembly is initiated at priming, as both NLRP3 and pro-

caspase-1 move to the mitochondrion at priming, with the movement of the adaptor 

molecule ASC following in response to the activating stimulus (97). While additional studies 

have confirmed the co-localization of the NLRP3 inflammasome with mitochondria, the 

mechanism by which it occurs is less clear, with studies separately linking it to MAVS 

(mitochondrial antiviral signaling protein), cardiolipin, or c-FLIP (c-FLICE-like inhibitory 

protein) (39, 40, 98–100). The role of MAVS is intriguing as instead of serving as a common 

mediator for all NLRP3 inflammasome activators, it appears to be necessary for only a 

subset of NLRP3 activators. The initial report describing a role for MAVS in NLRP3 

activation showed that only the non-crystalline subset of NLRP3 activators required MAVS, 

as activation of NLRP3 by crystalline activators did not require or involve MAVS (98). A 

subsequent study confirmed a role for MAVS in NLRP3 activation by Sendai virus but did 

not explore further the type of agonist driving the response (99). Additional studies will be 

needed to determine what function MAVS provides specifically to the non-crystalline 

activators of NRLP3 and to determine if a separate agent serves a parallel role for the 

crystalline activators of NLRP3.

In the same study that first showed the co-localization of NLRP3 inflammasomes with 

mitochondria the authors also showed that the activation of NLRP3 was associated with both 

mitochondrial damage and the release of mROS, and that these were required for NLRP3 

activation (96). Subsequent studies have confirmed mROS is induced by most but not all 

activators of NLRP3, although the induction of mitochondrial dysfunction has still been 

shown to be required for some of these ROS-independent activators (40, 101–106). This is 

also consistent with studies showing inhibition of mitophagy, the removal of damaged or 

dysfunctional mitochondria, augments activation of NLPR3 (62, 96). While the source of the 

mitochondrial damage has not been determined, one possible mechanism is that the elevated 

cytosolic calcium required during NLRP3 inflammasome activation is taken up by 

mitochondria, overloading the mitochondria causing loss of negative potential in the 

mitochondrial matrix and resulting in the mitochondrial dysfunction that drives NLRP3 

activation.

The relevance of mitochondria to NLRP3 activation extends beyond this role for mROS and 

mitochondrial dysfunction as well as its function as a scaffold upon which the NLRP3 

inflammasome assembles. In contrast to the various extra-cellular activators the result in 

NLRP3 activation, specific components of mitochondria have been suggested to directly 

activate NLRP3. An early study by Dr. Choi’s group showed mtDNA was released into the 

cytosol during NLRP3 activation downstream of mROS release (101). This finding was built 

on by subsequent work by Dr. Arditi’s group that showed mtDNA undergoes oxidation 
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during the mitochondrial dysfunction associated with NLRP3 activation and that this 

oxidized mtDNA bound to and activated the NLRP3 inflammasome, suggesting mtDNA 

may be the ligand that directly drives NLRP3 activation (102). Studies from our group 

showed a different mitochondrial component, cardiolipin, both tethers NLRP3 to the 

mitochondria and triggers the activation of NLRP3 (40). Future studies will be necessary to 

determine the relative roles of discrete mitochondrial factors in the subcellular localization 

and activation of NLRP3.

NLRX1:

That the NLR family member NLRX1 interacts with mitochondria was initially suggested 

based on its novel amino-terminal domain. Rather than the pyrin or CARD domains found in 

other NLR family members, the NLRX1 protein begins with a putative mitochondrial 

targeting sequence. NLRX1 was confirmed experimentally to localize to the mitochondria 

but its exact mitochondrial location and its function have been less straight forward to 

determine (107, 108). Initially, NLRX1 was shown to be a negative regulator of type I 

interferon production by binding to MAVS, preventing the interaction of MAVS and RIG-I 

(retinoic acid inducible gene-l), and thereby blocking the downstream activation of IRF3 and 

NFkB (107). This negative regulatory role was supported by two subsequent studies, the first 

of which showed NLRX1 blocked the inflammatory response to DNA viruses by binding to 

STING (stimulator of interferon gene) and preventing downstream cGAS (cyclic GAMP 

synthase) signaling (109). The second confirmatory study reported the loss of NLRX1 was 

associated with enhanced NFKB signals, consistent with NLRX1 being a negative regulator of 

inflammation (110). In contrast, a separate report using overexpressed NLRX1 showed that 

rather than inhibiting interferon signaling, NLRX1 increased NFKB signaling downstream of 

Shigella flexneri infection (108). In support of NLRX1 not downregulating the inflammatory 

response, NLRX1-deficient fibroblasts and macrophages had no defect in interferon 

responses to Sendai virus and NLRPXI-deficient mice had no identifiable defects in early 

signals to influenza A virus in vivo (111). A second study supported this independence of 

anti-viral signaling from NLRX1 (112). A recent study may have found the explanation for 

these seemingly conflicting functions, as NLRX1 was shown to simultaneously promote the 

upregulation of IRF1 but limit the formation of IRF3 dimers, consistent with a nuanced 

regulatory function for NLRX1 in innate immune responses with potentially both pro- and 

anti-inflammatory aspects (113). However, controversy relating to NLRX1 persists: while 

initial studies described the localization of NLRX1 on the outer mitochondrial membrane, 

NLRX1 has more recently been described as undergoing translocation into the 

mitochondrial matrix in a pathway dependent upon the negative potential within the 

mitochondrial matrix (107, 114). With this matrix localization NLRX1 was found to interact 

with a protein of the respiratory chain, potentially explaining the modulation of ROS 

described with NLRX1 overexpression, but was subsequently and separately shown instead 

to interact with mitochondrial TUFM (Tu translation elongation factor) to regulate viral-

induced autophagy (108, 114–116). In addition to these conflicting reports as to the location 

of NLRX1 and its impact on interferon signals, the relevance of NLRX1 in regulating ROS 

is similarly unclear. While several studies have shown NLRX1 driving increased ROS in 

response to inflammatory stimuli, a conflicting report described the loss of NLRX1 was 

associated with an increase in oxygen consumption, consistent with a downregulatory rather 
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than upregulatory role for NLRX1 (108, 111, 115, 117, 118). One possible explanation for 

the divergent findings of NLRX1 in these studies is that NLRX1 may impact uncoupling of 

oxidative phosphorylation, resulting in a disconnect between oxygen consumption, ATP 

generation, and ROS production (119). Additional studies will be needed to confirm if a 

possible role in uncoupling explains these seemingly discrepant results, to expand on how 

NLRX1 balances up- and down-regulation of interferons, and also to determine how NLRX1 

modulates outer mitochondrial membrane components like MAVS if its location is 

confirmed within the mitochondrial matrix.

Mitochondria and RLRs:

As viral genomes can undergo amplification in the cytoplasm of host cell, they are often 

inaccessible to detection by TLRs. Intact type I interferon responses to viral infections in 

cells lacking the sole TLR3 adaptor TRIF suggested a TLR-independent receptor pathway 

may exist that also generated these potent anti-viral cytokines (120). The quest to identify 

these sensors of viral infections lead to the identification of the RNA helicase retinoic acid 

inducible protein I (RIG-I). RIG-I, along with the other RLR (RIG-l-like receptor) family 

members, melanoma differentiation associated gene 5 (MDA5), and laboratory of genetics 

and physiology 2 (LGP2) are cytosolic proteins that sense viral RNA (121). The RLRs share 

a conserved domain structure with a pair of amino-terminal CARD domains (absent in 

LGP2), a central RNA helicase domain, and a carboxy-terminal regulatory domain. RIG-I 

and MDA5 bind cytosolic viral RNA and, through the adaptor MAVS, trigger the release of 

type I interferons (122–125). RIG-I recognizes the unique 5’-phosphorylated blunt ends of 

viral genomic RNA while MDA5 binds long dsRNA (126–128). The function of LGP2 

seems to be to augment these RIG-I or MDA5-triggered responses (129–133).

As noted, RLR signaling require MAVS, a 540 amino acid protein with three domains: an 

amino-terminal CARD, a proline rich central domain, and a carboxy-terminal 

transmembrane portion. The transmembrane domain anchors MAVS primarily to the 

mitochondrial outer membrane, but MAVS is also inserted within, and can signal from, the 

mitochondrial associated membranes, the endoplasmic reticulum, and peroxisomes (134, 

135). RIG-I or MDA5, activated by their nucleic acid ligands, bind to and activate MAVS 

via CARD-CARD interactions, triggering polymerization of MAVS into prion-like 

structures that are required for it to signal downstream (136, 137). MAVS then complexes 

the cytoplasmic kinases TBK1 (Tank binding kinase 1) and ΙΚΚε (IKB kinase-ε) resulting 

in activation of the transcription factors IRF3, IRF7 and NFKB and upregulating the 

transcription of type I interferons, interferon inducible genes and proinflammatory cytokines 

(136, 138). This activation pathway is regulated through extensive post-translational 

modifications, including ubiquitination and phosphorylation at each step of activation (139–

143). The mitochondrion itself also significantly impacts and regulates the activation of 

MAVS. MFN2 (mitofusin 2), a mitochondrial GTPase that, along with MFN1 and OPA1, 

regulates mitochondrial fusion, was shown to inhibit RLR signaling by binding to MAVS 

and preventing CARD dimerization (144). Despite significant homology between MFN2 and 

MFN1, in contrast to MFN2, MFN1 was found to enhance MAVS signaling (145, 146). 

Additional proteins that have been suggested to serve as negative regulators of MAVS are 

NLRX1, gC1qR (globular head domain of complement component 1q receptor), and PLK1 
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(Polo-like kinase 1) (107, 147, 148). The negative membrane potential of the mitochondria 

has also been linked to MAVS signaling as dissipation of that potential abrogated RLR 

signaling (149). ROS have been shown in two studies to regulate RLR signaling, first that 

the increase in ROS resulting from the blockade of autophagy upregulates RLR signaling 

and subsequently that MAVS protein expression, and thereby MAVS signaling, is dependent 

upon ROS (150, 151). Despite these important findings, the mechanistic details as to the 

activation, regulation, and signaling of these pathways remain to be determined.

Mitochondria and cGAS-STING pathways:

Although DNA was hypothesized to be immunogenic over a century ago, the sensors and 

immunologic pathways activated by cytosolic DNA remain only partially characterized 

(152). STING (stimulator of interferon genes) was identified ten years ago as pivotal in the 

release of type I interferons (105, 153, 154). This activation of STING was found to be in 

response to cytosolic DNA, and while more commonly considered to be of nuclear or 

microbial sources, this activation is also induced by mitochondrial DNA that can be released 

during apoptosis or other conditions of mitochondrial damage and dysfunction (155–161). 

STING is not the sensor of cytoplasmic DNA but rather an adaptor that links the activated 

receptor to downstream inflammatory gene upregulation. Cytosolic DNA binds to cGAS 

(cyclic GMP (guanosine monophosphate) synthase) and induces a change in cGAS 

conformation that activates cGAS to catalyze GTP and ATP to the second messenger 

cGAMP (cyclic GMP-AMP) that then binds to and activates STING (162–167). This 

binding induces a conformational change in STING, triggering its translocation from the ER 

to the Golgi apparatus (153, 166, 168, 169). This movement to the Golgi activates STING, in 

turn activating TBK1 and IKK which phosphorylate and activate the transcription factors 

IRF3 and NFҠB. These transcription factors move to the nucleus and drive type I interferon 

and proinflammatory cytokine production (170, 171). Thus, any mitochondrial event that 

results in the leaking of mtDNA can stimulate the cGAS-STING pathway, resulting in a 

potent innate inflammatory response.

Mitochondria and FPR signaling:

Formyl peptide receptors (FPR) are a family of G protein coupled receptors expressed as 

transmembrane proteins on the surface of many hematopoietic as well as non-hematopoietic 

cells (172). They were first described on neutrophils and have been studied most extensively 

in regulating neutrophil migration and function (172, 173). These receptors are activated by 

n-FP, peptides produced by microbes or mitochondria that contain an amino-terminal 

formylated methionine (fMet) (27, 28). There are three family members in humans, FPR1, 

FPR2, and FPR3, with FPR1 the best characterized. FPR1 and FPR2 share significant 

sequence homology, particularly for the cytoplasmic signaling domains (174, 175). Both 

FPR1 and FPR2 bind n-FP, although with different binding specificity as FPR1 and FPR2 

preferentially bind shorter and longer peptides, respectively (176, 177). While the other 

innate immune pathways induced by mitochondrial DAMPs discussed in this review 

predominantly result in inflammatory cytokine release, the interaction of n-FP with FPRs 

primarily triggers migration and neutrophil activation (178, 179). The relevance of FPRs to 

disease was confirmed by studies showing circulating mitochondrial DAMPs in patients 

with trauma-associated systemic inflammatory response syndrome with mechanistic animal 
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studies confirming neutrophil migration to mitochondrial DAMPs required FPR1 (49, 180, 

181). The intracellular signaling downstream of FPR1 activation starts with G-protein 

dissociation of the α and βγ subunits. Activation of phospholipases drives the generation of 

diacylglycerol and inositol triphosphate, triggering the release of calcium from the ER to the 

cytosol that culminates in ROS production (182). Parallel activation of kinase pathways 

results in signals necessary for cytoskeletal organization and contribute to ROS production 

and neutrophil activation (183). FPR1 has been shown to function in other innate immune 

cells, stimulating inflammatory cytokine release from monocytes and regulating the 

maturation and migration of dendritic cells (184, 185).

Thus, numerous components of the mitochondria can be released and trigger an array of 

inflammatory receptors and signaling pathways. These are summarized in Table 1.

Mitochondrial metabolism and innate immunity:

The focus of this section is the specific regulation of innate immune pathways by 

mitochondrial metabolism. For a broader discussion on, and insight into, immune regulation 

by metabolism the reader is referred to a recent in-depth review (186).

Mitochondria use oxidative phosphorylation via the electron transport chain (ETC) and the 

tricarboxylic acid (TCA) cycle to generate ATP for cellular functions. The electron transport 

chain consists of five multiprotein complexes on the inner mitochondrial membrane. 

Electrons are donated from NADH to complex I or FADH2 to complex II (also known as 

succinate dehydrogenase) and transferred through coenzyme Q, complex III, cytochrome C, 

complex IV, to complex V (also known as ATP synthase) which generates ATP from ADP. 

The TCA cycle, responsible for the majority of ATP production, progresses in concert, 

regenerating NADH and FADH2 to maintain electron transport. Under normal conditions a 

small amount of electrons escape the ETC to combine with oxygen and form oxygen 

radicals, collectively known as reactive oxygen species (ROS) (Figure 2A) (187–189).

In the TCA cycle, fatty acids and pyruvate are brought into the mitochondrion and oxidized 

to acetyl-CoA which enters the TCA cycle through combining with oxaloacetate to form 

citrate. Citrate is oxidized to continue the cycle, leading to regeneration of NADH and 

FADH2 for the ETC and then back to oxaloacetate to continue the cycle (187–189). 

Perturbations to the ETC, TCA cycle, and TCA cycle metabolites have impacts upon wider 

immune cell function and respon.

Activated macrophanges manipulate the TCA cycle and ETC to modulate their immue 

function (190, 191). Inflammatory (M1), but not anti-inflammatory (M2) macrophages, have 

what is referred to as a “broken” TCA cycle (192). Down regulation of the TCA enzyme 

isocitrate dehydrogenase and upregulation of immune-responsive gene 1 protein (IRG1) 

blocks TCA progression and result in the conversion of accumulating citrate to itaconate 

(Figure 2B) (193, 194). Itaconate has direct antimicrobial functions that augment the innate 

immune response, but also inhibits complex II (also known as succinate dehydrogenase), 

preventing succinate oxidation (195–197). This results in reverse electron transport back 

down the ETC; associated increased ROS stabilizes the transcription factor HIF-1α that 

enhances the inflammatory response (198, 199). Interference with the TCA cycle in M1 
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macrophages blocks the production of ATP, consistent with the finding that M1 

macrophages rely on glycolysis for energy production while M2 macrophages generate ATP 

with the TCA cycle (194, 200–202). Indeed, additional studies have shown that differential 

stimuli of innate immune cells trigger unique metabolic signatures necessary for subsequent 

immune function (203, 204).

Concluding remarks:

From their relatively humble beginnings as ancient bacteria, mitochondria have established 

themselves as regulators of sweeping aspects of mammalian function at both the cellular and 

organism level. This regulation extends well beyond simply providing critical bioenergetics 

and includes, but is not limited to, precise and nuanced control of innate immune activation 

and signaling. The advances in our understanding of the importance of mitochondria to the 

innate immune response along with technical advances in our ability to study the 

mitochondria are likely to reveal additional novel pathways through which these seemingly 

discrete systems are in fact intertwined.
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Abbrevations:

PAMP Pathogen Associated Molecular Pattern

DAMP Damage Associated Molecular Pattern

PRRs Pathogen Recognition Receptors

ROS Reactive Oxygen Species

TLR Toll Like Receptor

RLR Retinoic acid Inducible Gene like Receptor

NOD nucleotide-binding oligomerization domain

NLR NOD like receptor

ATP Adenosine Tri-Phosphate

MFN1/2 Mitofusin

RIG-I Retinoic acid Inducible Gene I

MAVS Mitochondrial Anti-Viral Signaling

ASC Apoptosis associated Speck like protein containing CARD

ETC Electron Transport Chain
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ESCIT Evolutionarily Conserved Signaling Intermediate in the Toll pathway

NFҡB Nuclear factor κ B

IRF Interferon Regulatory Factor

IFN Interferon

JNK cJUN NH2- terminal kinase

TANK TRAF family member-associated NFKB activator

TBK1 TANK Binding Kinase 1

cGAS cyclic GMP-AMP Synthase

STING Stimulator of Interferon Gene

CARD Caspase Activation and Recruitment Domain

IL Interleukin

CL Cardiolipin

mROS mitochondrial ROS

mtDNA mitochondrial DNA

TCA Tri-carboxylic acid

NADH Nicotinamide adenine dinucleotide

TFAM Mitochondrial transcription factor A

HMGB1 high mobility group box protein 1

fMet N-formylated methionine

n-fp n-formyl peptides

FPR formyl peptide receptor

CLR C-type lectin receptor

LRR leucine rich repeat

MAPK mitogen-activated protein kinase

TRAF6 tumor necrosis factor receptor-associated factor 6

LPS lipopolysaccharide

ASK1 apoptosis signal-regulating kinase 1

TAK1 transforming growth factor-β-activated kinase 1

MARCH5 membrane-associated ring finger (C3HC4) 5
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PPAR peroxisome proliferator-accelerated receptor

HIF hypoxia-inducible factor

CREB cAMP response element binding protein

NRF2 nuclear factor erythroid 2-related factor 2

NBD nucleotide binding domain

CAPS cryopyrin associated periodic syndromes

MyD88 myeloid differentiation primary response 88

TRIF TIR-domain-containing adapter-inducing interferon β

MAVS mitochondrial antiviral signaling protein

TUFM Tu translation elongation factor

MPT mitochondrial permeability transition

MOMP mitochondrial outer membrane permeabilization
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Figure 1. Mitochondrial regulation of innate immune responses.
Mitochondrial DAMPs activate a number of innate immune pathways. Mitochondrial DNA 

that escapes to the cytosol from damaged mitochondria is recognized by cGAS and signals 

through cGAMP and STING to activate inflammatory gene transcription. Mitochondrial 

DNA leaked from a cell can be phagocytosed and bind endosomal TLR9, triggering 

MyD88-dependent signaling to interferons and pro-inflammatory cytokines. These 

inflammatory cascades also serve to prime the NLRP3 inflammasome and upregulate pro-

lL-1 β. The NLRP3 inflammasome is then activated by oxidized mtDNA from dysfunctional 

mitochondria. Cardiolipin, which moves to the outer mitochondrial membrane in response to 

mitochondrial dysfunction, tethers the NLRP3 inflammasome to the mitochondrion and can 

also trigger its activation. ATP that leaks from a damaged cell can bind to the P2X7 receptor 

on adjacent cells, triggering NLRP3 inflammasome activation within those nearby cells. 

Similarly, formyl peptides are also released by damaged cells and are recognized by FPRs 

on neutrophils and result in neutrophil activation including chemotaxis and the respiratory 

burst. Modulation of innate immune signaling pathways also depend upon mitochondria. 

Mitochondria- independent activation of TLRs results in signals through the mitochondrial 

protein ECSIT, generating mROS and enhancing inflammatory gene output. Activation of 

the RLRs MDA5 and RIG-I by viral RNA is initiated in the cytosol but signaling depends 
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upon the mitochondria, as both MDA5 and RIG-I must bind MAVS on the outer 

mitochondrial membrane to activate their downstream signaling pathways. This results in 

upregulation of interferons and other inflammatory genes. Further, mROS can enhance RLR 

signaling by upregulating MAVS expression on the outer membrane.
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Figure 2. Mitochondrial metabolism in immune cell polarization and innate immune responses.
A. In resting macrophages, glucose and fatty acids are broken down to acetyl CoA that 

enters the TCA cycle. As the TCA cycle progresses, NADH and FADH2 are regenerated as 

electron donors for the ETC. Most electrons in the ETC are used to generate ATP although 

some leak off and combine with oxygen to create ROS. B. Activated M1 macrophages have 

modifications in their metabolism that drives their pro-inflammatory characteristics. (1) M1 

macrophages downregulate isocitrate dehydrogenase, resulting in a block in the cycle 

moving forward from citrate. (2) Citrate accumulates. (3) The metabolic products of citrate 
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are converted to itaconate by IRG1 (immune response gene 1 protein), which is markedly 

upregulated in M1 macrophages (4) In addition to direct antimicrobial effects, itaconate also 

inhibits complex II (also known as succinate dehydrogenase), preventing forward 

progression of the ETC. (5) Reverse transfer of electrons to complex 1 results in increased 

ROS generation. (6) increased ROS results in stabilization of the transcription factor HIF-1a 

with subsequent upregulation of inflammatory gene expression, including the potent 

inflammatory cytokine IL-1 β. C. The metabolic signature of activated M2 macrophages is 

necessary for their function. (1) M2 macrophages have enhanced fatty acid oxidation driving 

the TCA cycle to generate ATP. (2) M2 macrophages also require glycolysis, hydrolyzing 

glucose and using glutamine through the hexosamine pathway to generate uridine 

diphosphate (UDP)-N-acetylglucosamine (UDP- GIcNAc). This production of UDP-

GIcNAc is necessary for (3) glycosolation of immune receptors and (4) the upregulation of 

expression of specific M2 markers.
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Table 1.

Mitochondrial DAMP Sensor Result

n-formyl peptides FPR1, FPR2 Chemotaxis, Oxidative burst

Cardiolipin NLRP3 Inflammasome activation, pro-inflammatory cytokines

mtDNA TLR9, NLRP3, cGAS-STING Type I interferons, pro-inflammatory cytokines, inflammasome activation

ROS NLRP3 Inflammasome activation, pro-inflammatory cytokines

ATP NLRP3 Inflammasome activation, pro-inflammatory cytokines

Transl Res. Author manuscript; available in PMC 2019 December 01.


	Abstract
	Introduction:
	Mitochondria derived alarmins of innate immunity:
	n-FP:
	Cardiolipin:
	mtDNA:
	mROS:
	Mitochondria and innate immune responses:
	Mitochondria and TLR activation and signaling:
	Mitochondria and the NLR family:
	NLRP3:
	NLRX1:
	Mitochondria and RLRs:
	Mitochondria and cGAS-STING pathways:
	Mitochondria and FPR signaling:
	Mitochondrial metabolism and innate immunity:

	Concluding remarks:
	References
	Figure 1.
	Figure 2.
	Table 1.

