REVIEW

Deciphering the Emerging Complexities
of Molecular Mechanisms at GWAS Loci

Maren E. Cannon! and Karen L. Mohlke!,*

Genome-wide association studies (GWASs) have identified thousands of loci associated with hundreds of complex diseases and traits,
and progress is being made toward elucidating the causal variants and genes underlying these associations. Functional characterization
of mechanisms at GWAS loci is a multi-faceted challenge. Challenges include linkage disequilibrium and allelic heterogeneity at each
locus, the noncoding nature of most loci, and the time and cost needed for experimentally evaluating the potential mechanistic con-
tributions of genes and variants. As GWAS sample sizes increase, more loci are identified, and the complexities of individual loci emerge.
Loci can consist of multiple association signals, each of which can reflect the influence of multiple variants, inseparable by association
analyses. Each signal within a locus can influence the same or different target genes. Experimental studies of genes and variants can differ
on the basis of cell type, cellular environment, or other context-specific variables. In this review, we describe the complexity of mech-
anisms at GWAS loci—including multiple signals, multiple variants, and/or multiple genes—and the implications these complexities

hold for experimental study design and interpretation of GWAS mechanisms.

Introduction

Genome-wide association studies (GWASs) have identified
thousands of loci associated with complex traits and dis-
eases.'” Converting GWAS findings into trait or disease in-
sights includes elucidating both molecular mechanisms,
by which genetic variants affect gene expression or func-
tion, and biological mechanisms, by which target genes
affect a trait or disease. Progress is being made to identify
candidate causal variants and genes underlying these asso-
ciations, and complex molecular and biological mecha-
nisms at GWAS loci are appearing. A recent review provides
an excellent framework for the functional dissection of a
genetic risk locus.” Here, we review the emerging complex-
ities of molecular mechanisms at GWAS loci. After
providing background to the challenges, we review three
major questions: (1) How many association signals exist
at a locus? (2) What are the candidate causal variant(s)?
(3) What are the target gene(s)? In each section, we provide
historical context to the question, methods available for
addressing it, and evidence and observations from exam-
ples of GWAS loci that have been mechanistically charac-
terized to date. Identifying mechanisms responsible for
GWAS loci requires an accumulation of consistent evi-
dence for the genes and variants that influence the trait
or disease in humans (Figure 1). We conclude with future
directions for researchers to consider in experimental
design and interpretation of GWAS locus mechanisms.

Background

Complex genetic traits and diseases differ from monogenic
traits and diseases. Monogenic diseases are caused by varia-
tion in single genes, whereas complex genetic traits are influ-
enced by variation in multiple genes and environmental fac-
tors. GWASs have successfully identified thousands of
genomic regions associated with hundreds of complex traits

and diseases. GWAS publications typically report association
results as a list of loci, distinguished from one another for
counting purposes and labeled with a variant and one or
more gene names as signposts. The variant named is typi-
cally the most strongly associated variant and is referred to
asthelead, index, sentinel, or top variant (for other terminol-
ogy, see Table 1). The gene names make referring to loci easier
than using genome positions or variant labels, although the
genes named in GWAS reports have variable evidence sup-
porting their role in the trait or disease. Some GWAS reports
simply indicate the nearest gene; others label loci with
nearby gene(s) that have some annotation or experimental
support. Early GWASs were performed with less densely
spaced sets of variants, so the reported variant might not
have been the strongest associated variant at a locus. More
recent GWASs and GWAS meta-analyses are larger with sam-
ple sizes approaching one million for some traits, and
although GWASs have often been performed in a single pop-
ulation, a growing number of trans-ancestry studies combine
data across populations. For most identified loci, the molec-
ular and biological mechanisms remain to be determined.

Much of the complexity of mechanisms at GWAS loci is
due to allelic heterogeneity, in which multiple alleles act
through the same gene to influence the same phenotype;
allelic heterogeneity is common at monogenic disease-
associated loci. For example, the Cystic Fibrosis Mutation
Database includes >2,000 disease-causing mutations,*
and at least 17 mutations can cause sickle cell disease.”’
As GWAS sample sizes become larger and we delve further
into the mechanisms at GWAS loci, we are learning that
allelic heterogeneity is also prevalent in complex genetic
traits, and this heterogeneity influences both the design
and interpretation of experimental studies.

Allelic heterogeneity of complex traits has been identi-
fied in studies of model organisms. Initially, quantitative
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Figure 1. Process for Evaluating a GWAS Locus

Many approaches exist for identifying mechanisms at GWAS loci.
In this review, we address three major questions at GWAS loci: (1)
How many association signals exist at a locus? (2) What are the
candidate causal variant(s)? (3) What are the target gene(s)? This
flowchart shows how an accumulation of evidence can address
these questions.

trait loci (QTLs) in model organisms were generally
assumed to harbor one causal and multiple passenger al-
leles that affect a single causal gene; however, dissection
of QTLs in inbred organisms has identified evidence of
more than one gene in the same region.®® In addition to
identifying multiple genes at QTLs, fine-mapping efforts
in model organisms have suggested multiple causal vari-
ants at a single locus.*? Thus, genetic studies in model or-
ganisms suggest complex mechanisms that can involve
multiple genes and variants at a single locus.

Experimental characterization of GWAS loci has lagged
behind locus discovery because each locus presents a
multi-faceted challenge. The location of many GWAS var-
iants in noncoding regions'® provides less straightforward
hypotheses for mechanisms than variants within protein-
coding regions. Fach association signal typically consists of
multiple variants in linkage disequilibrium (LD), and the
sheer numbers of candidate variants can pose a challenge
for interpreting annotations and performing experimental
analyses; for example, 6,324 SNPs were reported to be in
high LD (** > 0.5) with 146 lead variants in 100 regions
associated with prostate cancer.'’ Often, the cell type or
tissue of action and the cellular state are unknown, and re-
searchers must choose a cell type or model organism and
potential stimuli to test mechanisms. It can be difficult
to recapitulate the exact conditions of a trait or disease in
model systems to determine the precise mechanistic effects
in the human body. Identification of mechanisms, even in
high throughput, requires a locus-by-locus interpretation,
involving significant time and resources. Despite these
challenges, significant progress has been made to identify
molecular and biological mechanisms for GWAS loci across
many complex diseases and traits.

How Many Association Signals Exist at a Locus?
Historical Context

Candidate-gene and early genome-wide studies identified
multiple variants in the same gene in association with a
complex trait. For example, four rare coding variants in
IFIH1 (MIM: 606951) were associated with lower type 1
diabetes risk,'> and seven coding variants in NOD2
(MIM: 605956) were associated with Crohn disease.!®'*
These examples represent allelic heterogeneity at com-
plex-trait loci. In each example, the coding variants
showed independent evidence of association with the dis-
ease or trait in larger GWAS analyses.'*

Initial GWAS analyses identified genomic regions
harboring variants associated with a given trait or disease
as loci and typically defined distinct loci according to dis-
tance. When trait-associated variants at a locus do not
exhibit strong pairwise LD with each other, they represent
distinct association “signals.” For example, Willer and col-
leagues'® aligned GWAS loci for cholesterol and triglyceride
levels to previously reported causal variants to demonstrate
that the GWAS analysis had identified additional signals of
association at these loci. Early studies had limited statistical
power to detect loci with two or more significant signals.

Methods

Linkage Disequilibrium. To determine the number of signals
at a locus, one strategy is to evaluate pairwise LD between a
lead variant and other variants at the locus. GWAS analyses
can define multiple signals within a genomic region on the
basis of the LD measure r* in a selected reference popula-
tion. GWASs have used different LD thresholds and
different reference panels. For example, a schizophrenia
GWAS used a threshold of r* < 0.1 to identify 128 indepen-
dent signals at 108 loci,'® and a coronary artery disease
GWAS used a threshold of r* < 0.2 to identify 104 indepen-
dent signals at 46 loci;'” both used 1000 Genomes Project
data as a reference panel.

Conditional Analysis. An additional strategy for identi-
fying multiple signals at a locus is conditional association
analysis. An initial lead associated variant is included as a
covariate in association analyses testing other nearby vari-
ants; if a nearby variant remains significant, it is considered
a conditionally distinct additional signal. When individ-
ual-level genotype and trait data are available, stepwise
conditional analysis can be performed by including each
newly identified lead variant as an additional covariate.
When only summary-level association statistics from
GWAS meta-analysis are available, a conditional and joint
analysis option in the Genome-wide Complex Trait Anal-
ysis (GCTA) software'® uses estimated LD from a provided
reference sample to identify conditionally distinct signals.
Significance thresholds for additional signals at a locus are
typically set to account for the number of variants tested,
either within a locus or genome-wide. Limitations of
defining signals on the basis of LD in a reference panel
are that reference panels missing variants analyzed in the
association study can fail to detect signals and that
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Table 1. Definitions of Terms Used in This Review

Monogenic disease or trait
can cause the same disease

Complex disease or trait
environmental factors

Molecular mechanism
Biological mechanism
Allelic heterogeneity

Locus
or 1 Mb of a reported variant

Signal

a disease caused by or a trait influenced by variation in a single gene, although variants in multiple single genes

a disease or trait caused by a combination of variants in many genes; it can be influenced by behavioral and

a mechanism by which a genetic variant affects gene expression or function
a mechanism by which a gene affects a trait or disease
the phenomenon by which multiple variants act on one gene to influence the same phenotype

a genomic region associated with a complex trait or disease; it is often defined by a distance, e.g., within 500 kb

within a locus, a set of variants that are in strong pairwise LD with each other and are associated with a trait

or disease; multiple signals can be conditionally distinct from each other, a subset of which are independent

Causal variant

Functional variant
but not affect a trait or disease

Target gene

a variant that affects a molecular or cellular process to have an impact on a trait or disease

a variant that shows evidence of allelic differences affecting gene regulation or function; variants can be functional

a gene affected by a functional variant; also called an effector gene

population differences between the reference and GWAS
samples can cause signals to be mis-characterized.
Haplotype Association. When individual-level genotype
and trait data are available, haplotype association analysis
can help interpret the inheritance patterns of signals that
are not fully independent from one another. Variant alleles
that are present on the same or different homologous copies
of a genomic region can have differing physiological conse-
quences. Several methods are available for estimating hap-
lotypes from genotype data.'” Haplotypes are then tested
for association with a trait either via one test per haplotype
or through a global test for all haplotypes in a region.”*!
Estimates of haplotype effect sizes and directions can aide
interpretation of multiple nearby signals.**>*

Multiple Signals at GWAS Loci
Loci that appear to consist of only one signal can be found to
harbor multiple signals after denser genotyping, conditional
analysis, or the inclusion of more samples or ancestry
groups. Using 1000 Genomes instead of HapMap as an
imputation reference panel to analyze the same individuals
detected additional loci and different lead variants,”® and
genome sequencing by the UK10K Consortium identified
additional low-frequency and rare alleles that had not been
detected by array-based genotyping.”® Conditional analysis
in larger sample sizes of GWAS meta-analyses has detected
additional signals at established loci for many phenotypes;
for example, an early report identified additional signals at
26 loci for lipids,?” and a more recent study of lipids in a
multi-ancestry cohort identified 121 new association sig-
nals, including 15 additional signals at established loci.*®
In another example, a blood pressure analysis accounting
for smoking behavior identified nine novel signals at known
loci, including eight that were detected only through the in-
clusion of data from study subjects of all ancestries.*’

As more signals are identified, the definition of a “locus”
can change. Signals can span distances of hundreds of kilo-
bases, and a single 500 kb locus containing two signals

could easily be defined as two separate loci with narrower
spans. A study of 36 blood cell traits reported signals
without reporting loci; investigators used stepwise multi-
ple regression to identify 3,755 conditionally distinct asso-
ciations that clustered into 2,706 LD-group signals.*’

Given the growing number of signals identified for some
traits, determining whether association signals are new or
previously reported is becoming more challenging. Some
studies have aimed to identify additional new signals by
simultaneously conditioning on all known signals. Such
“global” conditional analyses can include hundreds of var-
iants as covariates in a GWAS. For example, an age-related
macular degeneration GWAS using a modified global con-
ditional analysis identified 52 signals across 24 loci,*' and a
GWAS of lipoprotein particle subclasses conditioned on
885 variants at 157 previously identified lipid loci and
identified five novel signals.*”

Identifying multiple signals at a locus can help explain
some of the “missing heritability” of complex diseases
and traits. A stepwise conditional analysis that identified
seven signals at three loci associated with fetal hemoglobin
levels increased the explained heritable variation in fetal
hemoglobin from 38.6% to 49.5%.>* Re-sequencing at
five low-density lipoprotein cholesterol (LDL-C) loci iden-
tified additional signals and increased the estimate of her-
itability from 3.1% to 6.5%,** and including additional
ancestries further increased lipid heritability estimates
from 1.3- to 1.8-fold across all signals and traits.*> Similar
patterns were identified in expression QTL (eQTL) associa-
tions—9% of cis-eQTL loci showed evidence of a secondary
signal, resulting in a 31% average increase in explained
phenotypic variance.*”

Identifying additional signals enables additional mecha-
nisms to be characterized. For example, variants in three en-
hancers representing association signals bind three
different transcription factors to influence expression
of RET (MIM: 164761), leading to Hirschsprung disease.*®
In addition, the TCF7L2 (MIM: 602228) locus for
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Figure 2. Hypothetical GWAS Locus with Two Signals that Affect Two Genes

(A) Plot of association for two signals within 100 kb at a single GWAS locus. The first signal is shown by red circles, and the second is
shown by blue triangles. The intensity of color corresponds to the strength of LD between the lead variant and other variants in the signal.
(B) Hypothetical regulatory marks overlapping the positions of candidate variants. Arrows point to variants that overlap predicted
regulatory regions: four for signal 1 and four for signal 2. Signal 1 variants could target gene 1, and signal 2 variants could target

gene 2 because variants are located in each respective promoter.

type 2 diabetes initially appeared to consist of a single
signal, and early variant characterization suggested that
157903146 affected islet enhancer activity.””*® Now, eight
signals at the TCF7L2 locus have been reported to be
associated with diabetes risk, and several do not overlap islet
regulatory elements.”” One or more of the new signals could
affect other mechanisms of TCF7L2 regulation, including
alternative splicing, expression in other tissues, or both.*’
In these examples, the additional signals could target the
same candidate gene, but signals could also target different
nearby genes. In a recent analysis of eQTLs at GWAS loci,
Gamazon et al. observed more than one colocalized gene
and one tissue at more than 50% of signals.*' Nearby signals
that target different genes or transcripts, possibly with
different mechanisms across cell types, could be especially
common in gene-dense regions (Figure 2).

Haplotype analysis can aid the interpretation of multiple
signals. Identifying shared haplotypes between alleles of

multiple signals can help explain why a variant with low
initial evidence of association becomes much more signif-
icant after being conditioned on a nearby variant and why
a variant with strong initial evidence of association be-
comes less significant but still meets a significance
threshold.”* Haplotype analysis can also help interpret
the mechanistic consequences of regulatory and coding
variants at the same locus.””** In a study of G6PC2
(MIM: 612108) missense variants associated with fasting
glucose, single-variant association results showed an
apparent discrepancy with results of cellular functional
studies. Haplotype analysis explained the discrepancy by
showing that the glucose-lowering allele of the coding
variant was always inherited with the glucose-raising
allele of a more common noncoding GWAS signal.**
Haplotype analysis can be especially relevant to identi-
tying the functional consequences of variants at multi-
signal loci.
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Conclusions

As GWAS sample sizes increase, the observable complexity
of association signals at individual GWAS loci is increasing.
Multiple signals exist at many GWAS loci, and a pattern is
emerging whereby the strongest GWAS loci are often influ-
enced by multiple nearby association signals. These multi-
ple signals represent more of the disease or trait heritability
than initial signals, and the additional candidate variants
can have distinct mechanisms affecting the associated trait
or disease, such as variants in different regulatory elements
that regulate different genes. Alleles at distinct, but not
completely independent, signals can act together through
haplotypes. We encourage researchers to consider the possi-
bility that more than one signal contributes to a GWAS locus
as a valuable step in accurately delineating the mechanisms
at GWAS loci. Considering more than one signal can be espe-
cially helpful when the direction of effect of a signal appears
inconsistent with other data. When complex relationships
between signals are identified, consider the potential contri-
bution of gene regulation, and embrace the opportunity to
identify potentially novel interacting genetic mechanisms.

What Are the Candidate Causal Variant(s)?

Historical Context

Identifying candidate causal variants underlying GWAS
signals is valuable in helping to identify target genes for
GWAS loci because the gene(s) responsible for an associa-
tion are often not clear, and identifying causal links allows
variant-gene links to be validated. The value of identifying
candidate causal variants can be questioned; however, spe-
cific candidate causal variants provide a data-driven link to
genes rather than relying on assumptions about the con-
nections to specific genes and their directions of effect to
alter the amount or function of gene products. At noncod-
ing GWAS loci, identifying candidate causal variants
further informs our understanding of gene regulation,
especially distances at which variants and regulatory re-
gions can act and mechanisms by which variants affect
protein-coding RNAs directly and via antisense, long non-
coding, or other molecular moieties.

For monogenic disorders, disease-associated chromo-
somes are typically found to contain a single causal
variant. For complex traits, a single causal variant per
GWAS signal is the simplest explanation, and although
such mechanisms have been described,***’ it is becoming
increasingly evident that multiple variants can be causal at
a single GWAS signal.*® " That is, for complex traits, allelic
heterogeneity exists at the level of both the locus (multiple
signals) and the signal (multiple causal variants).

Edwards et al.'” noted that “... variants are unlikely to
act alone, and the importance of combinatorial effects
should be considered.” In one study, the authors suggested
that “throughout the evolution of species it is haplotype
blocks, rather than individual genes and mutations, that
serve as the fundamental unit of inheritance” on the basis
of highly inbred yeast strains.” These observations further
support the potential role for multiple variants at a single

locus. Variants can act in concert in promoters, enhancers,
repressors, and coding regions, adding to the complexity of
determining mechanisms at GWAS loci.

Methods

Statistical Fine-Mapping. As a first step in identifying
candidate causal variants in humans, the strongest GWAS
variants and/or variants in LD with the most significantly
associated variant at each signal are considered candidates.
Typically, an LD r* threshold of 0.7 or 0.8 is used for deter-
mining candidate variants at a GWAS locus; however,
various studies use different, less stringent thresholds
(e.g., ¥ > 0.5) given the strong contribution of allele fre-
quency to r* estimates or population differences between
samples and reference panels.

Statistical fine-mapping uses association statistics to pre-
dict which variants are more likely to be causal. Analyses
fit in two broad categories: (1) prioritizing variants on the
basis of association statistics and LD and (2) Bayesian
methods that assign posterior probabilities of causality to
each variant (Table 2), as reviewed recently.”> Methods
differ in the required input (such as original genotype-trait
data versus summary statistics), assumptions (such as
one versus more than one potential causal variant), and
output. Some methods, such as CAVIAR,’” allow for an arbi-
trary number of candidate causal variants and return a list,
or “credible set” of variants. FINEMAP explores a set of the
causal configurations of variants in a region.>* PAINTOR,>®
fGWAS,*® and deterministic approximation of posteriors
(DAP)*” incorporate functional annotations in the analysis.
Performing fine-mapping across diverse populations (e.g.,
with MANTRA®') can further refine a shared signal on the
basis of differing LD between the populations; however,
this approach assumes a shared variant between popula-
tions, which might or might not reflect the true causal
variants within each population. In most cases, statistical
fine-mapping predicts a set of variants that are likely to
be causal and can then be further examined for functional
effects.’”>® A notable limitation of these approaches is
that they analyze only the variants provided; other variants
not included as a result of failed genotyping, poor imputa-
tion, or other exclusions (e.g., indels and triallelic variants)
cannot be considered candidates. The approaches can be
sensitive to differences in evidence of association as a result
of sample-size variation or inaccurate imputation, and some
methods are limited by computation, reducing the number
of variants that can be analyzed simultaneously.

Variant Annotation. The effects of coding variants can be
interpreted more directly than noncoding variants and are
thus frequently the first variants considered for causality.
The effects of coding variants can be predicted by compu-
tational algorithms, including SIFT,’ PolyPhen-2,%"
MutationTaster2,° CADD,°> MAPPIN,*® and others.®*
These methods consider sequence conservation, protein
structure, and amino acid properties to predict the effect
of missense coding variants. Some methods, such as
MutationTaster2 and CADD, also integrate functional
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Table 2. Toolbox for Identifying and Annotating Candidate GWAS Variants

Purpose Tool” URL or Reference
Identification of LD proxies LDlink https://1dlink.nci.nih.gov/
Statistical fine-mapping BIMBAM http://stephenslab.uchicago.edu/software.html
MANTRA Morris®!
CAVIARBF https://bitbucket.org/Wenan/caviarbf
CAVIAR http://genetics.cs.ucla.edu/caviar/
PAINTOR https://github.com/gkichaev/PAINTOR_V3.0
fGWAS https://github.com/joepickrell/fgwas
PICS https://pubs.broadinstitute.org/pubs/finemapping/pics.php
funciSNP https://doi.org/doi:10.18129/B9.bioc.FunciSNP
FINEMAP http://www.christianbenner.com/
GenoWAP http://genocanyon.med.yale.edu/GenoWAP
DAP https://github.com/xqwen/dap
Annotation of splice variants HEXplorer http://www2.hhu.de/rna/html/hexplorer_score.php
ASSA http://splice.uwo.ca/
MaxEntScan http://genes.mit.edu/burgelab/maxent/Xmaxentscan_scoreseq.html
GeneSplicer http://ccb.jhu.edu/software/genesplicer/

Human Splicing Finder http://www.umd.be/HSF3/

Annotation of coding variants PolyPhen2 http://genetics.bwh.harvard.edu/pph2/
SIFT http://provean.jcvi.org/index.php
CONDEL http://bbglab.irbbarcelona.org/fannsdb/
MAPPIN https://doi.org/10.6084/m9.figshare.4639789
dbNSFP https://sites.google.com/site/jpopgen/dbNSFP
MutationTaster2 http://www.mutationtaster.org/
Annotation of noncoding and coding variants CADD https://cadd.gs.washington.edu/
PredictSNP2 https://loschmidt.chemi.muni.cz/predictsnp2/
FATHMM-MKL http://fathmm.biocompute.org.uk/
EIGEN http://www.columbia.edu/~ii2135/eigen.html
Annotation of noncoding variants GWAVA https://www.sanger.ac.uk/sanger/StatGen_Gwava
ARVIN https://github.com/gaolong/arvin
SNVrap http://jjwanglab.org/snvrap
DANN https://cbcl.ics.uci.edu/public_data/DANN/
DanQ https://github.com/uci-cbcl/DanQ
SNPDelScore https://www.ncbi.nlm.nih.gov/research/snpdelscore
deltaSVM http://www.beerlab.org/deltasvm/
DeepSEA http://deepsea.princeton.edu/job/analysis/create/
3DSNP http://cbportal.org/3dsnp/
HaploReg http://pubs.broadinstitute.org/mammals/haploreg/haploreg.php
SNiPA http://snipa.helmholtz-muenchen.de/snipa3/
GREGOR https://genome.sph.umich.edu/wiki/GREGOR
GARFIELD https://www.ebi.ac.uk/birney-srv/GARFIELD/
RegulomeDB http://www.regulomedb.org/

(Continued on next page)
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Table 2. Continued

Purpose Tool”

URL or Reference

Regulatory datasets ENCODE

Roadmap Epigenomics
Fantom$

VISTA enhancer
cistromeDB

Blueprint

Databases of transcription factor binding motifs JASPAR
HOCOMOCO

PWMtools

https://www.encodeproject.org/
http://www.roadmapepigenomics.org/
http://fantom.gsc.riken.jp/5/
https://enhancer.lbl.gov/
http://cistrome.org/db/#/
http://www.blueprint-epigenome.eu/
http://jaspar.genereg.net/
http://hocomocol1.autosome.ru/

https://ccg.vital-it.ch/pwmtools/

“These example tools are intended as a starting point for researchers to identify available tools.

genomic data (e.g., DNase I hypersensitivity). The MAPPIN
algorithm additionally includes post-translational modifi-
cations of proteins, biological networks, and allele fre-
quency to determine whether a variant is predicted to be
deleterious or not. Cell or organism models can show the
effect of a coding variant in a model system. Variants
within or near the conserved splice site between exons
can affect splicing, and deleterious effects can be predicted
with tools, as reviewed by Jian et al.®

Noncoding variants can be annotated by colocalization
with genomic regulatory regions in relevant cell types. Large
consortium efforts, including the Encyclopedia of DNA Ele-
ments (ENCODE),*® the Roadmap Epigenomics Project,®’
and the International Human Epigenome Consortium,®
have created robust datasets for many cell and tissue types
to describe regions characteristic of regulatory activity.
These datasets include chromatin immunoprecipitation
sequencing (ChIP-seq) of histone marks often observed at
enhancers, promoters, and insulators and transcription fac-
tors and open chromatin profiles generated by DNase
hypersensitivity sequencing (DNase-seq), formaldehyde-as-
sisted isolation of regulatory elements sequencing (FAIRE-
seq), and the assay for transposase-accessible chromatin
using sequencing (ATAC-seq). Algorithms can be used to
assess which annotations are enriched in association results
(e.g., GREGOR®’ and GARFIELD’"), to annotate variants at a
signal (e.g., HaploReg and RegulomeDB), and predict func-
tional consequence of noncoding variants (e.g., CADD and
GWAVA) (Table 2).

Sequencing data generated from ChIP-seq, DNase-seq,
FAIRE-seq, or ATAC-seq can be used for identifying hetero-
zygous sites of allelicimbalance in transcription factor bind-
ing or chromatin accessibility. A site of allelic imbalance oc-
curs when a sample has disproportionate sequencing reads
for each allele in comparison with the expected 50:50. An
important aspect of evaluating allelic imbalance is to align
reads by using a strategy that avoids bias toward the refer-
ence genome allele at the expense of an alternate allele.”"
Numerous methods have been described for the identifica-
tion of allelic imbalance in high-throughput sequence

data.”*”’* These strategies require sufficient reads to detect
imbalances and require the sequenced sample to be hetero-
zygous at a position of interest.

Experimental Analysis. Experimental analysis can deter-
mine whether variants show allelic differences in gene func-
tion or regulation, such as allele-specific effects on gene
expression levels.*””° Experimental analysis of coding and
splicing variants requires gene-specific assays that include
examining protein function and downstream phenotypes
in cells and model organisms.”® Many approaches also exist
for testing regulatory variants in functional experiments.”’

Transcriptional reporter assays test variant alleles located
in regulatory regions for differences in transcriptional activ-
ity. When an individual regulatory region is analyzed, the re-
gions surrounding an associated variant are cloned into a
vector containing a reporter gene, usually luciferase or
GFP, and transfected into a cell line or transiently expressed
in a model organism. The activity of reporter genes is
measured, and the variant alleles are compared for the detec-
tion of any allelic differences in transcriptional activity.
Transcriptional reporter assays can also be performed in a
high-throughput manner with massively parallel reporter
assays (MPRAs), in which hundreds of regulatory regions
are tested simultaneously.”® Reporter assays require the pres-
ence of the transcription factors that drive allelic differences
in activity, so selection of cell type and context, such as dif-
ferentiation state and stimuli, is important. The limitations
of reporter assays in low or high throughput are that (1) the
size of the cloned segment and the location of the variant in
the segment and in relation to the transcriptional start site
can affect detection of allelic differences, leading to at least
false-negative results and possibly false positives, and (2)
the variant is removed from the chromosomal context;
however, this latter limitation can be somewhat remedied
by lentiviral transduction and recombineering technologies
that allow the construct to incorporate into the genome.

Protein binding assays—including electrophoretic
mobility shift assays (EMSAs), DNA-affinity pull-downs,
and ChIP experiments—are used to identify variant alleles
that bind transcription factors differentially. EMSAs are an
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in vitro approach that visualizes nuclear protein complexes
that bind to ~20-100 bp DNA probes surrounding a candi-
date variant. The DNA-protein complexes are visualized on
a gel, and the identity of the transcription factor can be
determined with antibodies to transcription factors pre-
dicted by conserved transcription factor binding motifs
or identified by ChIP-seq datasets. DNA-affinity pull-
downs are similar to EMSAs: all DNA-protein complexes
are captured by a probe including a candidate variant allele
and visualized on a gel. Proteins in allele-specific bands are
identified by mass spectrometry. Allelic differences in tran-
scription factor binding can also be evident in differences
in ChIP-seq or ChIP-qPCR between samples of different
genotypes.*® Protein binding assays can also be performed
in high throughput.””*

An increasingly popular method for determining the
function of regulatory variants and elements is to use
CRISPR-Cas9 genome editing to delete the regulatory re-
gion, create the alternate allele of a variant, or alter the
epigenome and regulatory regions with CRISPRi.*" %> After
genome editing, assays of gene expression and/or gene
function are performed. Deleting a regulatory element or
substituting the alternate allele allows for direct observa-
tion of phenotypic effects in the native chromatin context.
Challenges that arise in optimizing CRISPR-Cas9 genome
editing include the following: it is difficult to edit many dis-
ease-specific cell types, targeting can create mutations at un-
wanted sites, the deletion of aregulatory element might not
have the same effect as that of a single-nucleotide change,
and editing in model organisms can create mosaicism.

Finally, model organisms can be used to model the effect
of candidate causal variants. Reporter assays can be per-
formed in model organisms, often in mice or zebrafish,
for assessing variant effects in the context of multiple
cell types and controllable environmental conditions.
Genome editing in organisms allows more complex drug-
or chemically inducible effects to be characterized. Model
organisms have the benefit of providing the context of
an entire biological system but can sometimes show
phenotypic effects that are not consistent in humans.

Candidate Variants at GWAS Signals
Fine-mapping and computational approaches often detect
multiple candidate causal variants at individual GWAS
loci. For example, in a recent GWAS meta-analysis of
type 2 diabetes, only 18 of 380 signals resulted in a sin-
gle-variant credible set.”” Examination of autoimmune
GWAS loci suggested a “multiple enhancer variant” hy-
pothesis, whereby multiple associated variants in clusters
of enhancers work together to alter gene expression.*’
CAVIAR fine-mapping of skin pigmentation GWAS loci
resulted in multiple predicted causal variants at most
loci.>® Fine-mapping analyses can reduce the list of candi-
date variants at a GWAS locus.

Statistical fine-mapping methods use different models and
can generate inconsistent results. Methods make different as-
sumptions about the contributions of underlying variants

and apply different strategies incorporating genetic associa-
tion, LD, and functional annotation. At the ANGPTLS
(MIM: 616223) locus, associated with high-density lipopro-
tein (HDL) cholesterol across populations, three fine-map-
ping methods (MANTRA, CAVIAR, and PAINTOR) of priori-
tizing candidate variants generated differing results;®?
MANTRA identified a credible set of ten variants, CAVIAR
identified a credible set of 24 variants by using Finnish asso-
ciation data and a credible set of two variants by using Afri-
can American association data, and PAINTOR identified
ten, seven, and five variants in Finnish, African American,
and the combined studies, respectively. Of the 39 variants
identified by least one method, only 12 were identified in
atleast two analyses, and only four wereidentified in all three
analyses. A candidate causal variant that was identified by all
three methods showed significant allelic differences in two
assays of regulatory function; however, further experiments
are needed to determine the full molecular mechanism.
Great progress has been made in identifying regulatory
mechanisms at GWAS loci. Among numerous examples, at
the PHACTRI (MIM: 608723) locus (associated with
vascular disease), rs9349379 was identified as a regulator
of EDN1 (MIM: 131240) expression by evidence from
enhancer signatures in heart tissue and genome editing.*’
At the 6q22.1 locus (associated with prostate cancer),
1s339331 risk alleles showed increased expression of RFX6
(MIM: 612659), increased binding of HOXB13, increased
enhancer histone mark H3K4me2, and altered cell
morphology and adhesion.®* At a PARP1 (MIM: 173870) lo-
cus associated with melanoma, the risk allele showed
increased expression of PARP1 and decreased RECQL bind-
ing. Interestingly, RECQL overexpression in melanoma cells
resulted in significant allelic differences in transcriptional
activity, whereas basal levels of RECQL resulted in no allelic
differences, suggesting that cellular context can be impor-
tant for identifying functional effects of GWAS variants.””
Multiple variants within a single GWAS signal have
shown evidence of functional effects. For example, at the
MFSD12 (MIM: 617745) locus (associated with skin
pigmentation), six variants showed allelic differences in
transcriptional reporter luciferase assays.’® Similarly, at
the GALNT2 (MIM: 602274) locus (associated with HDL
cholesterol), at least two regulatory variants were described
as having effects on transcriptional reporter luciferase
assays, in vitro protein binding, and allelic imbalance in
ChIP-seq and DNase reads.”® Four regulatory variants
could contribute to the mechanism at the HKDC1 (MIM:
617221) locus (associated with gestational hyperglyce-
mia).®®> MPRAs identified 32 functional variants at
23 GWAS loci associated with red blood cell traits, and
targeted genome editing showed that three functional var-
iants at one locus affect transcription of SMIM1 (MIM:
615242), RBM38 (MIM: 612428), and CD164 (MIM:
603356) and that RBM38 is involved in erythropoiesis.*
Multiple variants can be tested together in transcriptional
reporter assays, but the distance between variants can pre-
sent a problem for cloning, and plasmids do not provide
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the native chromatin context that is most likely important
for the regulatory regions to act together. As genome-edit-
ing methods are optimized for cell types of interest, it will
be important to test multiple variants together in vivo to
determine the effects of haplotypes and to truly delineate
the complex mechanisms. These functional-mechanism
success stories highlight the great progress in understand-
ing genetic contribution to disease in the post-GWAS era.

The TERT (MIM: 187270) locus (associated with breast
cancer, ovarian cancer, and telomere length) provides an
example of both multiple signals and multiple variants.
This GWAS locus consists of at least three signals; signals 2
and 3 are distinct but not completely independent
(* = 0.33).%” At the first signal, three regulatory variants
located in the TERT promoter decrease transcriptional ac-
tivity in breast and ovarian cancer cell lines. At the second
signal, one variant in a TERT intron increases transcrip-
tional activity. At the third signal, a variant alters TERT
splicing, resulting in a premature stop codon and truncated
protein. The mechanistic connections for multiple variants
provide strong evidence for TERT as a plausible target gene.

Conclusions

Multiple candidate causal variants at a single GWAS locus
adds complexity to delineating the molecular mechanism
at the locus. If one functional variant is identified without
full evaluation of all potential candidates, additional vari-
ants could contribute, and part of the mechanistic impact
on a gene or genes could be missed. The effect of individual
variants could be small and might not be observed in func-
tional experiments, perhaps because the effect is observed
in only a specific cellular environment or in combination
with other variants. Additionally, a variant that affects a
gene in functional assays does not necessarily demonstrate
that it causes trait variation or a disease; further evidence is
needed to prove this connection definitively. Many new
tools and methods need further vetting to determine
their effectiveness for a given situation. Modeling a single
variant in some assays and systems could fail to exhibit a
sufficient genetic or physiological consequence if multiple
candidate causal variants act together to affect the gene of
its function. Identifying different variants in different as-
says (e.g., transcriptional activity and chromatin interac-
tion) can lead to seemingly inconsistent evidence when
assay variability or missing data are responsible. In these
cases, we encourage researchers to identify a consistent
direction of allelic effect across multiple experiments,
which together can provide strong conclusions about
candidate causal variants at GWAS loci.

What Are the Target Gene(s)?

Historical Context

Identifying the target gene(s) at a GWAS locus is a funda-
mental part of elucidating the molecular mechanism
because these genes provide a key to understanding the
pathogenic processes and provide potential new targets
for drug development. However, the target genes remain

largely unknown for most GWAS loci. Although some early
studies of complex genetic traits were designed on the basis
of expecting perhaps tens of contributing genes, GWASs
have found that hundreds or thousands of genes might
contribute to complex genetic traits.

A large number of genes contributing to a trait or disease
is consistent with the possibility that multiple susceptibil-
ity genes are located relatively close to each other, even at a
single locus (Figure 2). GWAS loci can have multiple genes
that appear to be good functional candidates on the basis
of gene function and expression, coding variants, chromo-
some interactions, and/or literature review. Although one
candidate causal gene per locus is perhaps still the most
likely scenario, GWAS variants can affect multiple genes,
perhaps at multi-signal loci or in gene-dense regions.

Methods

Colocalized Variant Association with Gene Expression. One
method of identifying target genes for GWAS signals is iden-
tifying colocalized eQTL associations. eQTL analysis iden-
tifies variants associated with the RNA levels of genes (or
transcripts, isoforms, or exons), usually in a single tissue or
cell type. Whereas some eQTLs are shared across tissues,
others are tissue specific.*® Typically, representative GWAS
variants are examined in eQTL datasets for the identification
of GWAS variants that show significant association with the
expression level of one or more genes. However, the GTEx
Consortium reported that a remarkable 92.7% of common
variants tested show nominal association (p < 0.05) with
the expression level of at least one gene in at least one tis-
sue.”® In addition, given the very strong associations that
can be observed between variants and gene expression level,
noncausal variants in only moderate LD with candidate
causal regulatory variants can also show significant associa-
tion with gene expression levels. Hence, further analyses are
required to determine whether the same variant(s) underly-
ing the GWAS trait association are also likely to be the vari-
ant(s) that affect the RNA levels of the eQTL gene.

In the simplest scenario, a lead GWAS variant is also the
lead variant associated with a gene in an eQTL study using
samples from the same ancestral population. In this
setting, eQTL and GWAS associations are considered to
be colocalized through a comparison of the lead GWAS
and eQTL variants. When the lead GWAS and eQTL
variants are identical or LD 7* between them is high
(e.g., ¥ > 0.8 or 0.9), then the signals can be colocalized.
A recent analysis of 3,718 independent GWAS signals
found that 58.0% were in LD (* > 0.8) with at least one
eQTL and that 27.8% were in LD with the best eQTL
variant for a gene.*' Conditional analyses in the eQTL
dataset can provide further support for colocalization; if
the association between the lead eQTL variant and gene
expression is no longer significant after conditioning on
the GWAS variant and if the association between the lead
GWAS variant and gene expression is no longer significant
after conditioning on the lead eQTL variant, then the sig-
nals are typically considered colocalized.
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Other methods more fully assess colocalization of GWAS
and eQTL signals by using additional statistical tests, and
some methods can be applied to summary association sta-
tistics and/or incorporate variant annotation. For example,
COLOC applies a Bayesian procedure to estimate the poste-
rior probabilities that a variant is causal in both GWASs and
eQTL studies,®” and eCAVIAR applies a Bayesian procedure
that allows for more than one candidate causal variant.””
Summary Mendelian randomization in conjunction with
a test for heterogeneity in dependent instruments (HEIDI)
tests whether gene expression and a trait are associated
because of a shared candidate causal variant and can distin-
guish that model from two or more distinct genetic variants
that are in LD and independently affect the gene expression
level and the trait.”' Limitations of using eQTLs to identify
target genes include that eQTL datasets can still be under-
powered to detect associations or unavailable in appro-
priate cell types or contexts, the LD structure might not be
identical between available GWAS and eQTL datasets, and
colocalization approaches can be computationally inten-
sive and not robust to the presence of multiple eQTL signals,
leading to potential false-positive and -negative colocaliza-
tion. Finally, evidence of an eQTL colocalized with a GWAS
signal does not necessarily mean that expression of that
gene mediates the effect of the signal on the trait.

Similar to eQTL associations, allelic imbalance in gene
expression can identify potential target genes. Allelic
expression imbalance (AEI) analysis involves examining
the cDNA or RNA-sequencing reads of genes of interest in
individuals heterozygous for a transcribed variant. If the ra-
tio of reads from each allele deviates from 1:1, the corre-
lated alleles of a noncoding and transcribed variant can
determine cis-acting variants. Advantages of this approach
are that the two variant alleles are assayed in the same envi-
ronment and that significant differences can be detected in
smaller sample sizes than needed for eQTLs. Disadvantages
of AEI are that some genes do not contain common vari-
ants in available samples and that especially in small sam-
ple sizes, a variant can exhibit AEI merely through moder-
ate LD with a candidate causal regulatory variant.

Predicted Gene Expression Association Studies. A comple-
mentary approach to prioritizing candidate genes and di-
rection of effect is predicted expression association studies.
In this approach, GWASs and eQTL studies are integrated
to identify disease associations on the basis of sets of vari-
ants that influence gene expression. The portion of gene
expression due to genetic variants is estimated from refer-
ence eQTL studies, and these estimates are used for predict-
ing gene expression in larger GWAS, where the imputed
gene expression can be correlated to the trait for the iden-
tification of candidate genes.”””* These strategies increase
power to detect genes that exhibit differences in genotype-
dependent expression patterns, although power is reduced
by pleiotropy, and false positives can be identified as a
result of LD and the complex genetic architecture of
GWAS loci.””?° Nonetheless, these studies can be used to
help identify candidate genes for complex traits.”®"’

Chromatin Conformation. Another approach to identifying
target genes is identifying contact between GWAS variants
and the promoters and transcription start sites of target
genes by using chromatin conformation assays. Assays
such as 3C, Hi-C, and Capture-C identify physical interac-
tions and loops in the genome,”®”? and these interactions
can differ by cell and tissue type. Locus-specific assays can
be performed to test interactions between GWAS variant re-
gions and promoters of nearby target genes.'’’~'"* Genome-
wide datasets can be used as a resource for detecting the
physical interactions between GWAS variants and nearby
gene promoters or established enhancers. Genome-wide
chromatin conformation datasets have been generated in
multiple cell types'®*'?° and can be visualized with tools
such as the 3D Genome Browser,'”” the Hi-C Unifying
Genomic Interrogator (HUGIn),'*® or Juicebox.'% Resolu-
tion of the chromosomal regions involved in the interaction
depends on the assay and/or sequencing depth.'?>''° Cell
type is an important consideration given that chromatin
conformation assays identify active regulatory elements,
which can differ between cell types. Limitations of using
chromatin contacts to identify candidate genes are that sig-
nificance thresholds are not well established, the strategy is
uninformative when the candidate variants are located in
close proximity to a target gene as a result of the large num-
ber of chance contacts between adjacent genomesites, chro-
matin loops can be general mechanisms of gene regulation
and not relevant to GWAS mechanisms, and physical inter-
action of chromatin does not guarantee a consequence of
that interaction.

Coding Variation. Coding variants in genes that are asso-
ciated with a complex disease or trait can point to target
genes at a locus. Numerous resources exist for annotating
variants as nonsense, frameshift, and splice altering, all
of which are expected to lead to loss of function of a
gene,''! and for predicting which missense variants are
most likely to alter protein function according to evolu-
tionary, biochemical, and structural information. In addi-
tion, multiple, typically rare, coding variants can indepen-
dently associate with the same phenotype as a GWAS
signal. For example, at a GWAS locus for type 2 diabetes,
a study of coding variants in multiple populations identi-
fied 12 rare protein-truncating variants in SLC30A8
(MIM: 611145), associated with decreased disease risk,''*
and of 31 rare (MAF < 1%) coding or splice-site variants
newly identified to be independently associated with he-
matological traits, 30 mapped to loci previously implicated
in hematopoiesis by GWASs.''* However, coding variants
are not necessarily causal and can be in LD with variants
affecting other genes.''*''® When mechanistic conse-
quences are considered, coding variants located at GWAS
loci can help recognize biologically relevant genes.

Functional Studies. Functional studies of genes at GWAS
loci can provide insight into target genes. Studies
including overexpression, knockdown, or knockout of a
target gene in cells or model organisms with the use of
plasmids, viruses, oligos, or CRISPR-Cas9 approaches can
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point to genes with relevant biology.''® For example, func-
tional studies in mice identified a role of CDKAL1 (MIM:
611259) in insulin secretion, and variants near CDKAL1
are associated with type 2 diabetes.''” Studies of gene func-
tion can provide insight into the biochemical pathways,
protein interactions, and relevant cell or tissue types. Of
note, whereas recapitulating some phenotypes in model
systems is straightforward, recapitulating many others,
especially neurological phenotypes, is very difficult.
Deletion or substitution of a noncoding region containing
candidate variants and subsequent analysis of gene expres-
sion and/or function can also point to target genes.*®*’
Another approach is to epigenetically alter a regulatory
element by using a “dead” Cas9 with no nuclease activity
tethered to an “epigenetic switch” consisting of chromatin
modifying domains to mimic either an enhancer or a
repressor.'%>'1¢ Studies in human cells are of particular in-
terest when a gene function is cell autonomous, and exper-
iments in model organisms are especially informative
when the biological process or pathway and disease
context is well represented in the organism.

Candidate Genes at GWAS Signals
Evaluation of eQTLs colocalized with GWAS signals can
point to one or more than one target gene. For example, a
study of seven autoimmune diseases found colocalized
eQTLs in immune cell types for 91 unique GWAS lodi,
including more than one gene (up to as many as 12) at
31 loci.'"® A study of cardiometabolic traits found colocal-
ized subcutaneous adipose tissue eQTLs for 109 GWAS
loci, including more than one gene (up to as many as five)
at 25 loci."'? Analyses of GTEx data found that among the
GWAS signals that co-localized with an eQTL in one or
more tissues, up to 62% of the signals co-localized with
more than one gene.*’® In addition, recent eQTL
studies have identified conditionally distinct eQTL signals,
including some that colocalize with GWAS signals.®® 2%
Although the associated changes in gene expression levels
might not all have an effect on phenotype, the many
GWAS loci with more than one colocalized eQTL provide
many examples where more than one gene can be causal.
Although chromatin interactions often suggest multiple
plausible target genes, they can provide stronger evidence
when observed with colocalized eQTLs or functional evi-
dence. At the ARL15 locus (associated with insulin resis-
tance traits and type 2 diabetes), HiC data in multiple cell
types show significant interaction between the GWAS
variant region and the FST (MIM: 136470) promoter,'*®
~500 kb away, and these data support evidence that the
GWAS signals exhibit significant colocalized eQTLs for
FST,*® although functional studies support a role for
ARL1S in insulin secretion.'”® At a schizophrenia-associ-
ated locus, variants were linked by both HiC and genome
editing to FOXG1 (MIM: 164874) >700 kb away,'** and at
the TMEM106B (MIM: 613413) GWAS locus (associated
with dementia), a variant in a CTCF binding site altered
chromatin architecture to change TMEM106B expression

and cell toxicity.'?" Recent analysis with ATAC-seq open-
chromatin data identified over 15,000 interactions between
distal regions of open chromatin, and allele-specific effects
were inferred from the read data, resulting in improved fine-
mapping of eQTL signals.'*

Chromatin interactions with a GWAS variant region can
also suggest multiple candidate genes. For example, at
a breast-cancer-associated locus at 11q13, the GWAS
variant region interacted with two long noncoding RNAs,
LINC01488 (MIM: 617696) and CUPID2 (MIM: 617697),
in allele-specific 3C experiments.'?* At a locus associated
with schizophrenia and bipolar disorder, an enhancer
variant interacted with two nearby miRNAs by 3C, sup-
ported by transcriptional activity and transcription factor
binding assays.'”’ At the FTO (MIM: 610966) locus (associ-
ated with obesity), the GWAS variants showed physical
chromatin interaction with eight genes, at least two of
which (IRX3 [MIM: 612985] and IRX5 [MIM: 606195])
showed genotype-expression association in preadipo-
cytes.'%” Although the chromatin interactions might not
all lead to an effect on phenotype, the GWAS loci with
more than one interacting promoter provide examples
where more than one gene can be causal.

Coding variants in genes can point to target genes, and
rare coding variants can provide evidence for the target
genes of common noncoding variants at the same locus.
At the fasting-glucose-associated GWAS locus near G6PC2
and ABCB11 (MIM: 603201), for which the target gene
was unknown, exome array data from ~33,000 individuals
identified three rare G6PC2 coding variants associated with
fasting glucose,*” suggesting that G6PC2 might also be
altered by the noncoding variants. In vitro assays confirmed
the effect of the coding variants and established G6PC2 as
an effector gene and likely target gene of the noncoding
variants at this GWAS locus.

Experiments in model organisms also identify multiple
target genes at GWAS loci. At the Agtrap-Plod1 locus (asso-
ciated with blood pressure), six nearby potential target
genes exist. Flister et al. performed mutagenesis in mice
to create mutant strains for all six of these genes. They
found that five genes showed an effect on blood pressure
or renal function, suggesting that there might be multiple
target genes at this GWAS locus.'?® One important consid-
eration is that gene function is dependent on cell type and
cellular context and might not be replicated in humans
versus model organisms.

Genome and epigenome editing of regulatory regions
pinpoints target genes. A noncoding region near PHACTR1
(MIM: 608723) and EDN1 (MIM: 131240) is associated
with five vascular diseases—coronary artery disease,
migraine, dissection, fibromuscular dysplasia, and hyper-
tension. Deletion of 88 bp surrounding a fine-mapped
SNP resulted in increased expression of EDNI, but not
PHACTRI or four other nearby genes,*” providing initial
evidence of EDNT as a target gene. EDN1 has known roles
in the physiology of vasculature, suggesting a mechanism
for the associated diseases.”” In a second example, at the
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Figure 3.
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Multiple target genes can be present at a single GWAS locus. Three
examples show how multiple genes might be affected. At a locus
with one GWAS signal, an enhancer containing GWAS variants
could target two genes simultaneously, or different genes could
be targeted depending on cell type or cellular context. At a locus
with two signals, each signal could target different genes. Other
mechanisms could exist.

Hypotheses for Multiple Target Genes at a GWAS

ADCY5 (MIM: 600293) GWAS locus (associated with type 2
diabetes), deletion of the orthologous associated regulatory
region in rat pancreatic islet cells resulted in decreased
ADCYS expression and reduced insulin secretion, support-
ing other evidence that ADCYS5 is a plausible target gene at
the GWAS signal.*® At the 11q13 GWAS locus (associated
with breast cancer), epigenetically silencing a regula-
tory region with nuclease-inactivated Cas9 fused to the
Kruppel-associated (KRAB) repressor reduced expression
levels of three targeting genes: LINC01488, CUPIDZ2, and

CCNDI1 (MIM: 168461).'%° These experiments provide ev-
idence that genome and epigenome editing can validate
target genes in vivo.

Emerging molecular QTL associations, such as histone,
splice, methylation, metabolite, and other endophenotype
QTLs, will aid in the identification of target genes and
biological mechanisms. For example, an analysis that com-
bined eQTLs, histone QTLs, splicing QTLs, and methyl-
ation QTLs to annotate 41 diseases and complex traits
found that these QTLs are strongly enriched with disease
heritability and provide complementary information
about disease.'?” Together, these molecular associations
can suggest disease mechanisms.

Conclusions

Each approach toidentifying genes at a GWAS signal can pro-
vide evidence supporting a potential contribution of more
than one gene. As expression datasets increase in size; the
number of tissues, cell types, and contexts; and gene, iso-
form, and exon specificity, more colocalized eQTLs are being
identified. Similarly, as chromatin-interaction datasets are
generated in additional tissues, cell types, and contexts,
more GWAS signals can be connected to one or more genes.
Functional assays can suggest different genes depending on
cell type, cellular environment, or other factors. In addition,
two signals at a locus can act on the same or different genes;
variants could target multiple genes via chromatin looping
or different genes via tissue-specific enhancers (Figure 3). If
multiple genes show strong candidacy, researchers should
consider pursuing both genes in functional experiments
because they could both be true target genes. Lack of support
for a gene from any one approach could reflect that data are
not available in the appropriate cell type or environmental
state. Given limitations in concluding causality, multiple
lines of genetic, bioinformatic, and experimental evidence
supporting the role of a gene strengthen its candidacy.

Concluding Remarks

In this review, we have outlined three important aspects of
evaluating GWAS loci (Figure 1). Generally, multiple pieces
of evidence supporting a gene or variant that affects a com-
plex trait can show a consistent direction and a single
mechanism. However, given the contributions of multiple
genes and variants at complex-trait loci and the imperfect
nature of experimental systems, some evidence might
not fit a simple model. When interpreting the results of a
computational or experimental analysis, especially unex-
pected results, researchers should consider that additional
signals might exist at a locus and that variants not consid-
ered candidates according to LD might nonetheless
contribute to the mechanism of the locus. When searching
for target genes, consider that variants might act through
more than one nearby gene to influence disease. When
identifying a variant that exhibits allelic effects on a
gene, consider that additional variants might also have
functional effects. Finally, when evaluating the biological
effects of genes on disease, consider that cell type, cellular
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context, and multiple molecular mechanisms acting
together can affect disease pathogenesis.

As GWAS:s are performed in more samples and additional
populations, more loci with multiple signals and variants
will be identified. The future is bright, given that progress
is being made more quickly with high-throughput assays
and with genome-editing experiments in the native chro-
matin context. Better statistical methods are continually
being developed for identifying and localizing loci, signals,
genes, and variants. The field can look forward to a better
understanding of gene regulation, biological mechanisms,
and disease pathways by closely examining GWAS loci.
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