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Deciphering the Emerging Complexities
of Molecular Mechanisms at GWAS Loci
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Genome-wide association studies (GWASs) have identified thousands of loci associated with hundreds of complex diseases and traits,

and progress is being made toward elucidating the causal variants and genes underlying these associations. Functional characterization

of mechanisms at GWAS loci is a multi-faceted challenge. Challenges include linkage disequilibrium and allelic heterogeneity at each

locus, the noncoding nature of most loci, and the time and cost needed for experimentally evaluating the potential mechanistic con-

tributions of genes and variants. As GWAS sample sizes increase, more loci are identified, and the complexities of individual loci emerge.

Loci can consist of multiple association signals, each of which can reflect the influence of multiple variants, inseparable by association

analyses. Each signal within a locus can influence the same or different target genes. Experimental studies of genes and variants can differ

on the basis of cell type, cellular environment, or other context-specific variables. In this review, we describe the complexity of mech-

anisms at GWAS loci—including multiple signals, multiple variants, and/or multiple genes—and the implications these complexities

hold for experimental study design and interpretation of GWAS mechanisms.
Introduction

Genome-wide association studies (GWASs) have identified

thousands of loci associated with complex traits and dis-

eases.1,2 Converting GWAS findings into trait or disease in-

sights includes elucidating both molecular mechanisms,

by which genetic variants affect gene expression or func-

tion, and biological mechanisms, by which target genes

affect a trait or disease. Progress is being made to identify

candidate causal variants and genes underlying these asso-

ciations, and complex molecular and biological mecha-

nisms at GWAS loci are appearing. A recent review provides

an excellent framework for the functional dissection of a

genetic risk locus.3 Here, we review the emerging complex-

ities of molecular mechanisms at GWAS loci. After

providing background to the challenges, we review three

major questions: (1) How many association signals exist

at a locus? (2) What are the candidate causal variant(s)?

(3) What are the target gene(s)? In each section, we provide

historical context to the question, methods available for

addressing it, and evidence and observations from exam-

ples of GWAS loci that have been mechanistically charac-

terized to date. Identifying mechanisms responsible for

GWAS loci requires an accumulation of consistent evi-

dence for the genes and variants that influence the trait

or disease in humans (Figure 1). We conclude with future

directions for researchers to consider in experimental

design and interpretation of GWAS locus mechanisms.

Background

Complex genetic traits and diseases differ from monogenic

traits and diseases. Monogenic diseases are caused by varia-

tion in single genes,whereas complex genetic traits are influ-

enced by variation inmultiple genes and environmental fac-

tors. GWASs have successfully identified thousands of

genomic regions associated with hundreds of complex traits
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anddiseases. GWASpublications typically report association

results as a list of loci, distinguished from one another for

counting purposes and labeled with a variant and one or

more gene names as signposts. The variant named is typi-

cally the most strongly associated variant and is referred to

as the lead, index, sentinel,or topvariant (forother terminol-

ogy, seeTable1). Thegenenamesmake referring to loci easier

than using genome positions or variant labels, although the

genes named in GWAS reports have variable evidence sup-

porting their role in the trait or disease. Some GWAS reports

simply indicate the nearest gene; others label loci with

nearby gene(s) that have some annotation or experimental

support. Early GWASs were performed with less densely

spaced sets of variants, so the reported variant might not

have been the strongest associated variant at a locus. More

recent GWASs andGWASmeta-analyses are larger with sam-

ple sizes approaching one million for some traits, and

althoughGWASs have oftenbeenperformed in a single pop-

ulation, agrowingnumberof trans-ancestry studies combine

data across populations. For most identified loci, the molec-

ular and biological mechanisms remain to be determined.

Much of the complexity of mechanisms at GWAS loci is

due to allelic heterogeneity, in which multiple alleles act

through the same gene to influence the same phenotype;

allelic heterogeneity is common at monogenic disease-

associated loci. For example, the Cystic Fibrosis Mutation

Database includes >2,000 disease-causing mutations,4

and at least 17 mutations can cause sickle cell disease.5

As GWAS sample sizes become larger and we delve further

into the mechanisms at GWAS loci, we are learning that

allelic heterogeneity is also prevalent in complex genetic

traits, and this heterogeneity influences both the design

and interpretation of experimental studies.

Allelic heterogeneity of complex traits has been identi-

fied in studies of model organisms. Initially, quantitative
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Figure 1. Process for Evaluating a GWAS Locus
Many approaches exist for identifying mechanisms at GWAS loci.
In this review, we address three major questions at GWAS loci: (1)
How many association signals exist at a locus? (2) What are the
candidate causal variant(s)? (3) What are the target gene(s)? This
flowchart shows how an accumulation of evidence can address
these questions.
trait loci (QTLs) in model organisms were generally

assumed to harbor one causal and multiple passenger al-

leles that affect a single causal gene; however, dissection

of QTLs in inbred organisms has identified evidence of

more than one gene in the same region.6–8 In addition to

identifying multiple genes at QTLs, fine-mapping efforts

in model organisms have suggested multiple causal vari-

ants at a single locus.8,9 Thus, genetic studies in model or-

ganisms suggest complex mechanisms that can involve

multiple genes and variants at a single locus.

Experimental characterization of GWAS loci has lagged

behind locus discovery because each locus presents a

multi-faceted challenge. The location of many GWAS var-

iants in noncoding regions10 provides less straightforward

hypotheses for mechanisms than variants within protein-

coding regions. Each association signal typically consists of

multiple variants in linkage disequilibrium (LD), and the

sheer numbers of candidate variants can pose a challenge

for interpreting annotations and performing experimental

analyses; for example, 6,324 SNPs were reported to be in

high LD (r2 > 0.5) with 146 lead variants in 100 regions

associated with prostate cancer.11 Often, the cell type or

tissue of action and the cellular state are unknown, and re-

searchers must choose a cell type or model organism and

potential stimuli to test mechanisms. It can be difficult

to recapitulate the exact conditions of a trait or disease in

model systems to determine the precisemechanistic effects

in the human body. Identification of mechanisms, even in

high throughput, requires a locus-by-locus interpretation,

involving significant time and resources. Despite these

challenges, significant progress has been made to identify

molecular and biological mechanisms for GWAS loci across

many complex diseases and traits.
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How Many Association Signals Exist at a Locus?

Historical Context

Candidate-gene and early genome-wide studies identified

multiple variants in the same gene in association with a

complex trait. For example, four rare coding variants in

IFIH1 (MIM: 606951) were associated with lower type 1

diabetes risk,12 and seven coding variants in NOD2

(MIM: 605956) were associated with Crohn disease.13,14

These examples represent allelic heterogeneity at com-

plex-trait loci. In each example, the coding variants

showed independent evidence of association with the dis-

ease or trait in larger GWAS analyses.14

Initial GWAS analyses identified genomic regions

harboring variants associated with a given trait or disease

as loci and typically defined distinct loci according to dis-

tance. When trait-associated variants at a locus do not

exhibit strong pairwise LD with each other, they represent

distinct association ‘‘signals.’’ For example, Willer and col-

leagues15 alignedGWAS loci for cholesterol and triglyceride

levels to previously reported causal variants to demonstrate

that the GWAS analysis had identified additional signals of

association at these loci. Early studies had limited statistical

power to detect loci with two or more significant signals.

Methods

Linkage Disequilibrium. To determine the number of signals

at a locus, one strategy is to evaluate pairwise LD between a

lead variant and other variants at the locus. GWAS analyses

can definemultiple signals within a genomic region on the

basis of the LD measure r2 in a selected reference popula-

tion. GWASs have used different LD thresholds and

different reference panels. For example, a schizophrenia

GWAS used a threshold of r2 < 0.1 to identify 128 indepen-

dent signals at 108 loci,16 and a coronary artery disease

GWAS used a threshold of r2 < 0.2 to identify 104 indepen-

dent signals at 46 loci;17 both used 1000 Genomes Project

data as a reference panel.

Conditional Analysis. An additional strategy for identi-

fying multiple signals at a locus is conditional association

analysis. An initial lead associated variant is included as a

covariate in association analyses testing other nearby vari-

ants; if a nearby variant remains significant, it is considered

a conditionally distinct additional signal. When individ-

ual-level genotype and trait data are available, stepwise

conditional analysis can be performed by including each

newly identified lead variant as an additional covariate.

When only summary-level association statistics from

GWAS meta-analysis are available, a conditional and joint

analysis option in the Genome-wide Complex Trait Anal-

ysis (GCTA) software18 uses estimated LD from a provided

reference sample to identify conditionally distinct signals.

Significance thresholds for additional signals at a locus are

typically set to account for the number of variants tested,

either within a locus or genome-wide. Limitations of

defining signals on the basis of LD in a reference panel

are that reference panels missing variants analyzed in the

association study can fail to detect signals and that
ber 1, 2018



Table 1. Definitions of Terms Used in This Review

Monogenic disease or trait a disease caused by or a trait influenced by variation in a single gene, although variants in multiple single genes
can cause the same disease

Complex disease or trait a disease or trait caused by a combination of variants in many genes; it can be influenced by behavioral and
environmental factors

Molecular mechanism a mechanism by which a genetic variant affects gene expression or function

Biological mechanism a mechanism by which a gene affects a trait or disease

Allelic heterogeneity the phenomenon by which multiple variants act on one gene to influence the same phenotype

Locus a genomic region associated with a complex trait or disease; it is often defined by a distance, e.g., within 500 kb
or 1 Mb of a reported variant

Signal within a locus, a set of variants that are in strong pairwise LD with each other and are associated with a trait
or disease; multiple signals can be conditionally distinct from each other, a subset of which are independent

Causal variant a variant that affects a molecular or cellular process to have an impact on a trait or disease

Functional variant a variant that shows evidence of allelic differences affecting gene regulation or function; variants can be functional
but not affect a trait or disease

Target gene a gene affected by a functional variant; also called an effector gene
population differences between the reference and GWAS

samples can cause signals to be mis-characterized.

Haplotype Association. When individual-level genotype

and trait data are available, haplotype association analysis

can help interpret the inheritance patterns of signals that

are not fully independent from one another. Variant alleles

that arepresent on the sameordifferenthomologous copies

of a genomic region can have differing physiological conse-

quences. Several methods are available for estimating hap-

lotypes from genotype data.19 Haplotypes are then tested

for association with a trait either via one test per haplotype

or through a global test for all haplotypes in a region.20,21

Estimates of haplotype effect sizes and directions can aide

interpretation of multiple nearby signals.22–24

Multiple Signals at GWAS Loci

Loci that appear to consist of onlyone signal canbe found to

harbormultiple signals after denser genotyping, conditional

analysis, or the inclusion of more samples or ancestry

groups. Using 1000 Genomes instead of HapMap as an

imputation reference panel to analyze the same individuals

detected additional loci and different lead variants,25 and

genome sequencing by the UK10K Consortium identified

additional low-frequency and rare alleles that had not been

detected by array-based genotyping.26 Conditional analysis

in larger sample sizes of GWAS meta-analyses has detected

additional signals at established loci for many phenotypes;

for example, an early report identified additional signals at

26 loci for lipids,27 and a more recent study of lipids in a

multi-ancestry cohort identified 121 new association sig-

nals, including 15 additional signals at established loci.28

In another example, a blood pressure analysis accounting

for smokingbehavior identifiedninenovel signals at known

loci, including eight that were detected only through the in-

clusion of data from study subjects of all ancestries.29

As more signals are identified, the definition of a ‘‘locus’’

can change. Signals can span distances of hundreds of kilo-

bases, and a single 500 kb locus containing two signals
The American
could easily be defined as two separate loci with narrower

spans. A study of 36 blood cell traits reported signals

without reporting loci; investigators used stepwise multi-

ple regression to identify 3,755 conditionally distinct asso-

ciations that clustered into 2,706 LD-group signals.30

Given the growing number of signals identified for some

traits, determining whether association signals are new or

previously reported is becoming more challenging. Some

studies have aimed to identify additional new signals by

simultaneously conditioning on all known signals. Such

‘‘global’’ conditional analyses can include hundreds of var-

iants as covariates in a GWAS. For example, an age-related

macular degeneration GWAS using a modified global con-

ditional analysis identified 52 signals across 24 loci,31 and a

GWAS of lipoprotein particle subclasses conditioned on

885 variants at 157 previously identified lipid loci and

identified five novel signals.32

Identifying multiple signals at a locus can help explain

some of the ‘‘missing heritability’’ of complex diseases

and traits. A stepwise conditional analysis that identified

seven signals at three loci associated with fetal hemoglobin

levels increased the explained heritable variation in fetal

hemoglobin from 38.6% to 49.5%.33 Re-sequencing at

five low-density lipoprotein cholesterol (LDL-C) loci iden-

tified additional signals and increased the estimate of her-

itability from 3.1% to 6.5%,34 and including additional

ancestries further increased lipid heritability estimates

from 1.3- to 1.8-fold across all signals and traits.35 Similar

patterns were identified in expression QTL (eQTL) associa-

tions—9% of cis-eQTL loci showed evidence of a secondary

signal, resulting in a 31% average increase in explained

phenotypic variance.22

Identifying additional signals enables additional mecha-

nisms to be characterized. For example, variants in three en-

hancers representing association signals bind three

different transcription factors to influence expression

of RET (MIM: 164761), leading to Hirschsprung disease.36

In addition, the TCF7L2 (MIM: 602228) locus for
Journal of Human Genetics 103, 637–653, November 1, 2018 639



Figure 2. Hypothetical GWAS Locus with Two Signals that Affect Two Genes
(A) Plot of association for two signals within 100 kb at a single GWAS locus. The first signal is shown by red circles, and the second is
shown by blue triangles. The intensity of color corresponds to the strength of LD between the lead variant and other variants in the signal.
(B) Hypothetical regulatory marks overlapping the positions of candidate variants. Arrows point to variants that overlap predicted
regulatory regions: four for signal 1 and four for signal 2. Signal 1 variants could target gene 1, and signal 2 variants could target
gene 2 because variants are located in each respective promoter.
type 2 diabetes initially appeared to consist of a single

signal, and early variant characterization suggested that

rs7903146 affected islet enhancer activity.37,38 Now, eight

signals at the TCF7L2 locus have been reported to be

associatedwithdiabetes risk, and several donotoverlap islet

regulatory elements.39Oneormoreof thenewsignals could

affect other mechanisms of TCF7L2 regulation, including

alternative splicing, expression in other tissues, or both.40

In these examples, the additional signals could target the

same candidate gene, but signals could also target different

nearby genes. In a recent analysis of eQTLs at GWAS loci,

Gamazon et al. observed more than one colocalized gene

andone tissue atmore than50%of signals.41Nearby signals

that target different genes or transcripts, possibly with

different mechanisms across cell types, could be especially

common in gene-dense regions (Figure 2).

Haplotype analysis can aid the interpretation ofmultiple

signals. Identifying shared haplotypes between alleles of
640 The American Journal of Human Genetics 103, 637–653, Novem
multiple signals can help explain why a variant with low

initial evidence of association becomes much more signif-

icant after being conditioned on a nearby variant and why

a variant with strong initial evidence of association be-

comes less significant but still meets a significance

threshold.22 Haplotype analysis can also help interpret

the mechanistic consequences of regulatory and coding

variants at the same locus.23,24 In a study of G6PC2

(MIM: 612108) missense variants associated with fasting

glucose, single-variant association results showed an

apparent discrepancy with results of cellular functional

studies. Haplotype analysis explained the discrepancy by

showing that the glucose-lowering allele of the coding

variant was always inherited with the glucose-raising

allele of a more common noncoding GWAS signal.42

Haplotype analysis can be especially relevant to identi-

fying the functional consequences of variants at multi-

signal loci.
ber 1, 2018



Conclusions

As GWAS sample sizes increase, the observable complexity

of association signals at individual GWAS loci is increasing.

Multiple signals exist at many GWAS loci, and a pattern is

emerging whereby the strongest GWAS loci are often influ-

enced by multiple nearby association signals. These multi-

ple signals represent more of the disease or trait heritability

than initial signals, and the additional candidate variants

can have distinct mechanisms affecting the associated trait

or disease, such as variants in different regulatory elements

that regulate different genes. Alleles at distinct, but not

completely independent, signals can act together through

haplotypes.We encourage researchers to consider the possi-

bility thatmore thanone signal contributes to aGWAS locus

as a valuable step in accurately delineating themechanisms

atGWAS loci.Consideringmore thanonesignal canbeespe-

cially helpfulwhen the direction of effect of a signal appears

inconsistent with other data. When complex relationships

between signals are identified, consider thepotential contri-

bution of gene regulation, and embrace the opportunity to

identify potentially novel interacting genetic mechanisms.

What Are the Candidate Causal Variant(s)?

Historical Context

Identifying candidate causal variants underlying GWAS

signals is valuable in helping to identify target genes for

GWAS loci because the gene(s) responsible for an associa-

tion are often not clear, and identifying causal links allows

variant-gene links to be validated. The value of identifying

candidate causal variants can be questioned; however, spe-

cific candidate causal variants provide a data-driven link to

genes rather than relying on assumptions about the con-

nections to specific genes and their directions of effect to

alter the amount or function of gene products. At noncod-

ing GWAS loci, identifying candidate causal variants

further informs our understanding of gene regulation,

especially distances at which variants and regulatory re-

gions can act and mechanisms by which variants affect

protein-coding RNAs directly and via antisense, long non-

coding, or other molecular moieties.

For monogenic disorders, disease-associated chromo-

somes are typically found to contain a single causal

variant. For complex traits, a single causal variant per

GWAS signal is the simplest explanation, and although

such mechanisms have been described,43–47 it is becoming

increasingly evident that multiple variants can be causal at

a single GWAS signal.48–50 That is, for complex traits, allelic

heterogeneity exists at the level of both the locus (multiple

signals) and the signal (multiple causal variants).

Edwards et al.10 noted that ‘‘. variants are unlikely to

act alone, and the importance of combinatorial effects

should be considered.’’ In one study, the authors suggested

that ‘‘throughout the evolution of species it is haplotype

blocks, rather than individual genes and mutations, that

serve as the fundamental unit of inheritance’’ on the basis

of highly inbred yeast strains.8 These observations further

support the potential role for multiple variants at a single
The American
locus. Variants can act in concert in promoters, enhancers,

repressors, and coding regions, adding to the complexity of

determining mechanisms at GWAS loci.

Methods

Statistical Fine-Mapping. As a first step in identifying

candidate causal variants in humans, the strongest GWAS

variants and/or variants in LD with the most significantly

associated variant at each signal are considered candidates.

Typically, an LD r2 threshold of 0.7 or 0.8 is used for deter-

mining candidate variants at a GWAS locus; however,

various studies use different, less stringent thresholds

(e.g., r2 > 0.5) given the strong contribution of allele fre-

quency to r2 estimates or population differences between

samples and reference panels.

Statistical fine-mapping uses association statistics to pre-

dict which variants are more likely to be causal. Analyses

fit in two broad categories: (1) prioritizing variants on the

basis of association statistics and LD and (2) Bayesian

methods that assign posterior probabilities of causality to

each variant (Table 2), as reviewed recently.52 Methods

differ in the required input (such as original genotype-trait

data versus summary statistics), assumptions (such as

one versus more than one potential causal variant), and

output. Somemethods, such as CAVIAR,53 allow for an arbi-

trary number of candidate causal variants and return a list,

or ‘‘credible set’’ of variants. FINEMAP explores a set of the

causal configurations of variants in a region.54 PAINTOR,55

fGWAS,56 and deterministic approximation of posteriors

(DAP)57 incorporate functional annotations in the analysis.

Performing fine-mapping across diverse populations (e.g.,

with MANTRA51) can further refine a shared signal on the

basis of differing LD between the populations; however,

this approach assumes a shared variant between popula-

tions, which might or might not reflect the true causal

variants within each population. In most cases, statistical

fine-mapping predicts a set of variants that are likely to

be causal and can then be further examined for functional

effects.39,58 A notable limitation of these approaches is

that they analyze only the variants provided; other variants

not included as a result of failed genotyping, poor imputa-

tion, or other exclusions (e.g., indels and triallelic variants)

cannot be considered candidates. The approaches can be

sensitive to differences in evidence of association as a result

of sample-size variation or inaccurate imputation, and some

methods are limited by computation, reducing the number

of variants that can be analyzed simultaneously.

Variant Annotation. The effects of coding variants can be

interpreted more directly than noncoding variants and are

thus frequently the first variants considered for causality.

The effects of coding variants can be predicted by compu-

tational algorithms, including SIFT,59 PolyPhen-2,60

MutationTaster2,61 CADD,62 MAPPIN,63 and others.64

These methods consider sequence conservation, protein

structure, and amino acid properties to predict the effect

of missense coding variants. Some methods, such as

MutationTaster2 and CADD, also integrate functional
Journal of Human Genetics 103, 637–653, November 1, 2018 641



Table 2. Toolbox for Identifying and Annotating Candidate GWAS Variants

Purpose Toola URL or Reference

Identification of LD proxies LDlink https://ldlink.nci.nih.gov/

Statistical fine-mapping BIMBAM http://stephenslab.uchicago.edu/software.html

MANTRA Morris51

CAVIARBF https://bitbucket.org/Wenan/caviarbf

CAVIAR http://genetics.cs.ucla.edu/caviar/

PAINTOR https://github.com/gkichaev/PAINTOR_V3.0

fGWAS https://github.com/joepickrell/fgwas

PICS https://pubs.broadinstitute.org/pubs/finemapping/pics.php

funciSNP https://doi.org/doi:10.18129/B9.bioc.FunciSNP

FINEMAP http://www.christianbenner.com/

GenoWAP http://genocanyon.med.yale.edu/GenoWAP

DAP https://github.com/xqwen/dap

Annotation of splice variants HEXplorer http://www2.hhu.de/rna/html/hexplorer_score.php

ASSA http://splice.uwo.ca/

MaxEntScan http://genes.mit.edu/burgelab/maxent/Xmaxentscan_scoreseq.html

GeneSplicer http://ccb.jhu.edu/software/genesplicer/

Human Splicing Finder http://www.umd.be/HSF3/

Annotation of coding variants PolyPhen2 http://genetics.bwh.harvard.edu/pph2/

SIFT http://provean.jcvi.org/index.php

CONDEL http://bbglab.irbbarcelona.org/fannsdb/

MAPPIN https://doi.org/10.6084/m9.figshare.4639789

dbNSFP https://sites.google.com/site/jpopgen/dbNSFP

MutationTaster2 http://www.mutationtaster.org/

Annotation of noncoding and coding variants CADD https://cadd.gs.washington.edu/

PredictSNP2 https://loschmidt.chemi.muni.cz/predictsnp2/

FATHMM-MKL http://fathmm.biocompute.org.uk/

EIGEN http://www.columbia.edu/�ii2135/eigen.html

Annotation of noncoding variants GWAVA https://www.sanger.ac.uk/sanger/StatGen_Gwava

ARVIN https://github.com/gaolong/arvin

SNVrap http://jjwanglab.org/snvrap

DANN https://cbcl.ics.uci.edu/public_data/DANN/

DanQ https://github.com/uci-cbcl/DanQ

SNPDelScore https://www.ncbi.nlm.nih.gov/research/snpdelscore

deltaSVM http://www.beerlab.org/deltasvm/

DeepSEA http://deepsea.princeton.edu/job/analysis/create/

3DSNP http://cbportal.org/3dsnp/

HaploReg http://pubs.broadinstitute.org/mammals/haploreg/haploreg.php

SNiPA http://snipa.helmholtz-muenchen.de/snipa3/

GREGOR https://genome.sph.umich.edu/wiki/GREGOR

GARFIELD https://www.ebi.ac.uk/birney-srv/GARFIELD/

RegulomeDB http://www.regulomedb.org/

(Continued on next page)
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Table 2. Continued

Purpose Toola URL or Reference

Regulatory datasets ENCODE https://www.encodeproject.org/

Roadmap Epigenomics http://www.roadmapepigenomics.org/

Fantom5 http://fantom.gsc.riken.jp/5/

VISTA enhancer https://enhancer.lbl.gov/

cistromeDB http://cistrome.org/db/#/

Blueprint http://www.blueprint-epigenome.eu/

Databases of transcription factor binding motifs JASPAR http://jaspar.genereg.net/

HOCOMOCO http://hocomoco11.autosome.ru/

PWMtools https://ccg.vital-it.ch/pwmtools/

aThese example tools are intended as a starting point for researchers to identify available tools.
genomic data (e.g., DNase I hypersensitivity). TheMAPPIN

algorithm additionally includes post-translational modifi-

cations of proteins, biological networks, and allele fre-

quency to determine whether a variant is predicted to be

deleterious or not. Cell or organism models can show the

effect of a coding variant in a model system. Variants

within or near the conserved splice site between exons

can affect splicing, and deleterious effects can be predicted

with tools, as reviewed by Jian et al.65

Noncoding variants can be annotated by colocalization

withgenomic regulatory regions in relevant cell types. Large

consortium efforts, including the Encyclopedia of DNA Ele-

ments (ENCODE),66 the Roadmap Epigenomics Project,67

and the International Human Epigenome Consortium,68

have created robust datasets for many cell and tissue types

to describe regions characteristic of regulatory activity.

These datasets include chromatin immunoprecipitation

sequencing (ChIP-seq) of histone marks often observed at

enhancers, promoters, and insulators and transcription fac-

tors and open chromatin profiles generated by DNase

hypersensitivity sequencing (DNase-seq), formaldehyde-as-

sisted isolation of regulatory elements sequencing (FAIRE-

seq), and the assay for transposase-accessible chromatin

using sequencing (ATAC-seq). Algorithms can be used to

assesswhich annotations are enriched in association results

(e.g.,GREGOR69 andGARFIELD70), to annotate variants at a

signal (e.g., HaploReg and RegulomeDB), and predict func-

tional consequence of noncoding variants (e.g., CADD and

GWAVA) (Table 2).

Sequencing data generated from ChIP-seq, DNase-seq,

FAIRE-seq, or ATAC-seq can be used for identifying hetero-

zygous sites of allelic imbalance in transcription factorbind-

ing or chromatin accessibility. A site of allelic imbalance oc-

curs when a sample has disproportionate sequencing reads

for each allele in comparison with the expected 50:50. An

important aspect of evaluating allelic imbalance is to align

reads by using a strategy that avoids bias toward the refer-

ence genome allele at the expense of an alternate allele.71

Numerous methods have been described for the identifica-

tion of allelic imbalance in high-throughput sequence
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data.72–74 These strategies require sufficient reads to detect

imbalances and require the sequenced sample to be hetero-

zygous at a position of interest.

Experimental Analysis. Experimental analysis can deter-

minewhether variants showallelic differences ingene func-

tion or regulation, such as allele-specific effects on gene

expression levels.47,75 Experimental analysis of coding and

splicing variants requires gene-specific assays that include

examining protein function and downstream phenotypes

in cells andmodel organisms.76Many approaches also exist

for testing regulatory variants in functional experiments.77

Transcriptional reporter assays test variant alleles located

in regulatory regions for differences in transcriptional activ-

ity.Whenan individual regulatory region is analyzed, the re-

gions surrounding an associated variant are cloned into a

vector containing a reporter gene, usually luciferase or

GFP, and transfected into a cell line or transiently expressed

in a model organism. The activity of reporter genes is

measured, and thevariantalleles are compared for thedetec-

tion of any allelic differences in transcriptional activity.

Transcriptional reporter assays can also be performed in a

high-throughput manner with massively parallel reporter

assays (MPRAs), in which hundreds of regulatory regions

are tested simultaneously.78 Reporter assays require thepres-

ence of the transcription factors that drive allelic differences

in activity, so selection of cell type and context, such as dif-

ferentiation state and stimuli, is important. The limitations

of reporter assays in low or high throughput are that (1) the

size of the cloned segment and the location of the variant in

the segment and in relation to the transcriptional start site

can affect detection of allelic differences, leading to at least

false-negative results and possibly false positives, and (2)

the variant is removed from the chromosomal context;

however, this latter limitation can be somewhat remedied

by lentiviral transduction and recombineering technologies

that allow the construct to incorporate into the genome.

Protein binding assays—including electrophoretic

mobility shift assays (EMSAs), DNA-affinity pull-downs,

and ChIP experiments—are used to identify variant alleles

that bind transcription factors differentially. EMSAs are an
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in vitro approach that visualizes nuclear protein complexes

that bind to�20–100 bp DNA probes surrounding a candi-

date variant. The DNA-protein complexes are visualized on

a gel, and the identity of the transcription factor can be

determined with antibodies to transcription factors pre-

dicted by conserved transcription factor binding motifs

or identified by ChIP-seq datasets. DNA-affinity pull-

downs are similar to EMSAs: all DNA-protein complexes

are captured by a probe including a candidate variant allele

and visualized on a gel. Proteins in allele-specific bands are

identified by mass spectrometry. Allelic differences in tran-

scription factor binding can also be evident in differences

in ChIP-seq or ChIP-qPCR between samples of different

genotypes.48 Protein binding assays can also be performed

in high throughput.79,80

An increasingly popular method for determining the

function of regulatory variants and elements is to use

CRISPR-Cas9 genome editing to delete the regulatory re-

gion, create the alternate allele of a variant, or alter the

epigenome and regulatory regions with CRISPRi.81,82 After

genome editing, assays of gene expression and/or gene

function are performed. Deleting a regulatory element or

substituting the alternate allele allows for direct observa-

tion of phenotypic effects in the native chromatin context.

Challenges that arise in optimizing CRISPR-Cas9 genome

editing include the following: it is difficult to editmany dis-

ease-specific cell types, targetingcancreatemutations atun-

wanted sites, the deletionof a regulatory elementmightnot

have the same effect as that of a single-nucleotide change,

and editing in model organisms can create mosaicism.

Finally, model organisms can be used to model the effect

of candidate causal variants. Reporter assays can be per-

formed in model organisms, often in mice or zebrafish,

for assessing variant effects in the context of multiple

cell types and controllable environmental conditions.

Genome editing in organisms allows more complex drug-

or chemically inducible effects to be characterized. Model

organisms have the benefit of providing the context of

an entire biological system but can sometimes show

phenotypic effects that are not consistent in humans.

Candidate Variants at GWAS Signals

Fine-mapping and computational approaches often detect

multiple candidate causal variants at individual GWAS

loci. For example, in a recent GWAS meta-analysis of

type 2 diabetes, only 18 of 380 signals resulted in a sin-

gle-variant credible set.39 Examination of autoimmune

GWAS loci suggested a ‘‘multiple enhancer variant’’ hy-

pothesis, whereby multiple associated variants in clusters

of enhancers work together to alter gene expression.49

CAVIAR fine-mapping of skin pigmentation GWAS loci

resulted in multiple predicted causal variants at most

loci.58 Fine-mapping analyses can reduce the list of candi-

date variants at a GWAS locus.

Statistical fine-mappingmethodsusedifferentmodels and

cangenerate inconsistent results.Methodsmakedifferentas-

sumptions about the contributions of underlying variants
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and apply different strategies incorporating genetic associa-

tion, LD, and functional annotation. At the ANGPTL8

(MIM: 616223) locus, associated with high-density lipopro-

tein (HDL) cholesterol across populations, three fine-map-

ping methods (MANTRA, CAVIAR, and PAINTOR) of priori-

tizing candidate variants generated differing results;83

MANTRA identified a credible set of ten variants, CAVIAR

identified a credible set of 24 variants by using Finnish asso-

ciation data and a credible set of two variants by using Afri-

can American association data, and PAINTOR identified

ten, seven, and five variants in Finnish, African American,

and the combined studies, respectively. Of the 39 variants

identified by least one method, only 12 were identified in

at least twoanalyses, andonly fourwere identified inall three

analyses. A candidate causal variant thatwas identified by all

three methods showed significant allelic differences in two

assays of regulatory function; however, further experiments

are needed to determine the full molecular mechanism.

Great progress has been made in identifying regulatory

mechanisms at GWAS loci. Among numerous examples, at

the PHACTR1 (MIM: 608723) locus (associated with

vascular disease), rs9349379 was identified as a regulator

of EDN1 (MIM: 131240) expression by evidence from

enhancer signatures in heart tissue and genome editing.47

At the 6q22.1 locus (associated with prostate cancer),

rs339331 risk alleles showed increased expression of RFX6

(MIM: 612659), increased binding of HOXB13, increased

enhancer histone mark H3K4me2, and altered cell

morphology and adhesion.84 At a PARP1 (MIM: 173870) lo-

cus associated with melanoma, the risk allele showed

increased expression of PARP1 and decreased RECQL bind-

ing. Interestingly,RECQLoverexpression inmelanomacells

resulted in significant allelic differences in transcriptional

activity, whereas basal levels of RECQL resulted in no allelic

differences, suggesting that cellular context can be impor-

tant for identifying functional effects of GWAS variants.75

Multiple variants within a single GWAS signal have

shown evidence of functional effects. For example, at the

MFSD12 (MIM: 617745) locus (associated with skin

pigmentation), six variants showed allelic differences in

transcriptional reporter luciferase assays.58 Similarly, at

the GALNT2 (MIM: 602274) locus (associated with HDL

cholesterol), at least two regulatory variants were described

as having effects on transcriptional reporter luciferase

assays, in vitro protein binding, and allelic imbalance in

ChIP-seq and DNase reads.48 Four regulatory variants

could contribute to the mechanism at the HKDC1 (MIM:

617221) locus (associated with gestational hyperglyce-

mia).85 MPRAs identified 32 functional variants at

23 GWAS loci associated with red blood cell traits, and

targeted genome editing showed that three functional var-

iants at one locus affect transcription of SMIM1 (MIM:

615242), RBM38 (MIM: 612428), and CD164 (MIM:

603356) and that RBM38 is involved in erythropoiesis.86

Multiple variants can be tested together in transcriptional

reporter assays, but the distance between variants can pre-

sent a problem for cloning, and plasmids do not provide
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the native chromatin context that is most likely important

for the regulatory regions to act together. As genome-edit-

ing methods are optimized for cell types of interest, it will

be important to test multiple variants together in vivo to

determine the effects of haplotypes and to truly delineate

the complex mechanisms. These functional-mechanism

success stories highlight the great progress in understand-

ing genetic contribution to disease in the post-GWAS era.

The TERT (MIM: 187270) locus (associated with breast

cancer, ovarian cancer, and telomere length) provides an

example of both multiple signals and multiple variants.

This GWAS locus consists of at least three signals; signals 2

and 3 are distinct but not completely independent

(r2 ¼ 0.33).87 At the first signal, three regulatory variants

located in the TERT promoter decrease transcriptional ac-

tivity in breast and ovarian cancer cell lines. At the second

signal, one variant in a TERT intron increases transcrip-

tional activity. At the third signal, a variant alters TERT

splicing, resulting in a premature stop codon and truncated

protein. Themechanistic connections formultiple variants

provide strong evidence for TERT as a plausible target gene.

Conclusions

Multiple candidate causal variants at a single GWAS locus

adds complexity to delineating the molecular mechanism

at the locus. If one functional variant is identified without

full evaluation of all potential candidates, additional vari-

ants could contribute, and part of the mechanistic impact

on a gene or genes could bemissed. The effect of individual

variants could be small andmight not be observed in func-

tional experiments, perhaps because the effect is observed

in only a specific cellular environment or in combination

with other variants. Additionally, a variant that affects a

gene in functional assays does not necessarily demonstrate

that it causes trait variation or a disease; further evidence is

needed to prove this connection definitively. Many new

tools and methods need further vetting to determine

their effectiveness for a given situation. Modeling a single

variant in some assays and systems could fail to exhibit a

sufficient genetic or physiological consequence if multiple

candidate causal variants act together to affect the gene of

its function. Identifying different variants in different as-

says (e.g., transcriptional activity and chromatin interac-

tion) can lead to seemingly inconsistent evidence when

assay variability or missing data are responsible. In these

cases, we encourage researchers to identify a consistent

direction of allelic effect across multiple experiments,

which together can provide strong conclusions about

candidate causal variants at GWAS loci.

What Are the Target Gene(s)?

Historical Context

Identifying the target gene(s) at a GWAS locus is a funda-

mental part of elucidating the molecular mechanism

because these genes provide a key to understanding the

pathogenic processes and provide potential new targets

for drug development. However, the target genes remain
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largely unknown for most GWAS loci. Although some early

studies of complex genetic traits were designed on the basis

of expecting perhaps tens of contributing genes, GWASs

have found that hundreds or thousands of genes might

contribute to complex genetic traits.

A large number of genes contributing to a trait or disease

is consistent with the possibility that multiple susceptibil-

ity genes are located relatively close to each other, even at a

single locus (Figure 2). GWAS loci can have multiple genes

that appear to be good functional candidates on the basis

of gene function and expression, coding variants, chromo-

some interactions, and/or literature review. Although one

candidate causal gene per locus is perhaps still the most

likely scenario, GWAS variants can affect multiple genes,

perhaps at multi-signal loci or in gene-dense regions.

Methods

Colocalized Variant Association with Gene Expression. One

method of identifying target genes forGWAS signals is iden-

tifying colocalized eQTL associations. eQTL analysis iden-

tifies variants associated with the RNA levels of genes (or

transcripts, isoforms, or exons), usually in a single tissue or

cell type. Whereas some eQTLs are shared across tissues,

others are tissue specific.88 Typically, representative GWAS

variants are examined ineQTLdatasets for the identification

of GWAS variants that show significant associationwith the

expression level of one or more genes. However, the GTEx

Consortium reported that a remarkable 92.7% of common

variants tested show nominal association (p < 0.05) with

the expression level of at least one gene in at least one tis-

sue.88 In addition, given the very strong associations that

can be observed between variants and gene expression level,

noncausal variants in only moderate LD with candidate

causal regulatory variants can also show significant associa-

tionwith gene expression levels. Hence, further analyses are

required to determine whether the same variant(s) underly-

ing the GWAS trait association are also likely to be the vari-

ant(s) that affect the RNA levels of the eQTL gene.

In the simplest scenario, a lead GWAS variant is also the

lead variant associated with a gene in an eQTL study using

samples from the same ancestral population. In this

setting, eQTL and GWAS associations are considered to

be colocalized through a comparison of the lead GWAS

and eQTL variants. When the lead GWAS and eQTL

variants are identical or LD r2 between them is high

(e.g., r2 > 0.8 or 0.9), then the signals can be colocalized.

A recent analysis of 3,718 independent GWAS signals

found that 58.0% were in LD (r2 > 0.8) with at least one

eQTL and that 27.8% were in LD with the best eQTL

variant for a gene.41 Conditional analyses in the eQTL

dataset can provide further support for colocalization; if

the association between the lead eQTL variant and gene

expression is no longer significant after conditioning on

the GWAS variant and if the association between the lead

GWAS variant and gene expression is no longer significant

after conditioning on the lead eQTL variant, then the sig-

nals are typically considered colocalized.
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Other methods more fully assess colocalization of GWAS

and eQTL signals by using additional statistical tests, and

some methods can be applied to summary association sta-

tistics and/or incorporate variant annotation. For example,

COLOC applies a Bayesian procedure to estimate the poste-

rior probabilities that a variant is causal in bothGWASs and

eQTL studies,89 and eCAVIAR applies a Bayesian procedure

that allows for more than one candidate causal variant.90

Summary Mendelian randomization in conjunction with

a test for heterogeneity in dependent instruments (HEIDI)

tests whether gene expression and a trait are associated

because of a shared candidate causal variant and can distin-

guish thatmodel from two ormore distinct genetic variants

that are in LDand independently affect the gene expression

level and the trait.91 Limitations of using eQTLs to identify

target genes include that eQTL datasets can still be under-

powered to detect associations or unavailable in appro-

priate cell types or contexts, the LD structure might not be

identical between available GWAS and eQTL datasets, and

colocalization approaches can be computationally inten-

sive andnot robust to thepresenceofmultiple eQTLsignals,

leading to potential false-positive and -negative colocaliza-

tion. Finally, evidence of an eQTL colocalized with a GWAS

signal does not necessarily mean that expression of that

gene mediates the effect of the signal on the trait.

Similar to eQTL associations, allelic imbalance in gene

expression can identify potential target genes. Allelic

expression imbalance (AEI) analysis involves examining

the cDNA or RNA-sequencing reads of genes of interest in

individuals heterozygous for a transcribed variant. If the ra-

tio of reads from each allele deviates from 1:1, the corre-

lated alleles of a noncoding and transcribed variant can

determine cis-acting variants. Advantages of this approach

are that the two variant alleles are assayed in the same envi-

ronment and that significant differences can be detected in

smaller sample sizes than needed for eQTLs. Disadvantages

of AEI are that some genes do not contain common vari-

ants in available samples and that especially in small sam-

ple sizes, a variant can exhibit AEI merely through moder-

ate LD with a candidate causal regulatory variant.

Predicted Gene Expression Association Studies. A comple-

mentary approach to prioritizing candidate genes and di-

rection of effect is predicted expression association studies.

In this approach, GWASs and eQTL studies are integrated

to identify disease associations on the basis of sets of vari-

ants that influence gene expression. The portion of gene

expression due to genetic variants is estimated from refer-

ence eQTL studies, and these estimates are used for predict-

ing gene expression in larger GWAS, where the imputed

gene expression can be correlated to the trait for the iden-

tification of candidate genes.92–94 These strategies increase

power to detect genes that exhibit differences in genotype-

dependent expression patterns, although power is reduced

by pleiotropy, and false positives can be identified as a

result of LD and the complex genetic architecture of

GWAS loci.57,95 Nonetheless, these studies can be used to

help identify candidate genes for complex traits.96,97
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ChromatinConformation. Another approach to identifying

target genes is identifying contact between GWAS variants

and the promoters and transcription start sites of target

genes by using chromatin conformation assays. Assays

such as 3C, Hi-C, and Capture-C identify physical interac-

tions and loops in the genome,98,99 and these interactions

can differ by cell and tissue type. Locus-specific assays can

be performed to test interactions between GWAS variant re-

gions andpromoters ofnearby target genes.100–103Genome-

wide datasets can be used as a resource for detecting the

physical interactions between GWAS variants and nearby

gene promoters or established enhancers. Genome-wide

chromatin conformation datasets have been generated in

multiple cell types104–106 and can be visualized with tools

such as the 3D Genome Browser,107 the Hi-C Unifying

Genomic Interrogator (HUGIn),108 or Juicebox.109 Resolu-

tionof the chromosomal regions involved in the interaction

depends on the assay and/or sequencing depth.105,110 Cell

type is an important consideration given that chromatin

conformation assays identify active regulatory elements,

which can differ between cell types. Limitations of using

chromatin contacts to identify candidate genes are that sig-

nificance thresholds are not well established, the strategy is

uninformative when the candidate variants are located in

close proximity to a target gene as a result of the large num-

berof chance contacts betweenadjacent genomesites, chro-

matin loops can be general mechanisms of gene regulation

and not relevant to GWASmechanisms, and physical inter-

action of chromatin does not guarantee a consequence of

that interaction.

Coding Variation. Coding variants in genes that are asso-

ciated with a complex disease or trait can point to target

genes at a locus. Numerous resources exist for annotating

variants as nonsense, frameshift, and splice altering, all

of which are expected to lead to loss of function of a

gene,111 and for predicting which missense variants are

most likely to alter protein function according to evolu-

tionary, biochemical, and structural information. In addi-

tion, multiple, typically rare, coding variants can indepen-

dently associate with the same phenotype as a GWAS

signal. For example, at a GWAS locus for type 2 diabetes,

a study of coding variants in multiple populations identi-

fied 12 rare protein-truncating variants in SLC30A8

(MIM: 611145), associated with decreased disease risk,112

and of 31 rare (MAF < 1%) coding or splice-site variants

newly identified to be independently associated with he-

matological traits, 30 mapped to loci previously implicated

in hematopoiesis by GWASs.113 However, coding variants

are not necessarily causal and can be in LD with variants

affecting other genes.114,115 When mechanistic conse-

quences are considered, coding variants located at GWAS

loci can help recognize biologically relevant genes.

Functional Studies. Functional studies of genes at GWAS

loci can provide insight into target genes. Studies

including overexpression, knockdown, or knockout of a

target gene in cells or model organisms with the use of

plasmids, viruses, oligos, or CRISPR-Cas9 approaches can
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point to genes with relevant biology.116 For example, func-

tional studies in mice identified a role of CDKAL1 (MIM:

611259) in insulin secretion, and variants near CDKAL1

are associated with type 2 diabetes.117 Studies of gene func-

tion can provide insight into the biochemical pathways,

protein interactions, and relevant cell or tissue types. Of

note, whereas recapitulating some phenotypes in model

systems is straightforward, recapitulating many others,

especially neurological phenotypes, is very difficult.

Deletion or substitution of a noncoding region containing

candidate variants and subsequent analysis of gene expres-

sion and/or function can also point to target genes.46,47

Another approach is to epigenetically alter a regulatory

element by using a ‘‘dead’’ Cas9 with no nuclease activity

tethered to an ‘‘epigenetic switch’’ consisting of chromatin

modifying domains to mimic either an enhancer or a

repressor.103,116 Studies in human cells are of particular in-

terest when a gene function is cell autonomous, and exper-

iments in model organisms are especially informative

when the biological process or pathway and disease

context is well represented in the organism.

Candidate Genes at GWAS Signals

Evaluation of eQTLs colocalized with GWAS signals can

point to one or more than one target gene. For example, a

study of seven autoimmune diseases found colocalized

eQTLs in immune cell types for 91 unique GWAS loci,

including more than one gene (up to as many as 12) at

31 loci.118 A study of cardiometabolic traits found colocal-

ized subcutaneous adipose tissue eQTLs for 109 GWAS

loci, including more than one gene (up to as many as five)

at 25 loci.119 Analyses of GTEx data found that among the

GWAS signals that co-localized with an eQTL in one or

more tissues, up to 62% of the signals co-localized with

more than one gene.41,88 In addition, recent eQTL

studies have identified conditionally distinct eQTL signals,

including some that colocalizewithGWAS signals.88,120–122

Although the associated changes in gene expression levels

might not all have an effect on phenotype, the many

GWAS loci with more than one colocalized eQTL provide

many examples where more than one gene can be causal.

Although chromatin interactions often suggest multiple

plausible target genes, they can provide stronger evidence

when observed with colocalized eQTLs or functional evi-

dence. At the ARL15 locus (associated with insulin resis-

tance traits and type 2 diabetes), HiC data in multiple cell

types show significant interaction between the GWAS

variant region and the FST (MIM: 136470) promoter,108

�500 kb away, and these data support evidence that the

GWAS signals exhibit significant colocalized eQTLs for

FST,83 although functional studies support a role for

ARL15 in insulin secretion.123 At a schizophrenia-associ-

ated locus, variants were linked by both HiC and genome

editing to FOXG1 (MIM: 164874) >700 kb away,124 and at

the TMEM106B (MIM: 613413) GWAS locus (associated

with dementia), a variant in a CTCF binding site altered

chromatin architecture to change TMEM106B expression
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and cell toxicity.101 Recent analysis with ATAC-seq open-

chromatindata identifiedover 15,000 interactions between

distal regions of open chromatin, and allele-specific effects

were inferred fromthe readdata, resulting in improvedfine-

mapping of eQTL signals.125

Chromatin interactions with a GWAS variant region can

also suggest multiple candidate genes. For example, at

a breast-cancer-associated locus at 11q13, the GWAS

variant region interacted with two long noncoding RNAs,

LINC01488 (MIM: 617696) and CUPID2 (MIM: 617697),

in allele-specific 3C experiments.103 At a locus associated

with schizophrenia and bipolar disorder, an enhancer

variant interacted with two nearby miRNAs by 3C, sup-

ported by transcriptional activity and transcription factor

binding assays.100 At the FTO (MIM: 610966) locus (associ-

ated with obesity), the GWAS variants showed physical

chromatin interaction with eight genes, at least two of

which (IRX3 [MIM: 612985] and IRX5 [MIM: 606195])

showed genotype-expression association in preadipo-

cytes.102 Although the chromatin interactions might not

all lead to an effect on phenotype, the GWAS loci with

more than one interacting promoter provide examples

where more than one gene can be causal.

Coding variants in genes can point to target genes, and

rare coding variants can provide evidence for the target

genes of common noncoding variants at the same locus.

At the fasting-glucose-associated GWAS locus near G6PC2

and ABCB11 (MIM: 603201), for which the target gene

was unknown, exome array data from�33,000 individuals

identified three rareG6PC2 coding variants associated with

fasting glucose,42 suggesting that G6PC2 might also be

altered by the noncoding variants. In vitro assays confirmed

the effect of the coding variants and established G6PC2 as

an effector gene and likely target gene of the noncoding

variants at this GWAS locus.

Experiments in model organisms also identify multiple

target genes at GWAS loci. At the Agtrap-Plod1 locus (asso-

ciated with blood pressure), six nearby potential target

genes exist. Flister et al. performed mutagenesis in mice

to create mutant strains for all six of these genes. They

found that five genes showed an effect on blood pressure

or renal function, suggesting that there might be multiple

target genes at this GWAS locus.126 One important consid-

eration is that gene function is dependent on cell type and

cellular context and might not be replicated in humans

versus model organisms.

Genome and epigenome editing of regulatory regions

pinpoints target genes. A noncoding region near PHACTR1

(MIM: 608723) and EDN1 (MIM: 131240) is associated

with five vascular diseases—coronary artery disease,

migraine, dissection, fibromuscular dysplasia, and hyper-

tension. Deletion of 88 bp surrounding a fine-mapped

SNP resulted in increased expression of EDN1, but not

PHACTR1 or four other nearby genes,47 providing initial

evidence of EDN1 as a target gene. EDN1 has known roles

in the physiology of vasculature, suggesting a mechanism

for the associated diseases.47 In a second example, at the
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Figure 3. Hypotheses for Multiple Target Genes at a GWAS
Locus
Multiple target genes can be present at a single GWAS locus. Three
examples show how multiple genes might be affected. At a locus
with one GWAS signal, an enhancer containing GWAS variants
could target two genes simultaneously, or different genes could
be targeted depending on cell type or cellular context. At a locus
with two signals, each signal could target different genes. Other
mechanisms could exist.
ADCY5 (MIM: 600293) GWAS locus (associated with type 2

diabetes), deletion of the orthologous associated regulatory

region in rat pancreatic islet cells resulted in decreased

ADCY5 expression and reduced insulin secretion, support-

ing other evidence that ADCY5 is a plausible target gene at

the GWAS signal.46 At the 11q13 GWAS locus (associated

with breast cancer), epigenetically silencing a regula-

tory region with nuclease-inactivated Cas9 fused to the

Kruppel-associated (KRAB) repressor reduced expression

levels of three targeting genes: LINC01488, CUPID2, and
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CCND1 (MIM: 168461).103 These experiments provide ev-

idence that genome and epigenome editing can validate

target genes in vivo.

Emerging molecular QTL associations, such as histone,

splice, methylation, metabolite, and other endophenotype

QTLs, will aid in the identification of target genes and

biological mechanisms. For example, an analysis that com-

bined eQTLs, histone QTLs, splicing QTLs, and methyl-

ation QTLs to annotate 41 diseases and complex traits

found that these QTLs are strongly enriched with disease

heritability and provide complementary information

about disease.127 Together, these molecular associations

can suggest disease mechanisms.

Conclusions

Eachapproachto identifyinggenesat aGWASsignal canpro-

vide evidence supporting a potential contribution of more

than one gene. As expression datasets increase in size; the

number of tissues, cell types, and contexts; and gene, iso-

form, and exon specificity,more colocalized eQTLs are being

identified. Similarly, as chromatin-interaction datasets are

generated in additional tissues, cell types, and contexts,

more GWAS signals can be connected to one or more genes.

Functional assays can suggest different genes depending on

cell type, cellular environment, or other factors. In addition,

two signals at a locus can act on the same or different genes;

variants could target multiple genes via chromatin looping

or different genes via tissue-specific enhancers (Figure 3). If

multiple genes show strong candidacy, researchers should

consider pursuing both genes in functional experiments

because they could bothbe true target genes. Lack of support

for a gene from any one approach could reflect that data are

not available in the appropriate cell type or environmental

state. Given limitations in concluding causality, multiple

lines of genetic, bioinformatic, and experimental evidence

supporting the role of a gene strengthen its candidacy.

Concluding Remarks

In this review, we have outlined three important aspects of

evaluating GWAS loci (Figure 1). Generally, multiple pieces

of evidence supporting a gene or variant that affects a com-

plex trait can show a consistent direction and a single

mechanism. However, given the contributions of multiple

genes and variants at complex-trait loci and the imperfect

nature of experimental systems, some evidence might

not fit a simple model. When interpreting the results of a

computational or experimental analysis, especially unex-

pected results, researchers should consider that additional

signals might exist at a locus and that variants not consid-

ered candidates according to LD might nonetheless

contribute to themechanism of the locus. When searching

for target genes, consider that variants might act through

more than one nearby gene to influence disease. When

identifying a variant that exhibits allelic effects on a

gene, consider that additional variants might also have

functional effects. Finally, when evaluating the biological

effects of genes on disease, consider that cell type, cellular
ber 1, 2018



context, and multiple molecular mechanisms acting

together can affect disease pathogenesis.

As GWASs are performed inmore samples and additional

populations, more loci with multiple signals and variants

will be identified. The future is bright, given that progress

is being made more quickly with high-throughput assays

and with genome-editing experiments in the native chro-

matin context. Better statistical methods are continually

being developed for identifying and localizing loci, signals,

genes, and variants. The field can look forward to a better

understanding of gene regulation, biological mechanisms,

and disease pathways by closely examining GWAS loci.
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