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Bi-allelic ADPRHL2 Mutations Cause
Neurodegeneration with Developmental Delay,
Ataxia, and Axonal Neuropathy
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Lucia Laugwitz,11,12 Michaela Röblitz,13 Andreas Wroblewski,13 Hans Hartmann,14 Anibh M. Das,14
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Holger Prokisch,1,2,16 Tim M. Strom,1,2 Rafa1 P1oski,22 Georg F. Hoffmann,6 Maciej Pronicki,23

Penelope E. Bonnen,24 Susanne Morlot,25 and Tobias B. Haack1,12,26,*

ADP-ribosylation is a reversible posttranslational modification used to regulate protein function. ADP-ribosyltransferases transfer ADP-

ribose from NADþ to the target protein, and ADP-ribosylhydrolases, such as ADPRHL2, reverse the reaction. We used exome sequencing

to identify five different bi-allelic pathogenic ADPRHL2 variants in 12 individuals from 8 families affected by a neurodegenerative dis-

order manifesting in childhood or adolescence with key clinical features including developmental delay or regression, seizures, ataxia,

and axonal (sensori-)motor neuropathy. ADPRHL2was virtually absent in available affected individuals’ fibroblasts, and cell viability was

reduced upon hydrogen peroxide exposure, although it was rescued by expression of wild-type ADPRHL2 mRNA as well as treatment

with a PARP1 inhibitor. Our findings suggest impaired protein ribosylation as another pathway that, if disturbed, causes neurodegener-

ative diseases.
Pediatric neurodegenerative diseases are progressive condi-

tions typically associated with severe disability or even

death in early infancy. Identification of the underlying

genetic defects is a prerequisite for a better understanding

and eventually prevention of the pathophysiological cas-

cades causing pathology. Despite the implementation of

unbiased genome-wide sequencing in clinical routine, it

is estimated that at least half of the affected individuals

and their families remain without a definitive molecular

diagnosis. One explanation among many others is that

for many loci, a putative disease association remains to

be established, and although a specific gene defect might

be an obvious candidate in a single affected individual, it

could take years to collectively observe enough additional

individuals with the same rare condition.
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Here, we report on the results of an exome sequencing

study in eight families with individuals clinically diag-

nosed with a neurodegenerative syndrome but without a

molecular diagnosis. Informed consent was obtained

from all affected individuals or their guardians. The study

was approved by the local ethics committees.

Individual F1:II.3, a female, was born after an uneventful

pregnancy. Her early development was normal. At 1 year,

5 months of age, she was able to walk independently, but

a delay of speech development was noticed. From the age

of 3 years on, she had recurrent episodes of diplopia and

right-sided ataxic-dystonic posturing possibly triggered

by exercise. These signs progressed over several years,

and she developed tics such as facial grimacing and throat

clearing. Initial brain MRI at age 3 years was without
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obvious pathological findings. At the age of 12 years,

her condition worsened with more frequent episodes

of ataxic-dystonic posturing, ataxia, hypokinetic move-

ments, intermittent hypesthesia, pain, and fatigue.

Although cognitive function was reported to be unaf-

fected, brain MRI showed bilateral hippocampal diffusion

restriction. Laboratory investigations of blood and cerebro-

spinal fluid, as well as extensive metabolic investigations,

were noncontributory. At the age of 12 years, 2 months,

she experienced a drowning event necessitating resuscita-

tion and hypothermia therapy. She completely recovered,

but brain MRI at age 12 years, 4 months showed novel pa-

thologies (putatively secondary to hypoxia) involving

bilateral basal ganglia, cerebellar, and parietal white mat-

ter, as well as the central cortex. Disease progressed with

onset of pain in the lumbar area, increasing trunk inclina-

tion, ataxia, inability to climb stairs, unsteady gait, and

impaired cognition followed by unprovoked pain in the

upper limbs and tetraplegia. Respiratory insufficiency

necessitated mechanically assisted ventilation from the

age of 12 years, 11 months on. Her clinical state further

deteriorated, and she deceased at the age of 14 years.

Individual F2:II.2, a female, was born to healthy

consanguineous parents from Lebanon. Her two siblings

are healthy. Pregnancy, delivery, and postnatal adaption

were reportedly normal. Cognitive and motor develop-

mental milestones were reached during infancy. However,

from the age of 4 years on, febrile convulsions occurred,

and she had mild developmental delay in fine motor skills.

At the age of 8 years, muscular weakness, slowed move-

ments, and a progressive nodding of the head triggered

by, e.g., cold water were noticed. She developed a progres-

sive ataxia and weakness leading to gait abnormalities and

loss of independent ambulation. Brain and spinal MRI at

the age of 12 years revealed atrophy of the cerebellum

and spinal cord. At the age of 13 years, an acute life-threat-

ening event occurred with unclear acute respiratory insuf-

ficiency possibly in the context of a seizure. She was subse-

quently resuscitated twice because of suspected neurogenic

asystole. Prolonged episodes of respiratory insufficiency

required mechanical ventilation. A tracheostomy was per-

formed, and a percutaneous endoscopic gastrostomy tube

was placed because of dysphagia. Her condition slightly

improved to intermediate usage of ventilator support and

independent eating. Over the course of the disease, she

developed a neurogenic bladder-voiding disorder. At the

age of 14 years, 9 months, her condition deteriorated

during an infectious episode with respiratory insuffi-

ciency requiring mechanical ventilation. Feeding prob-

lems increased, and she developed a paralytic ileus.

Furthermore, increasing sleep disturbances were reported,

and she displayed extensive facial myoclonia. A clinically

suspected axonal sensorimotor peripheral neuropathy

was supported by absent responses in nerve conduction

studies. There was no reliable response to acoustic or opti-

cal stimuli, and she lost her ability to speak. Follow-up

brain MRI showed progressive atrophy of the cerebellum,
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edema of the cortex with especially right-sided volume in-

crease, and signal alterations in putamina, caudate nuclei,

and the white matter of the corpus callosum. We assume

that the neuroimaging findings that evolved in addition

to the cerebellar atrophy are likely to represent secondary

findings resulting from episodes of respiratory insuffi-

ciency with hypoxia. Extensive laboratory testing was

noncontributory. Electroencephalography showed a burst

suppression pattern, and she died at 17 years of age.

Clinical and genetic findings are summarized in Table 1,

pedigrees are shown in Figure 1, and neuroimaging find-

ings are shown in Figure 2. Clinical descriptions of the re-

maining individuals are provided in the Supplemental

Note.

Pregnancy, postnatal adaption, and perinatal develop-

ment were reportedly normal in all individuals, and all

but individual F1:II.2 were born at term. Neurodevelop-

mental problems involving a delay in speech and psycho-

motor development were noted in 10 of 11 individuals

within the first years of life, and five individuals presented

with infection-associated episodes of ataxia or dystonic

posturing. Over the course of the disease, gait abnormal-

ities were present in all individuals. 10 of 11 developed

ataxia, and individual F1:II.2 showed a spastic diplegia,

which could have resulted from perinatal hypoxic brain

damage. Seizures and corresponding electroencephalog-

raphy abnormalities were documented in six individuals.

Peripheral axonal isolated motor or sensorimotor neuropa-

thy, as shown by decreased amplitudes with normal la-

tencies in nerve conduction studies, was present in six of

eight individuals. Facial myoclonia, a possible sign of

developing bulbar palsy, was present in two of the affected

individuals. Visual impairment manifesting as diplopia

(1/5), nystagmus (3/5), strabismus (2/5), and impaired up-

ward gaze and saccadic movements and ptosis (1/5) was re-

ported in 5 of 11 affected individuals. Additional findings

included acquired microcephaly in individuals F5:II.2,

F3:II.2, and F8:II.3, and F3:II.2 also showed sensorineural

hearing loss. Disease progress was variable but frequently

associated with periods of increased stress, such as infec-

tions. Three individuals died in childhood, whereas in

another five individuals, disease progressed into their

teens, and two had life-threatening events requiring resus-

citation and mechanically assisted ventilation for respira-

tory insufficiency.

Extensive laboratory testing and metabolic investiga-

tions were not contributory in any affected individuals.

Biochemical analysis was performed on skeletal muscle

specimen of four individuals and showed normal activity

of mitochondrial respiratory-chain enzymes. Histological

examinations showed evidence of neurogenic muscle

atrophy.

Neuroimaging data were available for all but one individ-

ual and were considered unremarkable at an early disease

stage. However, over the course of disease, eight of ten

individuals developed cerebellar atrophy (Figure 2). At a

late stage of the disease, putatively secondary additional
ber 1, 2018



Table 1. Clinical and Genetic Findings in Individuals with Confirmed Bi-allelic ADPRHL2 Variants

F1:II.2 F1:II.3 F2:II.2 F3:II.1 F4:II.3 F4:II.4 F5:II.2 F6:II.1 F7:II.1 F7:II.2 F8:II.1 F8:II.3

Sex male female female female male female male female female female male female

Ethnicity German German Lebanese ND ND ND Kosovan Polish Chinese Chinese Turkish Turkish

Identified
homozygous
changes (cDNA
[GenBank:
NM_017825.2]
and protein
GenBank:
NP_060295)

c.1004T>G
(p.Val335Gly)

c.1004T>G
(p.Val335Gly)

c.744_746del
p.(Lys248_
Ile249delinsAsn)

c.1038C>G
(p.Tyr346*)

c.1004T>G
(p.Val335Gly)

c.1004T>G
(p.Val335Gly)

c.1004T>G
(p.Val335Gly)

c.1004T>G
(p.Val335Gly)

c.309�1G>T
(p.?)

c.309�1G>T
(p.?)

c.292delG
(p.Val98Trpfs*
23)

c.292delG
(p.Val98Trpfs*
23)

Phenotypic Features

Age of onset
(current age or
age of death)

1 y (27 y) 17 m (Ɨ 14 y) 4 y (Ɨ 17 y) 2 y (12 y) 13 y (32 y) 11 y (Ɨ 30 y) 3 y (7 y) 2 y (Ɨ 11 y) 1 y (Ɨ 12 y,
10 m)

2 y (Ɨ 5 y) 15 m (Ɨ 4 y,
4 m)

14 m (22 m)

Developmental
delay or
intellectual
impairment

þ þ þ þ � � þ þ þ þ þ þ

Gait
abnormalities

þ þ þ þ þ þ þ þ þ þ þ þ

Ataxia ND þ þ þ þ þ þ þ þ þ þ þ

Seizures ND � þ þ � � � þ þ � þ þ

Neuropathy ND þ þ þ ND ND þ þ þ þ � ND

Facial myoclonia � þ þ � � � � � � � � �

Sensorineural
hearing loss

� � � þ � � � � ND � ND ND

Ophthalmologic
features

� diplopia nystagmus strabismus nystagmus,
strabismus

� putative external
ophthalmoplegia
with ptosis,
impaired saccades
and upward gaze,
and nystagmus;
putative retinal
pigment
epithelium
anomalies

� ND � � �

Microcephaly ND ND ND þ ND ND þ � ND ND � þ

Respiratory
insufficiency

� þ þ � � þ � � þ þ þ �

(Continued on next page)
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abnormalities affecting the central cortical region (2/10),

basal ganglia (3/10), and corpus callosum (2/10) were

observed.

Exome sequencing was performed at four centers—Mu-

nich (families 1, 2, 4, 5, and 8), Baylor Genetics (family 3),

Warsaw (family 6), and Beijing (family 7)—on genomic

DNA from affected individuals F1:II.3, F2:II.2, F3:II.1,

F4:II.3, F5:II.2, F6:II.1, F7:II.2, and F8:II.3, as well as the

parents from families 4 and 5, as described previously.1–3

In individual F1:II.3, prioritization of potentially patho-

genic variants included a search for recessive-type non-

synonymous variants with a minor allele frequency

(MAF) < 0.1% in both an in-house database containing

�3,000 control exomes and the Exome Aggregation Con-

sortium (ExAC) Browser (accessed January 2018). This

search failed to identify pathogenic or likely pathogenic

variants in established disease-related genes associated

with clinical features of the affected individuals. Given

the proposed role of the encoded protein in posttransla-

tional proteinmodification and in silico prediction, the ho-

mozygous missense change c.1004T>G (p.Val335Gly)

(GenBank: NM_017825.2) in ADPRHL2 (MIM: 610624),

coding for ADP-ribosylhydrolase like 2, was initially

considered a promising candidate in individual F1:II.3.

The same homozygous missense variant was subsequently

identified in the similarly affected individuals of families

F4–F6. In families F1, F4, and F5, a comparison of the

sequence variation observed in the �2 Mb region sur-

rounding the variant identified ten homozygous rare

(MAF < 1% in public databases) variants. This finding

is in line with shared ancestry. Furthermore, an addi-

tional four different homozygous ADPRHL2 variants—

an in-frame deletion (c.744_746del [p.Lys248_Ile259

delinsAsn]), a predicted truncating variant (c.1038C>G

[p.Tyr346*]), a canonical splice-site variant (c.309�1G>T

[p.?]), and a frameshift variant (c.292del [p.Val98Trpfs*

23])—were identified in four additional unrelated individ-

uals with a similar clinical phenotype. The results of carrier

testing performed on available family members were in

line with autosomal-recessive inheritance. The change

c.1004T>G (p.Val335Gly) (rs201735454) is observed 27

times in a heterozygous state in 277,240 alleles of the

gnomAD browser, the change c.1038C>G (p.Tyr346*)

(rs531916765) is present three times in 246,234 alleles,

and the variants c.744_746del (p.Lys248_Ile259delins

Asn), c.292del (p.Val98Trpfs*23), and c.309�1G>T (p.?)

have not been observed in at least 227,988 alleles. None

of the variants have been reported in a homozygous state

in public databases (ExAC Brower or gnomAD) or an in-

house database containing >3,000 exome datasets of indi-

viduals with unrelated phenotypes. No bi-allelic loss-of-

function variants were observed in �120,000 alleles of

the ExAC Browser. Immunoblot studies in primary fibro-

blasts available from individuals F1:II.3 and F2:II.2 showed

an absence of ADPRHL2 (Figure 1). In summary, the iden-

tification of five different bi-allelic functionally relevant

ADPRHL2 variants in eight unrelated families establishes
ber 1, 2018
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100bp

1000bp

CDS

UTR
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NP_060295.1
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MTS
1-27

1 2exon 63 4 5

c.1004T>G, p.Val335Gly

c.1038C>G, p.Tyr346*

c.744_746del, p
.Lys248_Ile249delinsAsn
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C S R L H R V K E L M D
E KQ L Q NM E T L L D
C N K L R K I K A F L A

YGM DQ V P E SWQQ S C EG Y E E T D I L AQ S L H R V F Q K S -
YGM DQ V P E SWQQ S C EG Y E E T D I L AQ S L H R V F Q K S L
YGM EQ V P E SWQQ S C EG Y E E T D V L AQ S L H R V F Q K S L
YGM EQ V P E SWQQ S C EG F E E T D V L AQ S L H R V F Q E S S
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Figure 1. Pedigrees of Investigated Families, Structure of ADPRHL2, and Investigation of ADPRHL2 Amounts
(A) Pedigrees of eight families carrying pathogenic variants in ADPRHL2 illustrate themutation-carrier status of affected (closed symbols)
and healthy (open symbols) family members. ND, not determined.
(B) Structure of ADPRHL2 (top) and ADPRHL2 (bottom) with known protein domains andmotifs of the gene product and position of the
identified variants. Intronic regions are not drawn to scale.

(legend continued on next page)

The American Journal of Human Genetics 103, 817–825, November 1, 2018 821



Figure 2. Neuroimaging Findings in Individuals with ADPRHL2 Variants
(A) Brain MRI (T1-weighted image, sagittal view) of individual F5:II.2 at the age of 7 years demonstrates mild upper vermian atrophy
(arrow).
(B and C) Brain MRI (T1-weighted image, sagittal view) of individual F2:II.2 at the ages of 12 years (B) and 14 years (C) demonstrates
progressive cerebellar atrophy (arrow).
(D) MRI of the myelon (T2-weighted image, axial view) of individual F2:II.2 at the age of 12 years shows atrophy of the spinal cord and
bilateral cord T2 hyperintensities (arrow).
ADPRHL2 as a gene confidently implicated in this neurode-

generative disease that includes developmental delay or

regression, seizures, ataxia, and neuropathy as key clinical

features.

ADPRHL2 is thought to function in the pathway of ADP-

ribosylation, which is a reversible posttranslational modifi-

cation used to regulate key cellular processes such as

transcription, DNA repair, translation, and apoptosis.4 In

humans, severalADP-ribose transferases transferADP-ribose

from nicotinamide adenine dinucleotide (NADþ) to target

proteins. Among different protein families putatively

catalyzing this reaction, the probably best-characterized en-

zymes are so-called poly(ADP-ribose) polymerases (PARPs).5

Some members of the PARP family are able to transfer only

ADP-ribose monomers, whereas others produce poly(ADP-

ribose) chains.5 A well-characterized member is PARP1.

Once activated by genotoxic stress-induced single-strand

DNA breaks, it produces poly(ADP)-ribosylation associated

with depletion of cellular NADþ and translocation of mito-

chondrial proapoptotic factors to the nucleus.6 Given that

the ultimate consequence of persistent ADP-ribosylation is

parthanatos, thesedynamicprocesses require precise regula-

tion, andADP-ribosylationhas tobe reversible.7,8 Poly(ADP-

ribose) (PAR)hydrolysis is catalyzedby several enzymes. The

function of PAR glycohydrolase (PARG) is well studied: it

cleaves the ribose-ribose bonds between ADP-ribose sub-

units of the poly(ADP-ribose) chains.9 Another enzyme

able to reverse protein poly(ADP)-ribosylation is ADPRHL2.

It hydrolyses PAR chains on proteins, albeit less efficiently

than PARG.10 So far, ADPRHL2 is the only known poly

(ADP-ribose)-hydrolyzing enzyme in mitochondria.11

Given that PARG and ADPRHL2 exclusively hydrolyze

poly(ADP-ribose) chains, a number of additional factors—

including OARD1 (also called TARG1), MACROD1,
(C and D) Immunoblot studies on ADPRHL2-mutant fibroblast cell lin
variants c.1004T>G (p.Val335Gly) and c.744_746del (p.Lys248_Ile2
duction with wild-type ADPRHL2 led to increased amounts of the
with anti-ADPRHL2 antibody (Sigma-Aldrich, HPA027141, dilution 1
tion 1:20,000) was used as a loading control.
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MACROD2, and ARH—are necessary to remove the last

ADP-ribose subunit attached to a protein.12–14

We used fibroblast cell lines of individuals F1:II.3 and

F2:II.2 to study the cellular consequences of ADPRHL2

deficiency. PARP1 is the main polymerase contributing

to the intracellular PAR pool.15,16 Hydrogen peroxide

(H2O2) stimulates PARP1 via oxidative DNA damage and

thereby leads to an increase in intracellular PAR.17 Given

the proposed role of ADPRHL2 in reversing poly(ADP)-ri-

bosylation by hydrolyzing PAR into mono(ADP-ribose),

we postulated ADPRHL2 deficiency to promote H2O2-

mediated accumulation of PAR. To test this hypothesis,

we performed immunohistochemical staining of ADP-

ribosylation in fibroblasts of affected and control indi-

viduals. Treatment of fibroblasts with 2 mM H2O2 for

20 min resulted in a marked ring-shaped accumulation of

ADP-ribose in the perinuclear and nuclear region in both

control and affected individuals’ cell lines (Figure 3).

Amounts of ADP-ribose normalized 2 hr after H2O2

removal in control fibroblasts, whereas a ring-shaped

signal remained in ADPRHL2-mutant fibroblasts (Figure 3).

This observation is in line with impaired cellular removal

of ADP-ribose as a consequence of ADPRHL2 deficiency.

PAR accumulation in ADPRHL2 fibroblasts was also docu-

mented by immunoblotting (Figure 3).

PAR accumulation has been associatedwith increased cell

death.7 To assess this hypothesis, we exposed ADPRHL2-

mutant and control fibroblast cell lines cultured in high-

glucose DMEM (4.5 g/L; Thermo Fisher Scientific) to H2O2

concentrations ranging from 0 to 1,000 mM for 48 hr.We as-

sessed cell viability by quantification with alamarBlue Cell

Viability Reagent (Thermo Fisher Scientific) as a readout.

We did not detect a significant difference in cell viability

between affected individuals’ fibroblasts and control cells
es (C) and transduced cell lines (D) indicated that the homozygous
49delinsAsn) demonstrate a severe reduction of ADPRHL2. Trans-
protein. Immunoblotting was performed on whole-cell lysates

:200). An anti-alpha-tubulin antibody (Sigma-Aldrich, T5168, dilu-
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Figure 3. Investigation of ADP-Ribosylation and Cell Viability upon H2O2 Treatment
(A–R) Control (A–I) andmutant (J–R) primary fibroblasts were seeded on chamber slides and allowed to attach overnight. Treatment with
2 mM H2O2 for 20 min increased ADP ribose in both control (B, E, and H) and mutant (K, N, and Q) cell lines, as shown by immuno-
histochemistry using the anti-pan-ADP-ribose binding reagent (MABE1016, Merck Millipore, diluted 1:1,000 in 13 blocking solution
[Roche] in PBS and 0.5% Tween-20). Subsequent incubation for 2 hr in normal cell-culture medium led to a marked decrease in staining
intensity in control cell lines (C, F, and I), whereas the signal intensity remained high in fibroblasts from ADPRHL2-deficient individuals
(L, O, and R).
(S) Immunoblot analysis of ADP ribose in fibroblasts of affected and control individuals. Fibroblasts were untreated, treated with 2 mM
H2O2 for 20 min, or treated with H2O2 for 20 min and allowed to recover for 2 hr (release). Staining was performed with anti-pan-ADP-
ribose binding reagent (MABE1016, Merck-Millipore).
(T and U) Cell-viability analysis using alamarBlue Cell Viability Reagent (Thermo Fisher Scientific) according to the manufacturer’s pro-
tocol. 2,500–3,000 cells were plated per well on 96-well plates 24 hr before treatment. Cells were cultured either in high-glucose (T) or
low-glucose (U) DMEM before and during treatment with H2O2 at concentrations from 0 to 1,000 mM for 48 hr (T) or 24 hr (U).

(legend continued on next page)
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(Figure3).Apotential explanation for thisobservationcould

be that in this setting, alternative cytosolic PAR-hydrolyzing

enzymes can compensate for defective ADPRHL2 function.

Asmentionedpreviously,ADPRHL2 is theonly character-

ized PAR-hydrolyzing enzyme to date in mitochondria.11

Furthermore, an increase in PARP1 activity has been linked

to impaired mitochondrial metabolism.18 In order to more

specifically challenge stress ADPRHL2-dependent PAR hy-

drolysis, we next cultured the cell lines in low-glucose

DMEM (1 g/L; Thermo Fisher Scientific) to promote mito-

chondrial respiration as a source of cellular energy supply.

Cell viability was determined after 24 hr treatment with

H2O2 at concentrations of 0 to1,000mM.At a concentration

of 600 mM, we observed significantly lower cell viability in

ADPRHL2-mutant cell lines than in control cells (Figure 3).

To confirm that this effect was indeed caused by a defi-

ciency of ADPHRL2, we performed a rescue experiment.

We transduced ADPRHL2-deficient and control fibroblasts

with wild-type ADPRHL2 cDNA by using a feline-immuno-

deficiency-virus-based lentiviral expression vector (Gene

Copoeia) as described previously.19 Increased amounts

of ADPHRL2 were confirmed by immunoblot analysis

(Figure 3). Transduced fibroblasts grown on low-glucose

DMEM with 600 mM H2O2 showed a significant higher cell

viability than naive ADPRHL2-mutant cell lines (Figure 3).

To further corroborate the hypothesis that PAR accumu-

lation is indeed the mechanism mediating increased H2O2

sensitivity in ADPRHL2-deficient cell lines, we treated

the cells with the PARP1 inhibitor 3,4-dihydro-5-[4-(1-

piperidinyl)butoxyl]-1(2H)-isoquinolinone (DPQ, Sigma-

Aldrich). Viability of ADPRHL2-mutant fibroblasts

cultured in low-glucose DMEM with 600 mM H2O2 for

24 hr was significantly increased upon treatment with

25 mM DPQ. Our findings provide additional evidence for

the functional relevance of the investigated ADPRHL2 var-

iants, supporting PAR accumulation as a pathomechanism

mediating cell death from increased oxidative stress.

Inconclusion,we identifiedbi-allelicADPRHL2variants as

the disease-causing molecular defects underlying a progres-

sive neurodegenerative disorder in nine affected individuals

from seven families. Although larger studies are needed to

fully define the phenotypic spectrum associated with

ADPRHL2 deficiency, overlapping findings in several indi-

viduals suggest that disease manifestation with episodic

movement disorders at the beginningwith periods of partial

recovery might constitute clinical hallmarks that deserve

special notion in this disease. Additional suggestive features

are development of ataxia and peripheral (sensori-)motor

axonal neuropathy over the course of the disease. Similar

to murine fibroblasts deficient of the mouse ortholog

(Arh3�/�), affected individuals’ fibroblasts grown on respira-

torymediumwere less viable uponH2O2 stress than control
(V) Cell-viability analysis using alamarBlue Cell Viability Reagent afte
transduction and treatment with 25 mM DPQ.
The data represent at least five experiments for each cell line grown
*p < 0.01, **p < 0.001, two-tailed unpaired t test.
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cells.20 This cellular phenotypewas rescued by expression of

wild-type ADPRHL2 mRNA as well as treatment with a

PARP1 inhibitor, the latter ofwhich supports the hypothesis

that PAR accumulation is an important factor in the patho-

physiology of this disease. PAR accumulation by PARP1 hy-

peractivation has been suggested as a mechanism involved

in the pathogenesis of the autosomal-recessive disorders spi-

nocerebellar ataxia 26 (SCAR26 [MIM: 617633]) and ataxia

oculomotor apraxia 4 (AOA4 [MIM:616267]), causedbymu-

tations in XRCC1 and its’ interaction partner PNKP, respec-

tively. Notably, the phenotypic spectrum associated with

SCAR26andespeciallyAOA4dysfunctionshows remarkable

overlap with ADPRHL2 deficiency, including progressive

ataxia, oculomotor abnormalities, and peripheral sensori-

motor neuropathy.21More generally, an increase in intracel-

lular PAR has been associatedwithmore commonneurolog-

ical disorders, such as Alzheimer disease,22 Parkinson

disease, and amyotrophic lateral sclerosis.23 Although the

above-mentioned changes are likely to be secondary phe-

nomena, in addition to our report, currently only one report

directly implicates impaired recyclingofADP-ribosylation in

neurodegeneration. In 2013, Sharifi et al. described several

affected individuals from a single large family affected by

childhood-onset neurodegeneration manifesting as severe

neurodevelopmental delay, seizures, and peripheral neu-

ropathy leading to death by the age of 10–11 years. Func-

tional studies showed that the identified mutations in

the candidate gene OARD1 (MIM: 614393; also known as

TARG1 or C6orf130) result in defective degradation of ADP-

ribosylation.14 Our findings further support the concept of

disturbed posttranslational protein-modification pathways,

such as ADP-ribosylation, in neurodegenerative diseases.

In both C. elegans andmouse neurons, inhibition of poly

(ADP-ribosylation) leads to improved neuronal regenera-

tion after axonal injury.24 Speculatively, the prevention

of excessive PAR accumulation with its detrimental down-

stream effects culminating in cell death could evolve as a

potential therapeutic target in selected neurodegenerative

disease entities in humans.
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