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Missense Mutations of the Pro65 Residue of PCGF2 Cause
a Recognizable Syndrome Associated with Craniofacial,
Neurological, Cardiovascular, and Skeletal Features

Peter D. Turnpenny,1,28,* Michael J. Wright,2 Melissa Sloman,3 Richard Caswell,4

Anthony J. van Essen,5,29 Erica Gerkes,5 Rolph Pfundt,6 Susan M. White,7,8 Nava Shaul-Lotan,9

Lori Carpenter,10 G. Bradley Schaefer,11 Alan Fryer,12 A. Micheil Innes,13 Kirsten P. Forbes,14

Wendy K. Chung,15 Heather McLaughlin,16 Lindsay B. Henderson,16 Amy E. Roberts,17

Karen E. Heath,18,19 Beatriz Paumard-Hernández,18,19 Blanca Gener,19,20 the DDD study,21

Katherine A. Fawcett,22,27 Romana Gjergja-Jura�ski,23 Daniela T. Pilz,24 and Andrew E. Fry25,26,28,*

PCGF2 encodes the polycomb group ring finger 2 protein, a transcriptional repressor involved in cell proliferation, differentiation, and

embryogenesis. PCGF2 is a component of the polycomb repressive complex 1 (PRC1), a multiprotein complex which controls gene

silencing through histone modification and chromatin remodelling. We report the phenotypic characterization of 13 patients (11 un-

related individuals and a pair of monozygotic twins) with missense mutations in PCGF2. All the mutations affected the same highly

conserved proline in PCGF2 and were de novo, excepting maternal mosaicism in one. The patients demonstrated a recognizable facial

gestalt, intellectual disability, feeding problems, impaired growth, and a range of brain, cardiovascular, and skeletal abnormalities. Com-

puter structural modeling suggests the substitutions alter an N-terminal loop of PCGF2 critical for histone biding. Mutant PCGF2 may

have dominant-negative effects, sequestering PRC1 components into complexes that lack the ability to interact efficiently with histones.

These findings demonstrate the important role of PCGF2 in human development and confirm that heterozygous substitutions of the

Pro65 residue of PCGF2 cause a recognizable syndrome characterized by distinctive craniofacial, neurological, cardiovascular, and skel-

etal features.
PCGF2 [MIM 600346] encodes the polycomb group ring

finger 2 protein (PCGF2, aka MEL18). The PCGF2 protein

contains an N-terminal RING finger motif and is similar

in structure to other polycomb-group (PcG) proteins.1

PCGF2 has been implicated in cell proliferation,2 X inac-

tivation,3 regulation of homeobox genes during embryo-

genesis,4 mesoderm differentiation,5 hemopoiesis,6

tumor suppression,7,8 and angiogenesis.9,10 PCGF2 is

widely expressed in human tissues.1,11 It binds to a spe-

cific DNA sequence (50-GACTNGACT-30) in the promoter

regions of target genes.7 PCGF2 is a component of a
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multiprotein complex called the polycomb repressive

complex 1 (PRC1), an essential regulator, via histone

modification and chromatin remodeling, of transcrip-

tion in embryonic and adult stem cells.12,13 The core of

mammalian PRC1 typically contains an E3 ubiquitin

ligase (RING1A [MIM 602045] or RING1B [MIM

608985]),3,14 that ubiquitinates histone H2A at lysine

119, along with a PCGF protein (PCGF1-6),15 which reg-

ulates the enzyme activity of the complex. PRC1 com-

plexes often include other PcG components (e.g., poly-

homeotic homolog or chromobox homolog proteins),
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which guide recruitment of PRC1 to the chromatin.12

The variable composition of PRC1 allows the complex

to modulate function depending on cell type and devel-

opmental stage. A range of other proteins involved in

histone H2A ubiquitination have been linked to neuro-

developmental disorders.16 These include proteins

involved in both adding17–19 and removing20–22 ubiqui-

tin from H2A. Here, we report that mutations in PCGF2

cause a recognizable developmental disorder.

Individuals 1 and 2 underwent exome sequencing as

part of the Deciphering Developmental Disorders (DDD)

study.23 Both individuals had the same de novo missense

mutation in PCGF2, c.194C>T, p.(Pro65Leu), and strik-

ingly similar facial appearances. Identification of addi-

tional subjects with PCGF2 variants was achieved through

contact with other institutions and via GeneMatcher.24

Thus, nine further unrelated individuals and a pair of

monozygotic twin sisters with missense mutations in

PCGF2 were ascertained. The unrelated individuals all

had the same mutation, c.194C>T, p.(Pro65Leu). The

twin sisters (individuals 3 and 4) had a different mutation

at the same residue, c.193C>T, p.(Pro65Ser). All muta-

tions were de novo, apart from individual 11 whose

asymptomatic mother was found to be mosaic (21% in

blood DNA). Most mutations were identified by trio

exome sequencing. Individual 6 was ascertained based

on clinical features and the diagnosis confirmed by tar-

geted Sanger sequencing.

To delineate the phenotypic spectrum associated with

PCGF2 mutations we collected detailed clinical informa-

tion. Consent for publication of photographs was sought

from the individuals’ parents or legal guardians (Individual

13’s parents did grant use of non-facial photographs - they

are in Figure S2). Individuals who had evaluation or anal-

ysis beyond routine clinical care were part of research

studies approved by either the Cambridge South Research

Ethics Committee (10/H0305/83) or the Research Ethics

Committee forWales (09/MRE09/51). Detailed case reports

for all the subjects are given in the Supplemental Note.

Detailedmolecular and clinical features for each individual

are included in Table S1. Coding and protein positions

for PCGF2 are based on GenBank accession codes

NM_007144.2 (ENST00000360797.2) and NP_009075.1,

respectively.

The 13 subjects (7 females and 6 males) ranged in age

from 2 to 21 years. The individuals all had similar

distinctive facial features, intellectual disability, and

impaired growth (Table S1). Clinical images from 12 of

the subjects are shown in Figures 1, S1 and S2. Consis-

tent facial features included a broad forehead with

frontal bossing (13/13); sparse, slow growing hair, partic-

ularly in the frontal and temporal regions (12/12); peri-

orbital fullness (12/12); and malar hypoplasia (12/12).

The subjects’ ears were dysplastic (12/12), typically

with a satyr configuration, and often small and low set.

Mild facial hypotonia was common. This impaired artic-

ulation of speech and led to an open mouth posture and
The American
drooling (3/13). Patients often had short palpebral fis-

sures (11/12) and/or oral aperture (7/12). A prominent

nasal tip (10/13) and mandibular progrnathism (7/13)

were common in older individuals. The combination of

large forehead, prominent jaw and open mouth results

in the face often appearing long (7/12). The InterFace

software package25 was used to generate a composite

average face (Figure S2).

The intellectual disability and/or developmental delay in

the subjects ranged from mild to severe. Most individuals

had difficulties with verbal communication. Three had ab-

sent speech at the time of assessment (at 21 years, 9 years,

and 30 months of age). Muscular hypotonia (9/13) and

conductive hearing impairment (7/13) were common.

Only two subjects had a history of confirmed seizures. MRI

brain scans for eight individuals were available for review

(Figure 2). Mild enlargement of the lateral ventricles was

common. Polymicrogyria, a malformation of cortical devel-

opment, was noted in four individuals (bilateral extensive

polymicrogyria in the twins, and bilateral perisylvian poly-

microgyria in individuals 6 and 12). An irregular gyral

pattern was reported in individual 9 but the MRI was not

available for review. Patchy to confluent white matter

changes were present in all reviewed scans, most promi-

nently around the atria of the lateral ventricles. The white

matter changes varied in severity and were most marked in

the individuals with polymicrogyria. In some areas the

abnormal white matter had the appearance of prominent

perivascular spaces. Individual1 reportedlyhada thincorpus

callosum. Individual 9 was reported to have mild cerebellar

vermis hypoplasia. MR angiography was performed in three

individuals. This showed a variable degree of tortuosity and

ectasia of the intra- and extracranial blood vessels. Tortuous

retinal vessels were reported in individual 7.

Intrauterine growth restriction was noted during three

pregnancies (borderline in one more). All the subjects

had a birth weight below the mean for gestational age.

Weight during childhood remained low, compounded

by feeding difficulties (9/13) and/or gastresophageal re-

flux (6/13). The feeding problems and reflux improved

slowly with age. Constipation was also common (8/12),

sometimes severe. Height during childhood was generally

low for age although three subjects had heights just above

the mean. The effects on head size were variable. Individ-

ual 1, the oldest and most intellectually impaired individ-

ual in the group, had a relatively large head size from early

childhood, originally attributed to arrested hydrocepha-

lus (occipitofrontal circumference [OFC] þ1.8 SD, height

and weight 1–2 SD below the mean). Relative macroce-

phaly was noted in two other individuals. In contrast,

four individuals had small heads (OFC < �2 SD). Eleven

subjects had cardiac abnormalities. Findings included

patent ductus arteriosus (PDA) (5/13), atrial septal defect

(3/13), and dilatation of the ascending aorta (5/13). Indi-

vidual 5 had a PDA and prolapse of both mitral and

tricuspid valves with some regurgitation. Individual 10

had aortic dilatation and an episode of supraventricular
Journal of Human Genetics 103, 786–793, November 1, 2018 787



Figure 1. Facial Features of Individuals with PCGF2 Mutations
Each individual is noted with the corresponding number used throughout the manuscript. Included on the top left of each cluster is the
sex. Ages are: individual 1, 12 years; individual 2, 8.5 years; individual 3, 8 years; individual 4, 8 years; individual 5, 7 years (left), 4 years
(right); individual 6, 9 years; individual 7, 7 years; individual 8, 6 years; individual 9, 2 years (left), 3 years (right); individual 10, 9 years;
individual 11, 8 years; individual 12, 3 months. Consistent facial features include a broad forehead, long face, malar hypoplasia, small
mouth, small palpebral fissures, periorbital fullness, prominent nose (particularly in older indiduals), and dysplastic, low-set ears.
tachycardia. Individual 1 was found to have a severely

dilated aortic root at the age of 21 years (diameter

4.7 cm at the sinus of valsalva, Z score> 7). No arterial an-

eurysms or dissections were reported in the subjects. Skel-

etal anomalies were observed in several individuals. These

included hypoplasia of the L1 vertebra (individual 1),

small T3 vertebral body (individual 5), and a truncated

sacrum (individual 6). Kyphosis and/or scoliosis (6/13),

pectus deformities (3/13), and minor digital anomalies

(4/13) were also found. Individual 1 had a skeletal survey

at age 2.5 years, which revealed delayed epiphyseal ossifi-

cation, particularly of the carpal bones, and pseudo-

epiphyses of many metacarpal bones. Two cases (individ-

uals 2 and 4) had a small diaphragmatic hernia of the

Morgagni type.

The identifiedmutations all affected the Pro65 residue of

PCGF2. This residue is located just after the N-terminal

RING finger motif and is highly conserved across species

and other human PCGF proteins (Figures 3A and 3B). No

variants have been reported at this position in the

gnomAD database in PCGF2 or at the equivalent proline

in other human PCGF proteins. Both mutations were pre-

dicted to be deleterious by a majority of in silico prediction

programs (Table S1). To explore the effects of Pro65 muta-
788 The American Journal of Human Genetics 103, 786–793, Novem
tions, we modeled the structure of the N-terminal of

PCGF2 (amino acids 5-101) based on solved crystal struc-

tures for its homolog, BMI1 (PCGF4) [MIM 164831]. Two

templates were used, PDB 2h0d (BMI1 bound to

RING1B)26 and PDB 4r8p (BMI1-PRC1 complex bound to

nucleosome),27 with essentially identical results. Pro65 is

situated at the junction between an extended loop region

and a short a-helix (Figure 3C). The presence of proline

at this position is likely to maintain the transition from

loop to helix. Furthermore, given the rotational constraint

imposed by proline’s ring structure, this residue is likely

to provide the loop region with a degree of structural

rigidity.28 Thermodynamic analysis of the 2h0d-based

PCGF2 model using FoldX showed the Pro65 variants re-

sulted in changes to thermodynamic stability (DDG) of

þ8.6 kcal/mol and þ3.9 kcal/mol for p.Pro65Leu and

p.Pro65Ser respectively; DDG values values > 3 kcal/mol

are generally regarded as destabilizing.29 Intriguingly, the

loop region next to Pro65 contains two basic residues,

Lys62 and Arg64, which form a basic patch on BMI1 and

the predicted surface of PCGF2 (Figures 3D and 3E).

PRC1 complexes containing PCGF2 (or BMI1) have low

intrinsic ubiquitin ligase activity compared to complexes

containing other PCGF proteins.30 This is compensated
ber 1, 2018



Figure 2. MRI Brain Abnormalities in Individuals with PCGF2 Mutations
(A–E) Axial (FLAIR, T2 and T1), sagittal (T1), and MRA images from individual 3 at age 21 months.
(F–H) Axial (FLAIR and T1) and sagittal (T1) images from individual 4 at age 21 months.
(I and J) Axial FLAIR and MRA images from individual 5 at age 3 years and 3 months.
(K–M) Axial (FLAIR, T2 and T1) images from individual 6 at age 5 years.
(N and O) Axial (T2 and T1) images from individual 7 at age 10 months.
(P–R) Axial (FLAIR and T2) and MRA images from individual 8 at age 37 months.
(S and T) Axial T2 images from individual 10 at age 13 months.
The images show patchy white matter hyperintensity in the T2 and FLAIR images (black arrows). The patches are scattered throughout
the white matter but are consistently seen in the peri-atrial region. Other findings included enlargement of the lateral ventricles;
increased anterior extra-axial fluid spaces (e.g., B, G, N, and S); bilateral polymicrogyria (yellow arrows, subtle in M); prominence of
the perivascular spaces, including in the corpus callosum (red arrow, Q); coarctation of the frontal horns (blue arrow, S). MRA showed
tortuosity (white arrows) of the internal carotid (E), (J), and vertebral (R) arteries.
for by an increased affinity for the nucleosomal substrate,

leading to efficient histone ubiquitination. The increased

affinity is dependent on residues Lys62 and Arg64, which

interact with an acidic patch on the surface of histones 3

and 4 (Figure 3F). This raises the possibility that the inter-

action between PCGF2 and histones is disrupted by the

structural perturbations caused by Pro65 substitutions.

The extreme clustering of disease-causing de novo

missense mutations in PCGF2 is highly statistically signif-

icant and similar to other genes with non-haploinsuffi-

cient disease mechanisms.31 No truncating mutations

were observed in our cohort. In contrast, several truncating

PCGF2 variants are listed by the gnomAD database. This

argues against a simple haploinsufficiency mechanism.

The probability of PCGF2 being loss-of-function intolerant
The American
(pLI)32 in the Exome Aggregation Consortium (ExAC)

database is only 0.55. Furthermore, no interstitial deletions

involving PCGF2 are listed on the DECIPHER database.

Loss of PSc (the homolog of PCGF) in Drosophila mela-

nogaster leads to mis-expression of homeotic genes and de-

fects in segmental determination.33 Similarly, homzoygote

Pcgf2-deficientmice exhibit disturbed Hox gene expression

with posterior transformations of the axial skeleton

and growth retardation.4 However, heterozygous Pcgf2-

deficient mice were normal, and no abnormalities of

craniofacial structure or neurology were identified in the

homozygotes. Our in silico structural modeling suggests

substitution of Pro65 disrupts the interaction of PCGF2

with histones. This provides a plausible molecular mecha-

nism for a dominant-negative effect. Mutant PCGF2might
Journal of Human Genetics 103, 786–793, November 1, 2018 789



Figure 3. Localization of the PCGF2 Mutations
(A) Schematic domains of PCGF2. The domains and motifs of PCGF2 (UniprotKB: P35227) are illustrated. These include a RING-type
Zinc finger (residues 18–57), nuclear localization signal (81–95) and Proline/Serine-rich domain (242–344). The location of the Pro65
residue is marked by the red asterisk. Residue number is indicated in the scale below the illustration.
(B) The PCGF2mutations are located at the highly conserved Pro65 residue. ClustalWhomology alignments for Human PCGF2 (residues
51-80) and a range of orthologs and paralogs. Orthologs include Human (NP_009075.1), Rhesus monkey (XP_001083817.1), Cow
(NP_001137578.1), Mouse (NP_001156779.1), Rat (NP_001099306.1), Chicken (XP_003642857.1), Frog (NP_001025573.1), Lamprey
(ENSPMAP00000007297.1), and Fruit fly (NP_523725.2). Paralogs include BMI1/PCGF4 (NP_005171.4), PCGF1 (NP_116062.2),
PCGF3 (NP_006306.2), PCGF5 (NP_001243478.1), and PCGF6 (NP_001011663.1). Identical residues are indicated by dots. The blue
bar highlights the position of the Pro65 residue.
(C) Structural model of human PCGF2 (residues 5-101, modeled on template 2h0d). Two views of themodel are shown in ribbon format,
colored from blue, N-terminal, to red, C-terminal, with side-chains shown for Pro65, Arg64, and Lys62. Grey spheres represent bound
zinc ions; interaction with RING1B is primarily mediated via residues in helices 1 and 3 (blue and orange, respectively).
(D) The interaction between PCGF2 and histone H3/4 (modeled on template 4r8p). The predicted molecular surface of PCGF2 (left) is
colored by electrostatic charge (blue, basic; red, acidic); histone chains from 4r8p are shown as green (H3.2) and gray (H4) ribbons,
respectively; other chains of the complex have been omitted for clarity; note the basic patch of PCGF2 in contact with H3.2.
(E) As (D), but showing surface charge for H3.2, with PCGF2 shown as a ribbon colored fromN-terminal, blue to C-terminal, red; note the
acidic patch of H3.2 lying opposite the basic patch of PCGF2.
(F) As (E), but showing detail around the PCGF2/H3.2 interface; the regions shown are outlined by gray broken lines in part E; sidechains
of PCGF2 Pro65, Arg64, and Lys62 (partially obscured) are shown in stick format.
retain the ability to sequester other PcG components into

PRC1 complexes but, due to disruption of the loop struc-

ture around Lys62 and Arg64, mutant PRC1 complexes

might lack the ability to interact efficiently with histones.

Detailed functional experiments will be required to distin-

guish between these and other possible pathogenesic

mechanisms at a molecular level.

PCGF2 regulates differentiation of the cardiac meso-

derm, which might contribute to the cardiac anomalies

seen.5 Aortic dilation was found in five of the subjects (se-
790 The American Journal of Human Genetics 103, 786–793, Novem
vere in individual 1, the young adult). We would therefore

recommend that all PCGF2 patients have periodic echocar-

diographic surveillance. The brain and vascular abnormal-

ities seen in patients might be due to disturbed PI3K-AKT

signaling, a critical pathway regulating growth, angiogen-

esis, and neural development. Loss of PCGF2 function

leads to downregulation of PTEN [MIM 601728], promot-

ing activation of AKT [MIM 164730], increased HIF-1a

[MIM 603348] levels, and expression of vascular endothe-

lial growth factor [MIM 192240].10 In addition, PCGF2
ber 1, 2018



binds directly to CCND2 [MIM 123833], a downstream

effector of the PI3K-AKT pathway in developing neuro-

blasts.34 Gain-of-function mutations in CCND2 and other

components of the PI3K-AKT pathway have been found to

cause polymicrogyria, macrocephaly, and ventricular dila-

tion.35,36 Knockdown of PCGF2 has been shown to

increase proliferative activity in cells overexpressing

CCND2.34 If Pro65 mutations reduce PCGF2’s ability to

inhibit CCND2, the increased CCND2 activity may predis-

pose to polymicrogyria. The CCND2 binding site has been

mapped to the C-terminal proline/serine-rich domain of

PCGF2.34 Therefore, mutation of the N-terminal Pro65 res-

idue is unlikely to directly block binding of CCND2. The

presence of vascular abnormalities (and the twin placental

circulation of individuals 3 and 4) may be additional risk

factors for the polymicrogyria.37 The variable head size

observed in subjects may reflect the conflicting effects of

abnormal vasculature (impairing brain growth and causing

the deep cerebral white matter changes) and altered

signaling through the PI3K-AKT-CCND2 pathway (pro-

moting brain growth and ventricular dilation). PCGF2

has tumor suppression activity and has been implicated

in a range of tumor types.7,38–40 To date, none of the sub-

jects with PCGF2 Pro65 mutations has been diagnosed

with malignancy.

In summary, we have reported 13 individuals with

missense substitutions of the Pro65 residue of PCGF2.

These individuals have a recognizable phenotype of devel-

opmental delay, intellectual disability, impaired growth,

and characteristic facial features that include frontal boss-

ing, sparse hair, malar hypoplasia, small palpebral fissures

and oral stoma, and dysplastic ‘‘satyr’’ ears. Other common

findings in the subjects included feeding problems, consti-

pation, and a range of brain, cardiac, vascular, and skeletal

malformations. Further work is required to define the pre-

cise pathogenic mechanism of PCGF2mutations; however,

our modeling and the available genetic data suggests that

PCGF2 Pro65 mutations have dominant-negative effects

on PRC1 function, altering multiple signaling pathways

and therefore resulting in the complex human phenotype.
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