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Qi-deficiency (QX) is thought to promote the body’s susceptibility to disease, but the underlying mechanism through which this
occurs is not clear. We surveyed the traditional Chinese medicine constitution (TCMC) of healthy college students to identify those
that were PH (balanced TCMC constitution) and QX (unbalanced TCMC constitution). We then used high-throughput sequencing
of the 16SrRNA V3-4 region in fecal microbiota samples to identify differences between those obtained from PH and QX individuals.
Our results demonstrated that the alpha diversity of QX samples was significantly lower than that of PH samples (p < 0.05) and that
beta diversity was remarkably different in QX and PH samples. Four and 122 bacterial taxa were significantly overrepresented in
QX and PH groups, respectively. The genera Sphingobium, Clostridium, and Comamonas were enriched in the QX group and had a
certain pathogenic role. The QX group also showed a statistically significant lack of probiotics and anti-inflammatory bacteria
such as Bifidobacterium and Bdellovibrio. The functional potential of QX bacterial taxa was reduced in fatty acid metabolism
and butanoate metabolism. We contend that the imbalanced intestinal microbiota in QX and the following functional changes

in metabolism influence immunity and energy metabolism, which could increase susceptibility to disease.

1. Introduction

Traditional Chinese medicine constitution (TCMC) refers
to relatively stable physical and psychological character-
istics and is based on epidemiological investigations [1],
clinical manifestations [2], and genomic research among
Han Chinese [3, 4]. There is one balanced constitution of
TCMC, PH, and eight unbalanced constitutions, including
Qi-deficiency (QX) [5]. TCMC theory digitizes empirical
Traditional Chinese Medicine diagnosis and treatment and
provides a standardized guideline which is particularly useful
for clinics [6]. Previous findings show that QX is an early stage
in cancer [7, 8], heart disease [9], hypertension [10], diabetes
[11], chronic fatigue syndrome [12, 13], and depression [14]
and that PH is a protective factor against these conditions
[9,15].

PH people are energetic and fit, are not susceptible to
illness, and have stable and powerful pulses and quality
sleep. QX people are characterized by fatigue, are lacking in
strength, and have weak pulses. QX is related to overwork,
working pressure, and aging [16]. QX could promote the
body’s susceptibility to disease, but its mechanism is not clear.

Studies have shown the downregulation of immune-
related genes including those involved in major histocom-
patibility complex [17] and interleukin-13 binding [18] in
QX people. Our previous studies revealed the presence of
metabolic disorders in the plasma of healthy QX people,
including the presence of betaine and alanine [19]. Previous
reports indicated that betaine in plasma positively correlates
with Clostridium in feces [20] and that Lactobacillus casei Shi-
rota could improve plasma alanine-aminotransferase levels
[21]. These cases revealed that the specific plasma metabolites
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TABLE 1: General situation.

characteristics QX (n=19) PH (n=16) p value
Age (years) 20.75 +1.47 20.13+1.31 0.2007
Sex (male /female) 7/12 5/11 0.728
BMI (kg/mz) 20.18+3.31 20.94+1.31 0.3951
QX transformed score 48.5849.56 10.94+5.82 —
Health Status Scores 79.2345.32 81.47+7.15 0.2962

No statistical significance between the two groups in age, sex, BMI, and health status scores (p>0.05).

of QX were associated with intestinal microbiota. However,
visceral manifestation of QX has also indicated spleen-
and lung-deficiencies and some results indicate that these
deficiencies induce compositional and functional changes in
intestinal microbiota [22, 23].

We hypothesize that QX-related increases in disease sus-
ceptibility are potentially mediated by intestinal microbiota.
We performed pyrosequencing of the 16SrRNA gene in
healthy QX and PH Han Chinese college students, to compare
their intestinal microbiota, and predicted metabolic function
to explore the biological mechanism of QX.

2. Method

2.1. Study Subjects. This study is reviewed and approved by
China Ethics Committee of Registering Clinical Trials (No.
ChiECRCT-20170064) and Chinese Clinical Trials Registry
(No. ChiCTR-IOR-17012986). We screened 461 healthy PH
students and 166 QX students from 5987 college students
of southern Han ethnicity (Figure 1). The inclusion criteria
were as follows: first, unremarkable physical and blood
tests including urea, electrolytes, and liver function tests;
second, healthy status according to the results of Subhealth
Measurement Scale V1.0 [24]; third, results of PH/QX in
Chinese Constitution Medicine Questionnaire [25, 26]. Ran-
dom sampling was used to select 21 PH and 21 QX students
for 16SrRNA sequencing (V3-4). These 42 students were
prohibited to take antibiotics, probiotics, or Chinese herbal
medicines for 16 weeks. We obtained 16 PH and 19 QX
sequencing datasets.

2.2. Fecal Sample Collection and Sequencing. Fresh fecal
samples were collected in sterile container, kept at 4°C (<0.5
h), and then frozen at —80° C. According to the manufacturer’s
instructions, total fecal DNA was extracted using DNA Stool
mini kit (Shenzhen Bioeasy Biotechnologies, Co., Ltd.). We
amplified the V3-4 region of the 16SrRNA gene by PCR using
the universal primers V4F and V4R (Table S1). 25 ul reaction
mixture was 0.25ul 5U/ul Premix Taq, 1 ul template DNA,
0.5 1 10 uM barcodes forward primer, 0.5 ul 10 uM reverse
primer, and 16.75 ul double-distilled H,O. The PCR cycle
conditions were an initial denaturation at 94°C for 2 min,
30 cycles of 94°C for 30 s, 52°C for 30 s, and 72°C for 40
s, and a final extension at 72°C for 5 min. PCR products
were sequenced using Illumina MiSeq instrument (PE 300,
[lumina, San Diego, California, USA) at Guangzhou RiboBio
Co., Ltd.

Sequencing reads were clustered by Illumina paired
barcoded-sequencing (end) (BIPES) (PE) process for pre-
liminary analysis; the rest of the sequence was screened by
UCHIME and the suspected chimeric sequence was removed.
The two-stage clustering (TSC) was used for extracting the
OTU, with sequences having greater than or equal to 97%
similarity being assigned to the same OTU. Alpha diver-
sity was performed with Chaol, observed species, Shannon
and Simpson. Beta diversity was performed with principle
coordinate analysis (PCoA) based on UniFrac distance [27].
The linear discriminant analysis (LDA) with effect size
measurements (LefSe) [28] was used to identify statistically
significant different bacterial species in QX group and PH
group. PICRUSt [29] was used to predict the metabolic
function of the 16SrRNA gene datasets with KEGG Orthologs
classification (p<0.05, Welch’s t-test) [30].

2.3. Statistical Analysis. Epidata 3.0 was used to establish
a database. Enumeration data was tested by chi-square.
quantitative data was tested by independent-samples t-test.
Kruskal-Wallis, PCoA, LEfSe, and PICRUSt analyzed the
sequencing data. Statistical analyses were performed with
the SPSS 20.0 (SPSS Inc., Chicago, IL, USA). P < 0.05 was
considered to be of statistical significance.

3. Results

3.1. Students and Samples. There was no statistical signifi-
cance between the two groups in age, sex, BMI, and health
status scores (Table 1, p>0.05). We obtained 119,909 sequences
from 19 QX samples and 218,480 sequences from 16 PH
samples (Table S2).

3.2. Microbiota in QX Were Different from PH. The numbers
of observed species, Shannon and Simpson indices, were
significantly lower in the QX group than in the PH group
(p<0.05, Figure 2). PCoA (UniFrac) demonstrated a clear
clustering of the microbial populations of the QX group,
which were separated from the PH group (Figure 3).

3.3. Phylum, Family, and Genus Level Taxonomic Distribution
of Intestinal Microbiota in QX Populations. Bacteroidetes and
Firmicutes were the top two phyla identified in QX samples
and accounted for 47.64% and 39.23% of the total valid reads,
respectively. In PH samples, Firmicutes and Bacteroidetes
accounted for 43.99% and 38.52% (Figure 4(a)). At the family
level, based on the average relative abundance, nine species
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FIGURE 1: The sequence flow diagram of inclusion criteria for PH samples and QX samples.
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FIGURE 2: Bacterial alpha diversity in QX (blue) and PH (red) populations. Observed species, Shannon and Simpson indices demonstrate
that the diversity in QX people is significantly lower than that in PH people. Mann-Whitney, p < 0.01.

were dominant (>1%) in PH samples, and 10 species were
dominant in QX samples. Bacteroidaceae and Alcaligenaceae
were enriched in QX, whereas Ruminococcaceae, Fusobac-
teriaceae, and Bifidobacteriaceae were enriched in PH (Fig-
ure 4(b)). At the genera level, 12 genera were dominant

in PH, and 11 genera were dominant in QX. Bacteroides,
Megamonas, Lachnospira, and Sutterella were enriched in
QX, and Ruminococcus, Fusobacterium, Megasphaera, and
Coprococcus were more abundant in PH (Figure 4(c)). PH
contained more Ruminococcus and Coprococcus which can
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FIGURE 3: PCoA (unweighted) of intestinal microbiota in QX (blue) and PH (red) populations. Principal coordinate axis 1 (12.99% variability)
and principal coordinate axis 2 (5.68% variability) highlight a clear clustering.

produce butyrate [31], whereas Sutterella, present in QX sam-
ples, could give rise to unbalanced microflora by degrading
secretory IgA and IgA itself [32].

3.4. Decreased Bacteria Associated with Short-Chain Fatty
Acid Production and Butanoate Metabolism Are Prominent
Features of QX. LefSe showed biomarkers for QX and PH
(LDA>2, p<0.05). Four and 122 taxa were enriched in QX
and PH samples, respectively (Figures 5(a) and 5(b)). At the
genus level, Sphingobium, Clostridium, and Comamonas were
significantly overrepresented in QX and Megasphaera, Veil-
lonella, Veillonella parvula, Bifidobacterium, Blautia, Strep-
tococcus, Bdellovibrio, and Paraprevotella were significantly
overrepresented in PH. Moreover, at the family level, Veil-
lonellaceae, Bifidobacteriaceae, Pseudomonadaceae, Lacto-
bacillales, Lachnospiraceae, Streptococcaceae, and Bdellovib-
rionaceae were significantly overrepresented in PH.

Of the biomarkers for QX, Comamonas is a cellulolytic
microbe [33] and Sphingobium [34] and Clostridium [35,
36] are associated with inflammation. Of the biomarkers
PH for, Megasphaera [37], Veillonellaceae [38], Pseudomon-
adaceae [39], Streptococcaceae [40], and Bifidobacterium
[41, 42] can produce and metabolize fat, starches, protein,
and polysaccharides, which are significantly lacking in QX.
PH biomarkers Bifidobacterium and lactobacilli can ferment
inulin-type fructans to cross-feed the microbiota and sig-
nificantly stimulate the production of n-butyrate [43, 44].

Additionally, PH samples were rich in anti-inflammatory
bacteria, including Bifidobacterium [45, 46], Streptococcus
[47], Lachnospiraceae [48], and Bdellovibrio [49]. Metabolites
of Bifidobacterium, including acetic acid, lactic acid, ethanol,
formic acid, vitamins, and amino acids, can also stimulate
the immune response and enhance the function of NK cells
and the proliferation of T lymphocytes[50, 51]. Bdellovibrio,
considered as potential antibiotic substitutes, could also
increase Coprococcus, which is reduced in irritable bowel
syndrome and influences microbial balance [52].

PICRUSt was used to investigate the potential function
and metabolic pathways of the taxa, based on Kyoto Ency-
clopedia of Genes and Genomes (KEGG) modules. Of note,
QX had a lower proportion of bacterial genes related to fatty
acid metabolism and butanoate metabolism and a higher
proportion of bacterial genes related to amino and nucleotide
sugar metabolism and RNA degradation (Figure 6, p<0.05,
Welch’s inverted CI method effect size>0.01).

4. Discussion

Here, we described our investigation of intestinal microbiota
characteristics among healthy QX and PH Han college
students in Southern China. We performed 16SrRNA gene
sequencing to examine the different microbiota in QX and
PH groups and to explain the biological mechanism under-
lying susceptibility to disease in QX individuals. Our results
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show that the bacterial taxa data of healthy people were
similar to that of Asian populations reported in previous
studies [53, 54] but that the microbiota of QX group was
statistically different from that of the PH group.
Functionally, QX microbiota have relatively decreased
fatty acid and butanoate metabolism potentials and rel-
atively enriched carbohydrate metabolism (amino sugar
and nucleotide sugar metabolism) and RNA degradation
potentials. The imbalance of energy metabolism caused
by alterations in intestinal microbiota is associated with
QX-related symptoms. QX people demonstrate significantly
higher BMI scores and waist-to-hip ratios and significantly
lower scores in back muscle strength [55]. QX symptoms
include a reduction of resting metabolic rate, which results in
flabby muscles, vulnerability to fatigue, feeble pulse, shallow
breathing [56], and potential concern with disturbances in
energy metabolism. Research has shown that GLUT4, a
critical protein in glucose metabolism, increases following

low-intensity exercise [57] and that moderate-intensity exer-
cise increases fatty acid oxidation to adapt energy metabolism
[58]. Per mole of oxygen consumed, the oxidation of car-
bohydrates produces 15% more ATP than the oxidation of
lipids does [59]. However, lipid oxidation produces greater
energy density compared to carbohydrate oxidation, and
fatty acids can go straight to the muscles’ mitochondria for
energy. Therefore, we postulate that QX and PH people adopt
different optimal-fuel strategies to acclimatize themselves to
daily energy expenditure. Compared with PH people, QX
people tend to adopt a carbohydrate-based metabolism to
prolong the time for which energy is maintained, which
makes it possible to induce the symptoms of lower metabolic
rate. PH people tend to adopt fatty acid metabolism and
butanoate metabolism. Lipid oxidation has a greater energy
density than does carbohydrate oxidation, which efficiently
elevates thermogenesis capacity. Higher rates of fat oxidation
generally reflect well-trained body conditions, while lower



fat oxidation rates may be related to obesity and insulin
resistance [60].

The microbiota identified in the QX group had reduced
levels of probiotics and decreased anti-inflammatory bacteria
than did those identified in the PH group. The alteration
of intestinal microbiota and unbalanced metabolism in QX,
including reduction of fatty acid and butanoate metabolism,
can increase disease susceptibility. Short-chain fatty acids
(SCFAs), especially butyrate, play an important role in the
regulation of host immunity. SCFAs directly contact intestinal
epithelium cells (IECs), and SCFAs, especially butyrate, are
used as ATP sources for energy metabolism. However, SCFAs
also enhance IEC immune surveillance by increasing the
expression of certain antimicrobial peptides and maintaining
the integrity of intestinal mucosa [61-63]. For example, com-
mensal microbe-derived butyrate induced the differentiation
of colonic regulatory T cells, which have a central role
in the suppression of inflammatory and allergic responses
[64]. Furthermore, butyrate and valproic acid upregulated B
cell microRNAs in human and mouse B cells to modulate
antibody and autoantibody responses [65].

In conclusion, this study demonstrates that intestinal
microbiota in the QX group showed lower biological diversity
and possessed a different microbial signature than did that
of the PH group. We contend that the QX’s imbalanced
intestinal microbiota and concomitant functional changes
in metabolism potentially influence immunity and energy
metabolism, which could increase susceptibility to disease.
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