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Abstract

Femtosecond laser surface processing is a technology that can be used to functionalize many 

surfaces, imparting specialized properties such as increased broadband optical absorption or 

superhydrophilicity/superhydrophobicity. In this study, two unique classes of surface structures, 

below surface growth (BSG) and above surface growth (ASG) mounds, were formed by 

femtosecond laser surface processing on amorphous and polycrystalline Ni60Nb40 with two 

different grain sizes. Cross sectional imaging of these mounds revealed thermal evidence of the 

unique formation processes for each class of surface structure. BSG mounds formed on all three 

substrates using the same laser parameters had similar surface morphology. The microstructures in 

the mounds were unaltered compared with the substrate before laser processing, suggesting their 

formation was dominated by preferential valley ablation. ASG mounds had similar morphology 

when formed on the polycrystalline Ni60Nb40 substrates with 100 nm and 2 [H9262]m grain size. 

However, the ASG mounds had significantly wider diameter and higher peak-to-valley heights 

when the substrate was amorphous Ni60Nb40. Hydrodynamic melting was primarily responsible 

for ASG mound formation. On amorphous Ni60Nb40 substrates, the ASG mounds are most likely 

larger due to lower thermal diffusivity. There was clear difference in growth mechanism of 

femtosecond laser processed BSG and ASG mounds, and grain size does not appear to be a factor.
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1. Introduction

Processing with ultrafast lasers is an emerging technique for the creation of functionalized 

surfaces through the formation of self-organized, multiscale structures [1–4]. This type of 

laser processing is applicable for a wide range of materials, including metals [5–9], 

semiconductors [10,11], polymers [12–14], glass [15,16] and ceramics [17,18].
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The resulting micro/nanostructures provide tailored surface properties with many promising 

applications in diverse fields. One important application is the “hyperdoping” of silicon, 

where ultrafast laser processing resulted in increased dopant concentration and multiscale 

surface structures [19,20]. Hyperdoped silicon can be used for increased light absorption of 

photo-voltaics [17,21,22] and optical sensors [23,24]. Laser processed surfaces can also 

exhibit special wetting/wicking properties, such as superhydrophobicity or 

superhydrophilicity[25–27]. Potentials uses include enhanced heat transfer [28–30], self-

cleaning surfaces[31], biomedical implants [32,33], drag reduction [34], and chemical 

sensors [35].

Surface micro/nanostructures formed by femtosecond laser processing on metals feature 

great diversity in morphology and size[8]. Low laser fluence near the ablation threshold of 

the target material, forms laser-induced periodic surface structures (LIPSS) and 

nanoparticle-covered pyramids [6,36–38]. LIPSS are ripples oriented either parallel or 

perpendicular to the laser polarization, depending on the target material and laser 

parameters, and have periods with the same order of magnitude as the laser wavelength 

[8,38,39]. They form after a low number of laser pulses (~10–1000) [2]. After additional 

laser pulses (2000+) in the same fluence range of LIPSS, NCPs can develop [36–38]. These 

structures can be as tall as 50 [H9262]m in height, and are covered with a layer of 

nanoparticles typically more than 2 [H9262]m thick. These start as small (<10 [H9262]m) 

precursor cones that increase in height, relative to the surrounding valley via preferential 

laser ablation. These pyramids increase in size by redeposition of nanoparticles produced 

during the laser ablation process [36,40].

Femtosecond laser surface processing on a metal surface at a laser fluence an order of 

magnitude higher or more than the ablation threshold can lead to formation of mound-like 

structures [5,41]. These mounds can reach tens of microns in width and height, and are 

covered by additional, smaller scale micro/nanostructuring. These mound-like structures are 

of great research interest because they can be used to produce functionalized metal surfaces 

that are either superhydrophobic [42] or superhydrophilic [29]. For example, it was 

demonstrated that such superhydrophilic surfaces can enhance two-phase heat transfer 

[28,30]. Mounds can be further divided into two distinct classes: below-surface-growth 

(BSG) and above-surface-growth (ASG) mounds [5,40,43]. BSG mounds are tightly spaced, 

have low height-to-width aspect ratio (~1:1), and have peaks which are below the original 

target surface. In contrast, ASG mounds are spaced farther apart, separated by pits, have 

high aspect ratio (>2:1), and protrude up to several [H9262]m above the original surface. In 

previous studies by Zuhlke et al. of femtosecond laser surface processing on Ni-based alloys 

200/201 showed that BSG mound formation occurred in the fluence range of approximately 

1–2 J cm−2 and ASG mounds at approximately 2–3 J cm−2 [5,40,43], as much as two orders 

of magnitude higher laser fluence than the ablation threshold of Ni (0.05–0.1 J cm−2) 

[44,45].

2. Theory

BSG and ASG mounds are thought to originate by small precursor ripples, mounds and pits 

that develop after a low number of laser pulses. For Ni 200/201, this occurs at about <120 
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pulses for BSG and <30 pulses for ASG mounds [5]. These precursor sites cause a non-

uniform distribution of laser energy, leading to the formation processes thought to produce 

BSG and ASG mounds [5,40].

One of the formation processes associated with mounds is preferential valley ablation. This 

is the process where the valleys, or low areas of the surface, are ablated more than the peak 

or top of precursor mounds [5,38,46]. As illustrated in Fig. 1, two phenomena contribute to 

preferential valley ablation: (a) the higher fluence in the valleys (labelled as “1” on Fig. 1) 

than on the sides of the mounds due to larger subtended area resulting from increased 

incident angle (labelled as “2” on Fig. 1), and (b) a portion of the light incident on the sides 

of the peaks is scattered onto the valleys. BSG mounds on metals are believed to be formed 

primarily through preferential valley ablation, similar to “spikes” that formed on Si 

substrates[47].

A second mound formation mechanism is hydrodynamical fluid flow. This is the process 

where, during ultrafast laser pulse irradiation, the substrate surface melts and the resulting 

liquid layer flows away from the valleys up the sides of the structures and onto the peaks 

[48–50]. Resolidification of this layer increases the height of the peaks, and is thought to be 

a significant part of the ASG mound formation process [5,46]. Fluid flow could be the result 

of higher laser fluence at valleys versus sides, or could be due to laser-induced shock waves 

[51,52].

Lastly, redeposition of ablated material can also contribute to mound growth, most likely in 

the form of smaller, micrometer-sized hemispherical caps that decorate the top of ASG 

mounds. Redeposition can be described as vapor-liquid-solid growth, where a plume of 

vaporized metal is solidified and deposited on top of the mounds in the form of 

nanoparticles [5,38,40].

Currently, there has not been a comprehensive model of femtosecond laser surface processed 

micro/nanostructures formation due to the complexity of the process. Such a model would 

have to account for many potential formation mechanisms and multiple types of surface 

structures. There are several theories developed to explain LIPSS formation on Si substrates 

[53,54], along with several predictive computer models [49,55]. However, there has not been 

a fully comprehensive understanding of the formation of larger femtosecond laser processed 

structures, e.g. NCPs, BSG and ASG mounds, on metals. Knowledge of such growth 

mechanisms will aid in understanding the physics behind laser-matter interaction, and can 

improve the performance of functionalized surfaces in applications such as heat transfer and 

self-cleaning.

3. Materials and methods

It has been proposed that the precursor sites for these femtosecond laser surface processed 

micro/nanostructures originate at micro/nanoscale defects present in the original metal 

surface [5,40,56]. Possible initiation sites for mound growth are grain boundaries [56]. The 

typical grain size for the Ni, stainless steel, and Ti surfaces in previous femtosecond laser 

processing studies are on the order of one to tens of microns, the same length scale as these 
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mounds [7]. There has been some previous work on grain boundary effects on LIPSS 

formation [56], but none to our knowledge on these larger-scale surface structures. In this 

study, the ablation threshold and femtosecond laser surface processing mound formation are 

compared on three substrates with identical chemical composition, but different crystalline 

microstructure: two different grain sizes, and one amorphous (i.e. without any grain 

boundaries).

The alloy utilized in this study was the well-characterized, easy glass-forming Ni60Nb40 

[57,58]. Arc-melting and melt spinning formed amorphous Ni60Nb40 ribbons as described in 

previous published study[46]. Ribbons were sealed in quartz tube under Ar atmosphere after 

repeated evacuation cycles to prevent oxidation. Then, they were annealed in a tube furnace 

at 1373 K for either 2 or 20 h to obtain polycrystalline structures with two different grain 

sizes.

Subsequent polycrystalline Ni60Nb40 microstructures were characterized using SEM and 

energy dispersive x-ray spectroscopy (EDS) in the FEI Helios NanoLab DualBeam. X-ray 

diffraction (XRD) using Cu K[H9251] radiation in a Bruker-AXS D8 Discover X-ray 

Diffractometer provided phase analysis. All XRD samples were mounted on a zero-

background holder made from an off-cut Si single crystal. Ribbon surfaces were polished 

through standard metallurgical procedures, with final polish using 0.05 [H9262]m Al2O3 

powder, in preparation for femtosecond laser surface processing. The polished ribbons were 

cleaned in an ultrasonic bath through successively submerging in acetone, methanol, and 

deionized water for 20 min each.

Femtosecond laser surface processing was carried out using a Ti:Sapphire femtosecond laser 

system, Spectra Physics Spitfire as previously described[46]. The laser spot size, which was 

used to calculate the laser fluence and pulse count, along with ablation threshold, was 

determined using the method outlined by Liu [59].

All three different substrates, with the three different microstructures, were subject to 

identical femtosecond laser surface processing parameters to create each type of mound. The 

laser beam spot diameter was 206 [H9262]m. BSG mounds were produced using 515 laser 

pulses at a peak fluence of 2.14 J cm−2, with translation speed and pitch of 3 mm s−1 and 15 

[H9262]m, respectively. This laser fluence was chosen as it was close to the minimum 

required for BSG mound formation on Ni60Nb40. The ASG mounds were fabricated using 

175 laser pulses with a peak laser fluence of 6.10 J cm−2, with translation speed and pitch of 

4.5 mm s−1 and 15 [H9262]m, respectively. The chosen laser fluence was at the high end for 

ASG mound formation to ensure surface structures that were distinct from BSG mounds. 

These fluence values for femtosecond laser surface processing mound formation on 

Ni60Nb40 were found to be about twice that for Ni 200/201 [5]. However, the previous Ni 

200/201 mound-formation work was performed with a square top-hat beam profile, while 

this study utilized a Gaussian beam profile. Due to larger variations in fluence across the 

Gaussian profile, a higher peak laser fluence is generally required to achieve the same 

surface structures. The laser pulse counts were chosen for maximum growth of both types of 

mounds. Evolution of surface structures as a function of laser pulse counts was similar to 

what was previously used for femtosecond laser processing of Ni 200/201, on which the 
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final, saturated BSG and ASG structures were reached after 600 and 150 pulses, respectively 

[5].

The underlying microstructure of these BSG and ASG mounds, as revealed by examination 

of cross-sections, can provide information on their formation mechanisms, such as evidence 

of thermal events like fluid flow or defects that serve as ablation precursor sites. There have 

been several previous studies on femtosecond laser surface processing of silicon and metals 

that utilize cross sections for this purpose [7,40,46,60,61]. SEM imaging and cross sectional 

milling of the BSG and ASG mounds were performed with the FEI Helios NanoLab 660 

DualBeam. This technique is a modification of the TEM “liftout” sample preparation 

process [62,63]. The target mound was first protected by Pt layers deposited via electron-

beam induced deposition (100 nm thick) and ion beam-induced deposition (2 [H9262]m 

thick). Then, focused ion beam (FIB) milling using Ga+ removed approximately half of the 

mound and the surrounding material to reveal the resulting cross-section. Imaging was per 

formed using ion-induced secondary electrons (ISE) at a tilt of 52°.

4. Results

4.1. Ni60Nb40 substrate analysis

Fig. 2(a) shows the XRD scan of the melt-spun Ni60Nb40 ribbons, which revealed an 

amorphous structure as indicated by the diffuse x-ray diffraction maxima. The XRD patterns 

of the annealed Ni60Nb40 ribbons were revealed to be polycrystalline, with peaks indexing 

to two distinct phases: orthorhombic Ni3Nb and rhombohedral Ni6Nb7 (Fig. 2(b) & (c)). 

These two intermetallic compounds were consistent with what was expected from the 

equilibrium phase diagram at the Ni60Nb40 composition [64–66]. SEM images (Fig. 3) 

revealed a two phase structure for ribbons annealed for 2 and 20 h that was consistent with 

XRD analysis. The average Ni3Nb grain size was approximately 100 nm after the 2 h heat 

treatment and 2 [H9262]m after the 20 h heat treatment. The individual Ni6Nb7 grains were 

not evident due to weak channeling contrast between differently-oriented grains. Location-

specific EDS spectra were collected by EDAX Octane Silicon Drift Detector (SDD). A 

semi-quantitative EDS analysis was performed with the EDAX TEAM EDS software. The 

analysis revealed the composition of the light-colored grains to be 75.9 ± 0.9 at.% Ni and 

24.1 ± 0.5 at.% Nb, close to the expected Ni3Nb phase composition. The composition of the 

darker regions was determined to be 45.7 ± 1.0 at.% Ni and 54.3 ± 1.5 at.% Nb, which 

correspond to the Ni6Nb7 phase.

4.2. Ablation threshold

Ablation threshold testing was performed with 100 pulses of 50 fs duration from 50 to 700 

μJ pulse energy with 50 μJ increments. The Keyence VK-X 3D Laser Scanning Confocal 

Microscope (3DLSCM) was used to measure ablation crater area and calculate diameter of 

the equivalent circular area (i.e., 20 μm diameter for 314 μm2 ablated area). Four sets of such 

ablation spots were analyzed on each of the three substrates. The square of the diameter was 

plotted against the natural log of laser power and fitted linearly to determine laser spot radius 

and threshold fluence[59].
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The average ablation test results for each form of Ni60Nb40 are displayed in Table 1. There 

was no statistical difference in the threshold fluence, nor the expected ablation spot size at 

threshold fluence for the three types of substrates.

4.3. BSG & ASG mound morphology

Fig. 4 displays SEM images of the BSG and ASG mounds on amorphous and polycrystalline 

Ni60Nb40. ASG mounds are larger than BSG mounds and separated by deep pits. This was 

consistent with results of previous femtosecond laser surface processing mound formation 

on Ni [5,40]. Both BSG and ASG mounds feature ridges that were perpendicular to the 

polarization of the incident ablation pulses.

The 3DLSCM was used to analyze differences between mounds formed on the three 

substrate microstructures of Ni60Nb40. Four commonly used parameters for characterizing 

laser processed surface structure morphology were measured, including: peak-to-peak 

distance (PPD), surface-area-to-geometric area ratio (SA/GA), average peak-to-valley height 

(Rz), and root-mean-square roughness (RRMS) [14,28,30,67]. For each combination of 

substrate and mound type, ten raster samples were measured, with the standard deviation 

used as a measure of the uncertainty associated with each parameter.

If grain boundaries play an important role in femtosecond laser processed structure 

formation, one would expect differences in morphology between mounds grown on 

substrates with different microstructures. However, there was no statistical difference 

between the morphology of BSG mounds on polycrystalline Ni60Nb40 with 100 nm and 2 

μm grain sizes (Table 2). Femtosecond laser surface processing of both substrate types 

produced mounds with similar average PPD, SA/GA of 3.9, and roughness. From the data 

presented in Table 3, the polycrystalline grain size also did not appear to produce differences 

in ASG mound morphology. While the mean of all four parameters for ASG mounds on the 

2 μm grain size substrate was larger than those on the 100 nm grain size substrates, all were 

within the experimental error. As both BSG and ASG mounds were grown on substrates 

with different initial microstructures, this suggest that polycrystalline grain size does not 

influence morphology for these high-fluence surface structures. For surface structures 

formed at lower fluence, such as LIPSS or NCPs, grain size may play a larger role as other 

researchers have reported [56].

Femtosecond laser surface processing on amorphous Ni60Nb40 produced BSG mounds with 

the same mean morphology parameters as on polycrystalline Ni60Nb40, as seen in Table 2. 

However, ASG mounds grown on amorphous Ni60Nb40 were significantly larger in scale 

than those on polycrystalline Ni60Nb40. Amorphous ASG mounds were approximately 9 μm 

taller (Rz) and a 50% rougher (RRMS) than polycrystalline ASG mounds.

4.4. Cross section analysis

Fig. 5 shows representative cross sectional ISE images of BSG and ASG mounds on 

amorphous and polycrystalline Ni60Nb40. During the cross section preparation, Pt was 

deposited on top of each mound to protect the underlying microstructure from ion beam 

damage (labelled as “Pt”). Cross sections of BSG mounds grown on all three substrates (Fig. 

5(a–c)) revealed microstructures that were identical to that of the original substrates. There 
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were no grain structures observed in the cross section shown in Fig. 5(a), suggesting that the 

amorphous Ni60Nb40 structure was preserved during BSG mound formation. Similarly, Fig. 

5(b) and (c) shows that the microstructure of BSG mounds grown on the polycrystalline 

substrates were polycrystalline, unchanged from the initial substrate microstructure. EDS 

analysis indicated that light-colored grains were Ni3Nb and dark grey regions were Ni6Nb7, 

consistent with the results for the polycrystalline substrates discussed previously and shown 

in Fig. 2. Furthermore, there was no discernable change in shape, size, nor phase fraction of 

the Ni3Nb grains. The cross-section of the ASG mound on amorphous Ni60Nb40 (Fig. 5(d)), 

like that of the BSG mound, did not reveal any poly-crystalline structure. However, 

significant microstructural changes were observed for ASG mounds formed on both types of 

polycrystalline Ni60Nb40 substrates. Here, there was an additional layer on top of the base, 

original polycrystalline microstructure for both substrates. Average EDS analysis of these 

upper ASG mound layers showed it contained 57.0 ± 2.0 at.% Ni and 43.0 ± 2.0 at.% Nb, 

close to the nominal composition of the Ni60Nb40 alloy. Coupled with TEM Selected Area 

Electron Diffraction (SAED) results (Fig. 6), it was determined that this top portion was 

amorphous. This same two-layered microstructure was observed in the cross sections of 

other ASG mounds on 100 nm and 2 μm polycrystalline Ni60Nb40 substrates. It should be 

noted that the vertical streaks observed in these cross-sections were due to “blanketing” that 

occurred during FIB milling. Such streaks are not a feature of the microstructure.

5. Discussion

5.1. BSG mound formation

The cross sectional images of their internal microstructures suggest BSG mounds form 

primarily through preferential valley ablation. Material removal due to ablation appeared to 

be the only process the substrate experienced during femtosecond laser surface processing. 

The thermal excursions were minimal as evident by the unchanged microstructures; the 

substrate material experienced temperatures below that which would induce grain growth or 

melting on the two types of polycrystalline Ni60Nb40 substrates. It is true that it may not be 

possible to distinguish between the original amorphous Ni60Nb40 microstructure and any 

redeposited material which was quenched fast enough to also be in the amorphous state. 

However, given the fact that both amorphous and polycrystalline have the same ablation 

threshold and the same BSG mound morphology, it can be reasoned that BSG mounds on 

amorphous Ni60Nb40 were also formed primarily by preferential valley ablation. Other 

studies had also reported preferential valley ablation as the dominant growth mechanism for 

other mound-like, below surface growth surface structures. Zuhlke et al. utilized pulse-by-

pulse SEM imaging of mound growth on Ni to conclude that preferential valley ablation due 

to scattered laser photons was primarily responsible for BSG mounds [5]. Sher et al. credited 

preferential valley ablation for creating spike-like surfaces on Si substrates [47]. Zhu et al. 

examined the differences between picosecond and femtosecond laser processing of Si 

substrate, and concluded that ablation, not fluid flow occurs during femtosecond laser 

surface processing due to timescales of energy relaxation processes [68].
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5.2. ASG mound formation

The amorphous upper layer of an ASG mound was most likely due to fluid flow caused by 

the Marangoni effect, where liquid is driven from hot to cold regions of the gas-liquid 

interface [69,70]. The temperature at the bottom and sides of precursor mounds during 

processing was higher due to higher laser fluence, similar to preferential valley ablation as 

described in Fig. 1. The molten Ni60Nb40 that was driven up to the top of the peaks 

resolidifies rapidly due to the large heat sink provided by the metal substrate, resulting in 

amorphous phase formation. Such fluid flow has been observed on other femtosecond laser 

surface processed structures of this scale, such as “columns” and “spikes” on Si substrates 

[48,71].

Vapor-liquid-solid growth mechanism could also have contributed to this top resolidification 

layer, as had been reported in Si substrates [48,49,55] and stainless steel [7]. It has long been 

known that laser processing of polycrystalline metal alloys can generate a molten layer 

which solidifies fast enough to result in an amorphous phase, such as reported by Sepold and 

Becker for Fe80B20 [72].

Finally, it should be noted that ASG mounds created on amorphous Ni60Nb40 were 

significantly larger than those on poly-crystalline Ni60Nb40, while having the same 

morphology for BSG mounds. We propose this difference was due to different thermal 

properties of amorphous versus polycrystalline Ni60Nb40. It has been reported that metallic 

glasses have lower thermal diffusivity and conductivity than their polycrystalline 

counterparts [73–77]. This lower thermal conductivity would result in a thicker surface melt 

layer on amorphous versus polycrystalline Ni60Nb40, resulting in a thicker resolidification 

layer and taller ASG mounds.

6. Conclusions

We examined direct evidence of below surface growth (BSG) and above surface growth 

(ASG) mound formation by femtosecond laser surface processing on amorphous and 

polycrystalline Ni60Nb40 with two different average grain sizes. Utilizing dual-beam, 

focused ion beam scanning electron microscope, the cross-sectional microstructures of these 

mounds were revealed. Grain size, at least in the range examined by this study, was not a 

factor in BSG or ASG mound morphology. BSG mounds formed on amorphous and 

polycrystalline Ni60Nb40 have indistinguishable morphology, and are hypothesized to grow 

primarily by ablation, as indicated by the lack of changes in the mound microstructure 

relative to the base substrate material. On the other hand, an amorphous region was found to 

be present on the top of ASG mounds, indicating there was sufficient heating at the higher 

laser fluence for melting and subsequent fluid flow of the base material. Lastly, ASG 

mounds formed on amorphous substrates were significantly taller and with larger peak-to-

peak distances than those on either polycrystalline surfaces. We attribute this to lower 

thermal diffusivity of amorphous versus polycrystalline Ni60Nb40. The cross-sectional 

microstructural analysis supported the previously proposed formation mechanisms for 

femtosecond laser surface processed mound-like structures on metals: preferential valley 

ablation for BSG mounds and fluid flow along with preferential valley ablation for ASG 

mounds.
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Fig. 1. 
Diagram of the preferential valley ablation mechanism of (a) differences in subtended area 

and (b) scattered photons.
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Fig. 2. 
X-ray diffraction patterns of (a) as-solidified Ni60Nb40 ribbons displaying an amorphous 

structure, and after heat treatment at 1373 K for (b) 2 h and (c) 20 h. Diffraction peaks were 

indexed to Ni3Nb and Ni6Nb7.
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Fig. 3. 
SEM images of polycrystalline Ni60Nb40 displaying Ni6Nb7 (dark grey) and Ni3Nb (light 

grey) phases after annealing at 1373 K for (a) 2 h and (b) 20 h, with average grain sizes of 

100 nm and 2 μm, respectively.
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Fig. 4. 
SEM images of BSG mounds on (a) amorphous Ni60Nb40 substrate, (b) polycrystalline 

Ni60Nb40 substrate with 100 nm average grain size, and (c) with 2 μm average grain size. 

SEM images of ASG mounds on (d) amorphous Ni60Nb40 substrate, (e) polycrystalline 

Ni60Nb40 substrate with 100 nm average grain size, and (f) with 2 μm average grain size. 

The double-ended arrow indicate laser polarization direction.
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Fig. 5. 
ISE cross section images of BSG mounds on (a) amorphous Ni60Nb40 substrate, (b) 
polycrystalline Ni60Nb40 substrate with 100 nm average grain size, and (c) with 2 μm 

average grain size. ISE cross section images of ASG mounds on (d) amorphous Ni60Nb40 

substrate, (e) polycrystalline Ni60Nb40 substrate with 100 nm average grain size, and (f) with 

2 [H9262]m average grain size. “Pt” indicates the deposited protective Pt layers.
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Fig. 6. 
TEM SAED pattern of the (a) original 2 μm grain size polycrystalline Ni60Nb40 (b) 

amorphous Ni60Nb40 top portion of the ASG mound.
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Table 1

Spot radius and threshold fluence of amorphous and polycrystalline Ni60Nb40 with 100 nm and 2 μm average 

grain sizes.

Amorphous Polycrystalline
(100nm)

Polycrystalline
(2 μm)

Spot radius (μm) 103.5 ± 1.7 103.8 ± 1.4 102.4 ± 2.7

Threshold fluence (J cm−2) 0.100 ± 0.004 0.104 ± 0.002 0.102 ± 0.07
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Table 2

Average peak-to-peak distance (PPD), surface area-to-geometric area ratio (SA/GA), and roughness (Rz, 

RRMS) for BSG mounds on amorphous and polycrystalline Ni60Nb40 with 100 nm and 2 μm average grain size 

(D).

Morphology
Parameter Amorphous Polycrystalline (D= 100 nm) Polycrystalline

(D = 2 μm)

PPD (μm) 7.7 ± 0.2 8.0 ± 0.2 7.9 ± 0.10

SA/GA 4.02 ± 0.11 3.94 ± 0.09 3.88 ± 0.11

RZ (μm) 15.6 ± 1.1 14.5 ± 0.9 14.6 ± 1.1

RRMS (μm) 3.0 ± 0.2 2.8 ± 0.2 2.8 ± 0.2
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Table 3

Average peak-to-peak distance (PPD), surface area-to-geometric area ratio (SA/GA), and roughness (Rz, 

RRMS) for ASG mounds on amorphous and polycrystalline Ni60Nb40 with 100 nm and 2 μm average grain size 

(D).

Morphology
Parameter Amorphous Polycrystalline (D= 100 nm) Polycrystalline

(D = 2 μm)

PPD (μm) 15.1 ± 1.6 12.1 ± 1.8 13.3 ± 1.6

SA/GA 5.6 ± 0.3 4.3 ± 0.3 4.5 ± 0.2

RZ (μm) 28.8 ± 2.4 19.4 ± 2.3 20.2 ± 2.0

RRMS (μm) 6.0 ± 0.7 3.9 ± 0.5 4.1 ± 0.5
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