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shedding (exogen) [1, 2]. Within the isthmus at the inser-
tion of the arrector pili lies the bulge region as depicted in 
Figure 1. It is thought that HF immune privilege (HFIP) 
aims to protect the bulge, which houses the epithelial HF 
stem cells (HFSC) that are essential to follicle regenera-
tion [3–6]. 

Alopecia is classified as cicatricial (scarring), which re-
sults in permanent hair loss, or noncicatricial, which pre-
serves regenerative potential. This may be accounted for 
by varying locations of inflammatory processes. HFSC re-
newal is thought to be maintained in the upper portion of 
the follicle. Inflammatory processes associated with non-
cicatricial alopecias spare this fragile upper portion, per-
mitting the possibility of hair regrowth. 

This review will focus on two forms of hair loss: lichen 
planopilaris (LPP) and alopecia areata (AA). These disor-
ders represent examples of cicatricial and noncicatricial 
hair loss, respectively. In LPP, activated T lymphocytes 
obliterate HFs, ultimately begetting irreversible hair loss. 
Clinical findings include follicular hyperkeratosis, peri-
follicular erythema and perifollicular scaling [3, 6–9]. 
Women appear to be more frequently affected than men, 
and it is primarily observed in postmenopausal females 
[10–12]. AA, a noncicatricial autoimmune alopecia, in-
volves T-cell-mediated disruption of the HF cycle. Peri-
tubular inflammation induces premature termination of 
the growth phase [13, 14]. Approximately 2% of the glob-
al population suffers from AA [15]. It can occur at any 
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Abstract
Hair is a defining mammalian feature that serves as a hall-
mark of human communication. Given the critical signifi-
cance of hair in social, religious, and political contexts, it is 
important to understand factors that play a role in hair loss 
disorders. The hair follicle is an immune privileged site, and 
mounting evidence suggests that the collapse of immune 
privilege contributes to the pathogenesis of autoimmune 
hair loss disorders, including alopecia areata and lichen pla-
nopilaris. This review comprehensively appraises the current 
literature to shed light on mechanisms for immune privilege 
collapse, and examines the role of neurogenic stress in trig-
gering this process. © 2017 S. Karger AG, Basel

Introduction

A discussion of the mechanisms underlying autoim-
mune hair loss requires understanding the hair follicle 
(HF) and its cycle. The proximal HF continually cycles 
through alternating phases of growth (anagen), apopto-
sis-mediated regression (catagen), rest (telogen), and 
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age, is frequently associated with other autoimmune con-
ditions, and affects both sexes similarly [16]. Both LPP 
and AA have the potential to lead to extensive hair loss 
with significant psychosocial impact. 

While the exact pathogenesis of LPP and AA remains 
unknown, evidence increasingly implicates HFIP col-
lapse as a possible initial step [17]. This begs the question 
if an inciting event elicits collapse. One proposed factor is 
emotional stress. In soon to be published data, over 65% 
of AA patients in our clinic identify emotional stress as a 
trigger for initial AA episode or flare. 

Hair Follicle Immune Privilege

Over 140 years ago, it was observed that introducing 
tissue grafts to specific anatomical compartments enables 
prolonged survival, suggesting that certain sites are ex-
empt from standard immune surveillance [18]. Promi-
nent examples of immune privileged sites include the oc-
ular anterior chamber, fetomaternal placental unit, and 
parts of the gonads. Immune privilege is a dynamic pro-
cess maintained by several mechanisms that collude to 
limit recognition of foreign antigens, deviate immune re-

sponses to favor tolerance, and suppress immune-medi-
ated inflammation [18–22].

One of the earliest observations of HFIP was reported 
when black murine ear epidermis was transplanted onto 
genetically incompatible white guinea pigs. Donor mela-
nocytes were recognized as foreign and rejected, as evi-
denced by transplanted black skin rapidly losing pigment. 
However, black hair shafts grew through the white epi-
dermis, indicating that some donor melanocytes could 
evade immune rejection [23–25]. 

Upholders of Immune Privilege

Several mechanisms that are believed to uphold HFIP 
are shown in Figure 2a, and are discussed in more detail 
below. 

Impeding immune cell trafficking is one described 
mechanism of HFIP. The HF lacks lymphatic drainage 
[26]. The connective tissue sheath may serve a similar 
purpose, as it generates proteoglycans during anagen in 
rats, which are thought to guard against immune cell in-
filtration [27].
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Fig. 1. Hair follicle anatomy. Adapted from 
Color Atlas of Differential Diagnosis of Hair 
Loss by David Whiting, courtesy of Cran-
field Publishing.
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1) Physical Barriers (Absence of lymphatics, 
possibly CTS)

2) Downregulation of major 
histocompatibility complex (MHC) class 
Ia and MHC class I pathway-related 
molecules (β2-microglobulin and TAP-2)

3) Functional impairment of APCs (via 
downregulation of MHC class II)

4) Expression of non-classical MHC class 
Ib molecules

5) Local generation of 
immunosuppressants (TGF-β1, TGF-β2, 
ACTH, α-MSH, IL-10, IGF-1 and MIF)

6) CD200 Protective Signaling
7) Few CD4+ T cells,  CD8+ T cells and NK 

cells

HFIP COLLAPSERS

HFIP UPHOLDERS

1) Upregulation of MHC classes I and II 
(INFγ-induced )

2) Loss of local immunosuppression 
(TGF-β2)  

3) Increased MICA Expression
4) Decreased MIF Expression
5) Mast cell degranulation 
6) Facilitated autoimmune response by 
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Fig. 2. Immune privilege. a Summary of proposed mechanisms involved in the maintenance and collapse of hair 
follicle immune privilege (HFIP). b Proposed connections between neurogenic stress and HFIP collapse.
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Expression of major histocompatibility complex 
classes (MHC-Ia and II) is markedly reduced in the prox-
imal follicular epithelium during anagen [28–30]. MHC-
Ia is expressed on all nucleated cells, unless an IP- 
protected area, and functions to present antigens to cy-
totoxic CD8+ T cells [6]. Two related molecules, β2-
microglobulin and TAP (transporter associated with an-
tigen processing), are crucial for stabilization of MHC-Ia 
[31]. Absence of MHC-Ia and β2-microglobulin, and re-
duced expression of TAP-1 have been documented in 
murine HFs [32, 33]. In human proximal HFs, decreased 
MHC-Ia expression is observed at protein and transcrip-
tional levels [2, 3, 28–30], and anagen bulb melanocytes 
lack MHC-Ia [28, 34]. Downregulation of the MHC-Ia 
pathway minimizes opportunities for misinterpretation 
of autoantigens, thus preventing possibly destructive im-
mune responses. However, cells lacking MHC-Ia are sus-
ceptible to destruction by natural killer (NK) cells [35]. 
MHC class II, expressed predominantly on antigen pre-
senting cells (APCs), interacts with helper CD4+ T cells 
to engage phagocytes and trigger activation of antibody-
producing B cells. Studies reveal total absence of MHC-II 
expression from the hair bulb and reduced expression in 
the proximal HF, which results in functional impairment 
of APCs [28, 36]. It is important to note that downregu-
lation of MHC Ia and II was largely observed during ana-
gen [2, 28]. Inflammatory assault against the bulge dur-
ing anagen could thwart HF growth, and compromise 
regenerative capacity. In contrast, MHC-Ib expression 
may uphold HFIP [37]. 

Immunomodulation through local production of im-
munosuppressants also contributes to HFIP. Transform-
ing growth factor-β (TGFβ), a powerful immunosup-
pressive growth factor, has been demonstrated to impede 
APC activity and T-cell activation [38–40]. TGFβ1 ex-
pression is highest in the outer root sheath during late 
anagen [41]. Therefore, its major contribution to HFIP 
may be insulating autoantigens associated with anagen 
and/or melanogenesis from CD8+ T cell-mediated de-
struction [23, 42, 43]. TGFβ2 is expressed in the bulge 
region, where it is thought to help preserve melanocyte 
stem cell quiescence [44, 45]. Proopiomelanocortin- 
derived hormones, adrenocorticotropic hormone and 
α-melanocyte stimulating hormone (α-MSH) act as 
powerful immunosuppressants [23, 46–48]. Interesting-
ly, proopiomelanocortin gene transcription and transla-
tion exhibit an HF cycle-dependent pattern, rising dur-
ing anagen in C57BL/6 mice and contributing to HFIP 
[49–51]. Adrenocorticotropic hormone is detected in the 
outer root sheath of anagen follicles, while α-MSH is 

found in both the outer root sheath and hair matrix [46, 
47, 52].

α-MSH is generated within the follicle and likely acts 
as an immunomodulator via its effects on APCs that ex-
press melanocortin receptor [47, 51, 53–55]. α-MSH sup-
presses NFκB activation and upregulates cytokine syn-
thesis inhibitor IL-10 [54, 55]. Insulin-like growth fac-
tor-1, a local immunomodulator, downregulates ectopic 
MHC-I expression, as do α-MSH and TGFβ1 [42]. Mac-
rophage migration inhibitory factor (MIF) expression is 
increased in the proximal follicular epithelium compared 
to the distal follicle [6]. With a location near the vital eHF-
SC population, MIF is thought to contribute to HFIP via 
its immunomodulating properties and suppression of 
NK attack [35, 56, 57].

Another HFIP mechanism is “no danger” signaling via 
the type-1 transmembrane glycoprotein CD200, which is 
prominently expressed in the bulge region [3, 6, 58]. In-
teraction of CD200 and its receptor, CD200R significant-
ly diminishes APC activity and secretion of proinflamma-
tory cytokines by activated T cells [59, 60]. CD200-
CD200R interaction is thought to promote tolerance and 
prevent autoimmunity within the HF [61].

The immune cell milieu, or lack thereof, protects 
against HFIP collapse. In human HFs, CD4+ and CD8+ 
T cells are localized primarily to the distal epithelium and 
connective tissue sheath [2]. No intraepithelial T cells 
have been appreciated in the hair bulb [28]. Regulatory T 
cells are postulated to preserve IP regions by promoting 
tolerance, although this has yet to be observed in the HF 
[42]. As mentioned, NK cells target MHC-I-negative cells 
(such as melanocytes), raising a question about how the 
proximal follicular epithelium is spared from NK attack. 
Firstly, NK cells within the follicle are scarce and exclu-
sive to the distal HF [28]. Previously noted IP mecha-
nisms (expression of nonclassical MHC molecules, pro-
duction of local immunomodulators) may also contrib-
ute to NK inhibition [6, 35, 56, 62]. Additionally, killer 
cell Ig-like receptors, which are essential to preventing 
NK cell-mediated destruction of MHC-I cells, are dem-
onstrated at high levels in the HF [35]. By a combination 
of these mechanisms, the MHC-I-negative HF epitheli-
um is exempt from NK cell destruction.

Collapsers of Immune Privilege

Collapse of mechanisms that maintain HFIP renders 
the HF susceptible to inflammatory assault. When sub-
jected to immune attack, the hair growth cycle may adjust 
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to enable follicle rehabilitation. Hair shaft proliferation 
might even persist, albeit inadequately, throughout the 
inflammatory response. Alternatively, collapse of im-
mune privilege may engender HF destruction, which is 
one proposed mechanism for the pathogenesis of certain 
alopecias.

Collapse of immune privilege can be characterized by 
upregulation of MHC-I and -II expression. Growing evi-
dence implicates the proinflammatory cytokine inter- 
feron-γ (IFNγ) in triggering HFIP collapse and ensuing 
immune-mediated eHFSC damage by enhancing expres-
sion of MHC I and II [6, 30, 63]. In AA, it has been pro-
posed that greater expression of MHC-I may facilitate au-
toimmune attack by CD8+ T cells [64]. Compared to oth-
er cytokines believed to induce MHC-I (i.e., IL-1β, 
TNF-α), IFNγ has been shown to act as a robust upregu-
lator of MHC-I in vivo in anagen hair bulbs from murine 
back skin [30, 33]. Furthermore, Ito and colleagues treat-
ed human scalp HFs with IFNγ; minimal doses were suf-
ficient to trigger ectopic MHC class 1 expression, and 
higher doses led to premature induction of catagen in vi-
tro [3]. 

Not only does IFNγ appear to compromise HFIP, it 
also directly threatens the eHFSC population [23, 30, 33, 
35, 43, 65]. Keratin 15, β1-integrin and CD200, all reliable 
eHFSC markers, are markedly reduced following IFNγ 
stimulation [2, 58, 63, 66, 67]. Furthermore, LPP bulge 
cells have diminished expression of keratin 15, β1-integrin 
and CD200, inciting IFNγ as a possible mechanism for 
LPP permanent hair loss [2, 66]. LPP bulge epithelium 
also demonstrates reduced expression of the immuno-
suppressant TGFβ [2]. Furthermore, deletion of CD200 
in mice stimulates enormous perifollicular inflammation 
and scarring hair loss [60, 61].

Mast cells induce cytotoxic CD8+ T cell proliferation 
[68]. Higher levels of degranulated mast cells and imma-
ture mast cell progenitors (cKit+ cells) are found in the 
LPP perifollicular infiltrate compared with controls [2]. 
Double staining reveals greater physical connection be-
tween mast cells and cytotoxic CD8+ T cells, suggesting 
that mast cell degranulation incites the immune response 
that ushers in HFIP collapse. 

In recent years, NK cells have been studied for their 
potential role in HFIP collapse, particularly in AA. In 
healthy HFs, there is almost no expression of MHC class 
I chain-related A gene (MICA), a stress-induced ligand 
that activates NKG2D recognition receptors on NK and 
CD8+ T cells [30, 35, 69–76]. NKG2D has been impli-
cated in other autoimmune diseases, including rheuma-
toid arthritis and type I diabetes [35, 77–79]. Lesional AA 

HFs demonstrate extensive MICA immunoreactivity, 
and are observed to be surrounded by NKG2D+ NK and 
CD8+T cells [35]. Abnormally increased MICA expres-
sion may facilitate HF attack via activated NKG2D+ cells, 
leading to compromise of the anagen phase and hair loss. 
HF damage in AA may also arise from impeded suppres-
sion of NK cells [2, 35]. Compared to controls, AA pa-
tients have a significantly greater percentage of NK cells 
that lack the inhibitory receptor KIR-2D2/2D3 [35]. Ad-
ditionally, there is markedly decreased MIF immunore-
activity, which, as noted above, helps prevent NK attack 
[55]. 

Could Stress Play a Role?

Psychological stress has garnered increased attention 
as a possible contributor to autoimmune pathogenesis 
[80]. Stress is known to impact the immune system. Sev-
eral studies have observed that up to 80% of patients en-
dorse a major psychological stressor preceding the onset 
of an autoimmune disease [81–83]. How stress relates to 
pathogenesis remains controversial, because while stress 
affects the immune system, autoimmune diseases in turn 
can also trigger stress [84, 85]. 

Psychological stress has been recognized as a trigger 
for AA [38, 86–91]. The association of stress and LPP is 
not as clear, although the oral variant of lichen planus has 
been linked with stress [92]. Oral lichen planus often oc-
curs 1–2 weeks following an intense psychological stress-
or, and erosive disease has been shown to be associated 
with stress [93–95]. 

To better characterize the role of stress in hair loss, it 
is important to understand how skin responds to stress. 
The skin utilizes a system analogous to the hypothalamic-
pituitary-adrenal (HPA) axis to confront a diversity of 
insults [96]. During periods of physical and psychological 
stress, the HPA axis is activated to secrete corticotropin-
releasing hormone (CRH). CRH has been found in mu-
rine HFs, and the CRH gene is transcribed by the human 
hair bulb [96–100].

Mast Cell Degranulation and CRH
As mentioned, mast cell degranulation can lead to col-

lapse of anagen HFIP. In human HFs, CRH has been 
shown to trigger production of mature mast cells from 
local precursors and promote degranulation, suggesting 
that the local HF neuroendocrine axis and the immune 
system are intertwined [101]. Acute stress can stimulate 
greater CRH expression in skin. During stressful situa-
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tions that lead to CRH release, mast cells are vital to the 
regulation of neurogenic inflammation [101–108]. Re-
searchers showed that sonic stress in mice triggers mast 
cell degranulation [109]. In mice lacking mast cells, sonic 
stress fails to induce the neurogenic inflammation and 
HF apoptosis that are observed in murine skin following 
a distressing sonic stimulus [101, 105]. In rats, acute stress 
has also been shown to increase the CRH skin [110, 111]. 
Therefore, both peripheral CRH and acute stress can trig-
ger mast cell degranulation in the skin. 

One possible mechanism for CRH influence on mast 
cells is stem cell factor, which is known to trigger mast cell 
differentiation, facilitate mast cell cytokine release, and 
impede mast cell apoptosis. In human HFs, CRH enhanc-
es stem cell factor transcription and translation, provid-
ing a possible link for CRH-induced mast cell degranula-
tion [101, 102, 112]. 

Neurotrophins 
Nerve growth factor (NGF), a broadly studied neuro-

trophin that has been noted in murine skin, plays a major 
role in stress responses [113–116]. Increased NGF re-
lease during stress is thought to facilitate catagen induc-
tion by activating the p75NTR receptor expressed on the 
outer root sheath [117–120]. Contrarily, NGF fails to 
elicit premature catagen when p75NTR is antagonized 
[117]. P75NTR directly triggers apoptosis of HF kerati-
nocytes, as well as downregulates keratinocyte growth 
factor effects [121, 122]. Similar to CRH, NGF is known 
to stimulate mast cell degranulation, which may facilitate 
the neurogenic inflammation undermining HFIP [121, 
123].

Substance P
Substance P (SP) is downstream of NGF. It is a neuro-

peptide that has been implicated in the stress response 
and is thought to be enhanced by NGF. Firstly, SP yields 
upregulation of MHC-I and β2-microglobulin, and stim-
ulates ectopic MHC-I expression in the anagen HF [124]. 
Secondly, SP can activate perifollicular mast cells, leading 
to damaging intercutaneous neurogenic inflammation 
[124–126]. Thirdly, SP can stimulate growth factor cas-
cades which favor catagen by selectively upregulating 
NGF and p75NTR [124]. Additionally, SP may stimulate 
murine mast cells to release TNFα, which has been dem-
onstrated to prevent hair growth and induce keratinocyte 
apoptosis [124, 127–130]. Interestingly, administration 
of systemic SP recapitulated sonic stress-induced apopto-
sis of murine HFs, whereas co-injecting a selective SP re-
ceptor antagonist prevented it.

Connecting Stress and Autoimmune Hair Loss
Taken together, these findings elucidate a plausible 

mechanism to connect stressful phenomenon with sub-
sequent hair loss, summarized in Figure 2b. Psycholog-
ical stress triggers the HF equivalent of the HPA axis, 
resulting in increased CRH secretion, which stimulates 
mast cell production and degranulation. The resulting 
neurogenic inflammation collapses HFIP and induces 
premature destruction of the follicle. To date, whether 
NGF and/or SP exist downstream of CRH is not well 
defined [131]. However, NGF can also act to trigger 
mast cell degranulation, either directly or possibly via 
SP. 

Conclusions

Several mechanisms exist to protect the delicate HFSC 
population, collectively establishing HFIP to ensure the 
regenerative capacity of HFs. Collapse of HFIP is thought 
to contribute to the pathogenesis of autoimmune hair loss 
disorders. While both LPP and AA constitute examples 
of autoimmune hair loss, certain mechanisms may be 
more important for triggering HFIP collapse in one dis-
ease than the other. 

Despite the complex etiology of autoimmune disease 
and the missing links in the relationship between psycho-
logical stress and hair loss, we conclude that psychologi-
cal stress plays a key role in autoimmune hair loss. The 
skin features a local neuroendocrine axis enabling it to 
respond to stress. Increased activity of this HPA axis 
equivalent can promote neurogenic inflammation that 
facilitates HFIP loss.
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