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Abstract

Obstructive Sleep Apnea (OSA) is a heterogeneous sleep disorder with many pathophysiological 

pathways to disease. Currently, the diagnosis and classification of OSA is based on the apnea-

hypopnea index, which poorly correlates to underlying pathology and clinical consequences. A 

large number of in-laboratory sleep studies are performed around the world every year, already 

collecting an enormous amount of physiological data within an individual. Clinically, we have not 

yet fully taken advantage of this data, but combined with existing analytical approaches, we have 

the potential to transform the way OSA is managed within an individual patient. Currently, 

respiratory signals are used to count apneas and hypopneas, but patterns such as inspiratory flow 

signals can be used to predict optimal OSA treatment. Electrocardiographic data can reveal 

arrhythmias, but patterns such as heart rate variability can also be used to detect and classify OSA. 

Electroencephalography is used to score sleep stages and arousals, but specific patterns such as the 

odds-ratio product can be used to classify how OSA patients responds differently to arousals. In 

this review, we examine these and many other existing computer-aided polysomnography signal 

processing algorithms and how they can reflect an individual’s manifestation of OSA. Together 

with current technological advance, it is only a matter of time before advanced automatic signal 

processing and analysis is widely applied to precision medicine of OSA in the clinical setting.
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1. Introduction

The momentum for Precision Medicine comes from advances in the collection and storage 

of big data, including clinical, behavioral, anthropometric, molecular, imaging and 

physiological data, as well as advances in software that can process this large amount of data 

using model-free unbiased predictive analytics. The use of averages and summary-based 

analyses limit the application of scientific knowledge gained from clinical trials because it 

inherently discounts the effect within the individual. Currently, a paradigm shift is 

underway: the accumulation of high-resolution biological data and the utilization of 

computational tools developed decades ago has led to Predict-Prevent-Personalize-

Participate medicine or “P4 medicine” (Lim et al 2017, Pack 2016). However, large-scale 

individual-oriented data has yet to be implemented, including that for Sleep Medicine.

Obstructive Sleep Apnea (OSA) is a prevalent sleep disorder characterized by the partial 

(hypopnea) or complete (apnea) cessation of airflow as a consequence of upper airway 

obstruction that causes repetitive respiratory pauses during sleep and arousals. Subsequently, 

this affects sleep architecture and whole body oxygenation, which leads to molecular, 

immunological, physiological and clinical consequences (Cowie 2017). OSA is a highly 

heterogeneous disorder in that there are many pathways that to cause OSA. These pathways 

include varying degrees and combinations of restrictive craniofacial structures, soft tissue fat 

deposition related to obesity, rostral fluid shift during sleep, airway collapsibility, arousal 

threshold, negative pressure reflex response and overall loop gain of the ventilatory control 

system (Pack 2016, Eckert et al 2013). Different pathways may result in one OSA patient 

having a respiratory event associated with a low arousal threshold, sleep fragmentation and 

excessive daytime sleepiness, while another patient has a long respiratory event with 

significant desaturations. Although patients with OSA are often combined into a single 

group when assessing associations to clinical outcomes, a more accurate assessment might 

be done if OSA patients were subtyped into groups based on distinct clinical (Ye et al 2014) 

or polysomnographic manifestations (Zinchuk et al 2018). The lack of more accurately 

characterizing the heterogeneity of OSA could explain the lack of reproducibility when 

assessing genetic associations, outcomes and treatment response, as well as finding 

biomarkers. Hence, a more accurate classification and utilization of OSA subtypes using 

symptoms, polysomnographic characteristics, biological and other clinical information (Ye 

et al 2014, Zinchuk et al 2018) will help clarify underlying pathophysiology of OSA within 

an individual.

For almost 20 years, the AASM manual has maintained standards for signal collection and 

updated definitions based on evidence and new technology (American Academy of Sleep 

Medicine 1999). In scoring polysomnographic data for OSA, we have largely used a single 

metric, the apnea-hypopnea index (AHI), to diagnose and classify severity. Although other 

parameters such as the oxygen desaturation index (ODI), percentage time below 90% 

oxygen saturation, cardiorespiratory coupling, respiratory arousal threshold, arousal index, 

and wake after sleep onset have often been better associated with outcomes of interest (e.g. 

excessive sleepiness, hypertension and cardiovascular disease) (Ren et al 2016, Martynowicz 

et al 2017, Beaudin et al 2017, Trimer et al 2014) they are not routinely utilized in clinical 

practice nor have been integrated into disease classification (American Academy of Sleep 
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Medicine 1999). Despite the weak correlation between AHI and clinical presentation, 

clinical consequences, and response to treatment, we continue to diagnose and classify OSA 

severity based solely on the AHI. While computer-aided signal-processing algorithms of 

PSG physiological signals have been helpful to inform an individual’s phenotype and 

pathway to OSA (Eckert et al 2013), they have not been widely accepted, integrated or 

commercialized for clinical use. This suggests that there is a disconnect between what is 

technically feasible today (i.e. modern applications of signal processing algorithms) and 

clinical utility.

In this review, we will assess the broad range of physiological PSG signals that are routinely 

being collected and its potential to help us understand the heterogeneity of OSA subtypes in 

leading to a more personalized approach to sleep medicine (Figure 1). We will also discuss 

how a more detailed examination of physiological information can lead to a more accurate 

description of OSA diagnosis, prognosis, clinical consequence, and response to different 

treatments (Table 1). Finally, we will discuss algorithms and analytical strategies developed 

for these physiological signals, as well as proven data-driven approaches that could identify 

OSA subgroups.

2. Overview of Polysomnographic Physiological Signals in OSA

Polysomnography (PSG) is the main tool for diagnosing a broad range of sleep disorders. It 

is a multi-sensor method characterized by the simultaneous recording of airflow 

(thermistors, nasal air pressure sensors), blood oxygen levels (pulse oximeter), respiratory 

effort (respiratory inductance plethysmography), electrical activity of the heart 

(electrocardiogram [ECG]), brain (electroencephalogram [EEG]), eyes (electrooculogram 

[EOG]), and skeletal muscle (electromyogram [EMG]). Other sensors usually include body 

position, and on occasion video and audio monitoring. The PSG performed in a sleep 

laboratory has been used for decades and is the gold-standard for diagnosing OSA (Lyons et 
al 2017). In addition, by standardizing signal acquisition and processing, laboratories are 

able to build on top of each other’s knowledge to describe normal and disturbed sleep 

physiology, especially in OSA. The AASM Scoring Manual Version 2.4 recommends 

technical specifications, terminology and rules for scoring sleep and respiratory events in 

polysomnography recordings (Berry et al 2017). Thus, today, a large repository of 

standardized physiological signal data has been stored and could potentially undergo modern 

signal processing techniques to better characterize OSA. In the next three sections, we 

describe in more detail the technical aspects of respiratory, cardiac and brain PSG signals 

and the clinical relevance of applying modern signal processing techniques to these signals. 

In the last section, we describe novel applications and analytical approaches that have been 

developed with the intent to use PSG signals to better characterize OSA subtypes and 

severity.

3. Relevance of PSG respiratory signals in OSA

Respiratory events during sleep are a partial or complete absence in airflow or air pressure 

detected by oronasal thermal sensor and nasal pressure sensor. These events are usually 

associated with drops in peripheral oxygen saturation levels measured by a pulse oximeter 
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(Allen 2007). While a 3-4% drop in oxygen saturation is the minimum desaturation to define 

a hypopnea, it is common for severe OSA patients to have larger drops. The origin of 

respiratory events (central or obstructive) can be determined by measuring respiratory effort 

using respiratory inductance plethysmography. A number of physiological features are 

known to occur in response to respiratory events, such as drops in oxygenation, changes in 

heart rate variability, and arousals (assessed by abrupt changes in the EEG (Roebuck et al 
2014)). Although the immediate consequences of these repetitive and intermittent drops in 

oxygen saturation throughout the night is not yet clear (Ayappa et al 2005), they have been 

associated with carotid wall thickening and plaque occurrence (Baguet et al 2005), excessive 

daytime sleepiness (Jacobsen et al 2013), cancer progression (Cao et al 2015), and 

neurobehavioral and autonomic alterations (Idiaquez et al 2014). This suggests that in 

addition to duration of the respiratory event, other physiological parameters such as the 

magnitude of oxygen desaturation may contribute to OSA subtypes, severity and 

consequences.

Currently, the diagnosis and severity of OSA is determined primarily by the number of 

respiratory events detected during the sleep study, as measured by the AHI (Berry et al 
2017). However, this metric poorly correlates to clinical consequences and may oversimplify 

the complexity of the disorder (Zinchuk et al 2017). Therefore, the current definition of flow 

limitation and duration of apnea and hypopnea events may not fully characterize the 

physiological consequences of respiratory events. Incorporation of other important features 

that reflect the respiratory event such as respiratory event duration, magnitude of the oxygen 

desaturation, arousal threshold, sleep fragmentation and sympathetic activation may better 

characterize physiological consequences of a respiratory event. In addition, the 

comprehensive characterization of the obstructive breathing, combined with its associated 

outcomes (i.e. arousals and oxygen desaturations) might improve the understanding of the 

pathophysiological role of the respiratory event (Arnardottir and Gislason 2016). While it 

would be time-consuming and inaccurate to score all of these features visually, with the 

assistance of computer auto-scoring, we propose that a combination of many respiratory 

physiological signals might better inform OSA diagnosis and treatment and provide better 

projective information.

OSA is in part due to craniofacial skeletal and/or soft tissue abnormalities such that the 

pharyngeal airway is compromised and collapses (Dempsey et al 2002). OSA treatment has 

mostly relied on Continuous Positive Airway Pressure (CPAP), which keeps the entire upper 

airway open (Edwards et al 2016) or a specific site of collapse (Ng et al 2006). Although 

CPAP has high efficacy, it is limited by patient adherence and therefore other individualized 

treatment options are desirable (Carberry et al 2017). Although there are a number of 

longstanding and emerging alternative treatment options for OSA, such as mandibular 

advancement devices (Kuhn et al 2017) and hypoglossal nerve stimulation (Mwenge et al 
2015), they are usually not universally efficacious like CPAP. It is possible that information 

from the PSG respiratory signals could better define who will benefit from specific 

alternative therapies.

For example, a study that measured upper airway collapsibility using pharyngeal critical 

closing pressure (Pcrit) found that measures of peak and mid-inspiratory flow were useful 
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predictors of active Pcrit (with dilator muscle influence) (Azarbarzin et al 2017b). This study 

also demonstrated a potential use of airflow measurements on PSG to glean additional 

information about upper airway collapsibility in a noninvasive way. Although the study uses 

pneumotachography to measure airflow, a follow up study suggested that it can be feasible 

to adapt the algorithm for nasal pressure signals from the PSG and hence for use in routine 

clinical studies (Azarbarzin et al 2017a).

Another example is using PSG inspiratory flow signals to predict OSA treatment. One study 

identified seven unique inspiratory shapes that were different between two groups of OSA 

patients (postmenopausal women and post-uvulopalatopharyngoplasty men) and a control 

group (Aittokallio et al 2001). Separately, another study associated inspiratory flow shapes 

with site of pharyngeal collapse confirmed by endoscopy (e.g. soft palate vs epiglottis) 

(Genta et al 2017). This could be helpful in identifying who might benefit from hypoglossal 

nerve stimulation (Strollo et al 2014) treatment. Together, these data suggest that inspiratory 

flow shapes could be used as a tool to predict which OSA treatments (e.g. oral appliances, 

specific surgeries) is the most effective to target specific regions of upper airway collapse 

within an individual with OSA.

Currently, in-laboratory studies with complicated instrumentation are required to obtain 

physiological information to tailor alternative OSA therapies(Azarbarzin et al 2017b, 

Aittokallio et al 2001, Genta et al 2017). However, obtaining physiological information from 

readily available PSG signals are emerging (Azarbarzin et al 2017a). These can be based to 

tailor therapy for specific individuals with OSA. For example, sedatives can be helpful in 

individuals with a low arousal threshold to maintain stable breathing during sleep (Eckert et 
al 2011, Carter et al 2016). While traditional methods of determining arousal threshold are 

mostly used in a research setting, a low arousal threshold has been correctly predicted in 

84% of patients based on 3 variables from clinical sleep studies (AHI <30, nadir oxygen 

saturation >82.5%, and fraction of hypopneas >58.3% (Edwards et al 2014). This also led to 

methodological advancements in the prediction of arousal threshold using only PSG signals, 

and suggesting its use in a clinical setting (Sands et al 2018). Another example is that 

supplemental oxygen can blunt the ventilatory response in individuals with high loop gain 

during sleep (Wellman et al 2008). Again, traditional methods of determining loop gain is 

used only in research settings, but algorithms have been developed to derive loop gain from 

PSG signals (Terrill et al 2015). Further studies that relate physiological signals to clinical 

responses will help clinicians tailor treatment in the individual with OSA.

3.1 Automated processing of respiratory signals.

In designing automatic signal processing algorithms to detect respiratory events most of the 

time one or more of the PSG sensor signals is employed to identify patterns within a defined 

epoch. A typical epoch length is 30-60 seconds, which is a tradeoff between longer epochs 

favoring better detection rates (e.g. more signal is available), and shorter epochs allowing 

better time resolution of the events. As the epoch is generally longer than the minimum 

length of an event (10 seconds), epoch based processing of events do not necessarily identify 

all events individually. However, automated detection of respiratory events can still form an 

estimated AHI by using regression to establish a relationship between the epochs per hour 
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and the AHI. Research groups have designed many automatic algorithms for processing PSG 

signals to identify respiratory events (refer Roebuck et al., 2014 (Roebuck et al 2014) for a 

comprehensive review). Table 1 represents a list with the best validated respiratory signal 

features that have been used to characterize OSA to date.

Electrocardiography (ECG) derived respiratory signals.—First considered in 1984 

(Guilleminault et al 1984), the ECG has been used to identify apneic epochs (Penzel et al 
2002, Moody et al 2000). With optimal signal processing, respiration can be extracted out of 

the ECG signals with a reasonable degree of reliability and this can be valuable information 

when studying patients with OSA (Langley et al 2010). Extracting out respiration from the 

ECG signal is possible by three mechanisms. First, the physical effect of respiration causes 

displacement of the ECG electrodes on the chest relative to the heart resulting in a change of 

the cardiac vector thereby altering the amplitude of the ECG (Pall*ás-Areny et al 1989). 

Second, ventilation changes the volume of air within the lung, which alters the electrical 

impedance of the thorax and the amplitude of the ECG signal (Hahn et al 1995). Third, 

respiration causes heart rate variability (HRV) such that the R-R interval on an ECG is 

shortened during inspiration and prolonged during expiration (Eckberg 2003). Algorithms 

that detect sleep apnea from the ECG use heart rate variability and ECG derived respiration, 

can thus successfully estimate AHI (de Chazal et al 2003). Another algorithm combined the 

ECG signal with pulse oximetry and further improved the detection of respiratory events (de 

Chazal et al 2009).

Photoplethysmography (PPG) derived respiratory signals.—The PPG signal is 

derived from the optical pulse oximeter signal using time-varying measurements of blood 

volume in the tissue at the measurement location. Thus, the PPG waveform reflects the heart 

pumping blood to the periphery (fingers), which is influenced by breathing. During 

inspiration, the pressure in the thorax becomes more negative thereby decompressing the 

heart in the process, resulting in a decreased stroke volume and decreased blood volume to 

the periphery. During expiration, the pressure in the thorax becomes less negative thereby 

compressing the heart in the process, resulting in an increased stroke volume and increased 

blood volume to the periphery. Collectively, PPG baseline and amplitude signal fluctuates in 

the low frequency region, and this corresponds to the breathing rate (Meredith et al 2012, 

Nitzan et al 1994, 1996). Due to the relative low cost of a pulse oximeter, PPG has become 

an interesting alternative tool for OSA screening (Romem et al 2014) that is easily 

implementable in mobile applications (Garde et al 2015, Behar et al 2015) or portable 

devices (Bilgin et al 2016). We anticipate that the widespread use of these applications with 

other PSG-derived physiological signal data might inform diagnosis, prognosis and 

personalized clinical management of OSA patients, as further elaborated in the following 

sections.

Microphone and Video.—Audio recordings are inexpensive and non-invasive tools used 

to identify snoring and other disordered breathing events by using sound analysis methods. 

A recent study supports the use of audio signals to provide insights about the level of airway 

obstruction, by discriminating normal breathing, apneas and hypopneas (Halevi et al 2016). 

Video recordings supplements PSG to confirm sleep behavior, but may also be used to gain 
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information about respiration during sleep. Thirty-minute video recordings can be useful to 

screen children at home for OSA, with an 84% agreement with PSG and 94% sensitivity to 

diagnose OSA (Sivan et al 1996). A limitation of traditional videography is that blankets, 

bedclothes and a dark sleep environment may obscure relevant information and severely 

limit visual analysis. Therefore, thermal/infrared cameras have been used to assess sleep and 

respiration rate (Sivan et al 1996, Bennett et al 2015). One thermal method is the use of pixel 

color around the nostril and using post-processing video magnification to ascertain 

variations in breathing rates (Bennett et al 2015). This promising thermal method was 

validated against respiratory inductance plethysmography and could be used for apnea 

detection (Bennett et al 2015). Another thermal method used whole body motion to classify 

normal breathing, apneic events, and deep breathing using thresholds and had a high (94%) 

accuracy to detect apnea when validated against the PSG (Wang et al 2014). Therefore, by 

combining audio and video analysis with other physiological signals in the PSG, we expect 

to significantly improve OSA detection. Combined with readily available mobile health 

devices, tools can be developed for large-scale application and potentially widespread OSA 

screening in populations with poor access to care.

4. Relevance of PSG cardiac signals in OSA

Although the AASM Scoring Manual Version 2.4 (Berry et al 2017) only recommends a 

single modified electrocardiograph (Lead II) to score cardiac events, it is a rich source of 

data to assess underlying autonomic activity and cardiovascular physiology in OSA subtypes 

especially when combined with PPG (Gesche et al 2012). Known cardiac consequences of 

OSA include hypertension (Peppard et al 2000, Beaudin et al 2017), myocardial ischemia 

(Morra and Roubille 2017) and atrial fibrillation (Gami et al 2007), making the investigation 

of cardiac signals critical to the work up of OSA. Although OSA is a well-established risk 

factor for cardiovascular disease and death (Punjabi et al 2009, Shah et al 2010, Yaggi et al 
2005), this association is largely based on the AHI as a single metric of OSA severity 

(Zinchuk et al 2018). But the AHI does not reflect cardiac pathophysiological effects, this is 

another opportunity to more accurately assess associations between OSA and cardiovascular 

outcomes.

4.1 Automated processing of cardiac signals.

OSA patients have marked changes in cardiovascular and respiratory regulation in response 

to respiratory events and this is the basis of automatic cardiac signal processing techniques 

to identify cardiac pathology. While automated processing of cardiac signals has not yet 

been applied clinically, we anticipate that when combined with other physiological signals, 

will be able identify patients at higher risk of cardiovascular morbidity and mortality. For 

example, we can quantify cardiac and autonomic function in subjects with OSA by 

measuring different aspects of heart rate variability and cardiorespiratory coupling to 

classify cardiovascular consequences. Table 1 represents a list with the best validated ECG 

signal features that have been investigated in OSA to date.

Heart rate variability (HRV).—While HRV is a normal physiological event in response to 

the sympathetic and parasympathetic nervous system, as well as the sleep-wake cycle, 
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(European Society of Cardiology and the North American Society of Pacing and 

Electrophysiology 1996) an abnormal HRV occurs when the heart is no longer able to 

respond appropriately due to cardiac pathology. In OSA, HRV has a remarkable and 

characteristic pattern described as cyclical variation of heart rate (Guilleminault et al 1984). 

During an obstructive apnea event, cyclical variation of the heart rate is bradycardic during a 

respiratory event and tachycardic during recovery breaths (Guilleminault et al 1984). 

Consequently, methods to automatically identify apnea events from the ECG signal can be 

developed (Penzel et al 2016). A recently developed algorithm used only ECG recordings 

during sleep and extracted features from HRV and ECG-derived respiratory signals and 

correlated them to respiratory events (Atri and Mohebbi 2015). Specifically, respiratory 

events were mapped using image recognition techniques of heart rate and R-wave amplitude 

based time-frequency maps, and respiratory events were most visible at very low frequencies 

(VLF) around 0.03 Hz (Atri and Mohebbi 2015).

Pulse Transit Time.—Although blood pressure is a very important cardiac measurement 

to more directly reflect cardiovascular risk in response to arousals and respiratory events, 

technological limitations prevent this at present from being obtained continuously and 

routinely. Recently, surrogate measures of blood pressure were derived from the PPG 

waveform obtained from pulse oximeters (Gesche et al 2012). Pulse transit time (PTT) is an 

index that reflects variations in sympathetic activity during sleep, peripheral vascular 

resistance and intrathoracic pressure (Schwartz 2005), and studies have demonstrated that 

with appropriate calibration, PTT can track relative changes in blood pressure over the 

course of the night (Gehring et al 2018) as well as arousals and respiratory events to 

characterize sleep structure and fragmentation (Pépin et al 2009). In the study by Gehring et 
al, patients with severe OSA presented periods of extremely high systolic blood pressure 

(superposition) and very low oxygen saturation, suggesting additional evidence for high risk 

of cardiovascular events during the night (Gehring et al 2018).

Nonlinear analysis of inter-beat intervals.—Non-linear detrended fluctuation analysis 

of heart rate dynamics results in parameters relevant for OSA detection (Bunde et al 2000, 

Penzel et al 2003). For example, during slow wave sleep, heart rate shows a strongly short-

term correlated behavior whereas during REM sleep it shows a strong long-term correlated 

behavior, expressed by the parameters alpha-1 and alpha-2. Changes in these parameters can 

be used to improve detection of sleep apnea severity, as well as estimates of sleep stages 

(Bunde et al 2000) and ECG-derived AHI (Penzel et al 2003).

Cardiorespiratory coupling.—Coupling between ECG and respiratory signals reflects 

an important aspect of cardiorespiratory interaction (Kabir et al 2010), where respiration has 

a strong influence on the cardiovascular system (Dick et al 2014). Aspects of 

cardiorespiratory coupling have been investigated in healthy subjects during sleep (Bartsch 

et al 2007), and studies support a tight relationship between high frequency cardiopulmonary 

coupling and delta power in the EEG (slow wave sleep) (Thomas et al 2014), suggesting that 

it can be used to measure sleep quality. Patients with severe OSA showed a significant 

reduction in phase-coupling (Kabir et al 2010) (may be an early marker of OSA severity 

(Sola-Soler et al 2015)), and CPAP therapy reverses this abnormal cardiorespiratory 
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coupling (Chang et al 2013). Evidence for short-term consequences of cardiovascular 

decoupling in patients with OSA, specifically between heart rate and systolic blood pressure, 

has also been reported in a study that evaluated the effect of CPAP therapy for 3 months on 

daytime cardiovascular regulation in normotensive and hypertensive patients (Penzel et al 
2012). These results indicated an effect of CPAP therapy on the baroreflex response in 

hypertensive patients, while on normotensive patients there were changes in the influence of 

the systolic blood pressure on the heart rate, from pathological patterns to adaptive 

mechanisms (Penzel et al 2012). However, it is still unclear whether changes in 

cardiovascular and cardiopulmonary coupling result in long-term effects on cardiovascular 

outcomes, and studies aimed to address this are warranted. Thus, the relationship between 

cardiac signals and the pathophysiology of OSA supports the use of analytical tools to better 

characterize the connection between OSA and cardiovascular consequences.

5. Relevance of PSG EEG signals in OSA

EEG recordings are widely used in sleep medicine because of its ability to detect variations 

in cortical activity and differentiate wake from different stages of sleep. Guidelines for 

scoring wake and sleep stages standardize and improve upon previous ad-hoc methods 

(Rechtschaffen and Kales 1968, Iber et al 2007). Because sleep is currently assessed using a 

visual scoring system, some properties and features of the EEG signal are not used in 

clinical practice, even though it is routinely collected. Therefore, efforts to further process 

these stored data will be helpful in better characterizing sleep physiology in patients with 

OSA.

In OSA patients, respiratory events can terminate with an arousal on EEG, which reflects the 

respiratory threshold to arouse from sleep (Younes and Hanly 2016). Frequent arousals on 

EEG have been associated with increased sympathetic activity that extends to daytime, and 

may explain why some patients with severe OSA have increased daytime sleepiness and 

hypertension (Slater and Steier 2012, Ren et al 2016). Patients with OSA also have more 

respiratory-induced arousals than controls, and these cause more frequent changes in blood 

pressure (Bartels et al 2016). In addition, it is common for OSA patients to have significant 

changes in their sleep architecture (e.g. sleep fragmentation, decreased rapid eye movement 

sleep and slow wave sleep), which is also associated with excessive daytime sleepiness and 

serious health consequences (Ayas et al 2014). Today we have the ability to measure specific 

EEG features of cortical activity that provide information about clinically relevant OSA 

subtypes. These novel signal processing techniques provide more details of sleep stages and 

clinical consequences of OSA such as sleepiness, chronic cognitive changes, metabolic 

changes and cardiovascular consequences (D’Rozario et al 2017).

5.1 Automated processing of EEG signals.

EEG activity during normal sleep remains relatively stable and may be amendable to visual-

analog analysis of scoring sleep stages. However, during disrupted sleep, visual-analog 

analysis may be inadequate to identify and quantify the disruptions without the aid of a 

computer. To date, there are several digital processing techniques of EEG activity that 

improve sleep scoring reliability and increases sensitivity to different clinical status (Kubicki 
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and Herrmann 1996, Penzel et al 2007). The use of automated EEG analyses on shorter 

segments of EEG activity are not constrained by arbitrary definitions of epoch length but at 

the same time, correlates well to definitions recommended by the task force and can better 

approximate the effect of OSA on sleep physiology (Malhotra et al 2013, Anderer et al 
2010, Park et al 2015, Younes 2017). Automated EEG analyses include the application of 

spectral analysis, wavelet transformation and combined approaches. Table 1 summarizes the 

best EEG-derived signals and features relevant to OSA described to date.

Spectral Analysis.—Unlike visual review, EEG spectral analysis relies on computerized 

identification of discretely defined EEG frequencies. These frequencies correlate with 

underlying neurophysiological activities known to be associated with sleep, such as slow 

wave sleep and sleep spindles. Benefits of spectral analysis include the ability to analyze 

shorter EEG segments, allowing more granular analysis of sleep architecture. The most 

commonly used applications are the Power Spectral Density (PSD) and the Period-

Amplitude Analysis (PAA). While these techniques have been clinically applied in other 

neurophysiological techniques, they have been largely studied as research tools in PSG, but 

now should be considered as part of the routine evaluation of sleep disorders in clinical 

practice, especially for OSA. In the PSD method, the Discrete Fourier Transform (DFT) of a 

finite epoch is calculated and then power density over that time segment derived. Since sleep 

stages are defined, in part, by EEG activities of given frequencies, this allows for the 

quantification of parameters related to sleep stages (Uchida et al 1999). The PAA uses a 

relatively straightforward methodology of measuring waves of varying frequencies based on 

their periodicity. The ‘half-period’ of a given sinusoidal wave would cross the ‘Zero’ 

amplitude of an analog EEG recording and could thus be measured in time frequency 

(Uchida et al 1999). Several studies have compared the two techniques in sleep EEG 

recording (Tan et al 2000, Uchida et al 1999) and have demonstrated similar results although 

the PAA requires some additional processing in order to be useful across the typical sleep 

EEG frequency spectrum. In OSA studies, spectral analysis has been more widely applied to 

clinical research. Although with limited evidence, severe OSA patients show specific 

changes in EEG power density when compared to controls (Vakulin et al 2016, Xiromeritis 

et al 2011), and these changes have been correlated with worse driving performance in these 

patients (Xiromeritis et al 2011). Thus, this quantitative EEG technique has the potential to 

provide complementary clinical information to traditional EEG analysis.

Wavelet Transformation.—While PSD can resolve the different frequencies in a given 

segment reliably, it cannot specify the time location of the frequency within that segment 

(Ebrahimi et al 2008). The Wavelet transformation provides controllable time/frequency 

trade-off and hence can provide more precise time information particularly for high 

frequency EEG events. It shows reasonable sleep stage scoring reliability (77.6 to 94.4%) 

when compared to human scoring (Ebrahimi et al 2008, Oropesa et al 1999). Additionally, 

recent studies have demonstrated the use of wavelet transformation to estimate arousal 

intensity (Azarbarzin et al 2014). Figure 2 represents 4 examples of arousals with varying 

intensities using a scale from 0 (less intense) to 9 (more intense), according to the visual 

scoring of an expert. The arousal intensity is calculated based on the extraction of wavelet 

features of arousals that showed the best discrimination between a visually scored arousal, in 
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a training set of 271. By using the pooled output of different classifiers, any EEG arousal in 

the PSG could then be classified according to its intensity. This index metric was validated 

by showing a strong relationship between arousal-related changes and heart rate (Azarbarzin 

et al 2014). Furthermore, these changes in heart rate response to arousal demonstrated a 

remarkable difference between individuals and have been demonstrated to be heritable in a 

recent twin study (Gao et al 2017). Collectively, these studies support the application of 

arousal intensity and heart rate response to arousal to further characterize meaningful 

physiological responses to OSA, as discussed further below.

Cyclic alternating pattern, K-complexes and sleep spindles.—Several other EEG 

features have been associated with OSA such as cyclic alternating pattern (CAP) (Terzano et 
al 1985), K-complexes (Nguyen et al 2016) and sleep spindles (Saunamäki et al 2017). 

Phasic events such as k-complexes, vertex waves, delta-like EEG bursts and short arousals 

are commonly seen in sleep EEG (Smerieri et al 2007). These NREM phasic events have 

been described to follow a peculiar time organization described as CAP, or sequences of 

transient electro-cortical events that are distinct from background EEG activity at up to 1-

minute intervals (Terzano et al 1985). Changes in the CAP rate has been associated with 

fatigue and sleepiness in adults deemed to have the upper airway resistance syndrome 

(Guilleminault et al 2007). Also, CAP has been reported to improve the accuracy of 

detecting flow limitation events compared to respiratory-event related arousal in OSA 

patients (Milioli et al 2015), while another study suggested that increases in CPAP pressure 

should be avoided in non-CAP NREM sleep (Thomas 2002). Larger studies are needed to 

determine how NREM sleep instability, as represented by CAP, will have clinical utility in 

the diagnosis and treatment of patients with OSA, and approaches integrating these 

parameters with other features of EEG are yet to be investigated.

Automated system approaches and novel features.—The use of combined 

measures to determine sleep physiology is also an area of active research. A combined 

approach has the benefit of using more advanced processing algorithms as well as utilizing 

all to better inform about sleep physiology. Since muscle activity, eye movement activity and 

others signals have a significant relationship to sleep stages, automatic scoring of sleep 

stages can be performed using chin EMG, EOG and a limited EEG array (Malhotra et al 
2013). In terms of technical scoring and efficiency, there are several published studies that 

have demonstrated similar sleep stage and respiratory event scoring outcomes between the 

combined automated system approach and traditional technologist scoring (Younes et al 
2016, Malhotra et al 2013, Younes et al 2015b), suggesting that the field should now move 

to automated approaches. Recently, this has also been applied to generate and evaluate other 

novel physiological sleep traits of increasing interest in the field (Amatoury et al 2016, 

Younes and Hanly 2016, Younes et al 2015a). Younes et al have defined a continuous 

measure of sleep-wakefulness state based on the power spectrum patterns of EEG in 3-

second epochs and the probability of each pattern occurring in 30-second epochs scored as 

awake, standardized by the percentage of epochs scored as awake. This metric of sleep-wake 

state, termed the odds-ratio product (ORP), when calculated in 30-second epochs, was 

highly correlated to the likelihood of visually scored arousals or awakenings in the following 

30-second epoch (Younes et al 2015a). Thus, the ORP reflects a continuous measurement of 
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sleep-wakefulness state. In a follow up study, the ORP in the immediate 9 seconds following 

arousals/awakening (termed ORP-9) was used to calculate post arousal dynamics of sleep 

and might better inform how different patients respond to arousal. The ORP-9 metric was 

associated with sleep depth in patients with OSA as well as the arousal index and AHI 

(Younes and Hanly 2016). Furthermore, scoring arousal intensity on a scale from 0 to 9, as 

calculated using wavelet transforms, was associated with respiratory control instability and 

is being suggested as a distinct pathophysiological trait in OSA (Amatoury et al 2016). This 

suggests that novel quantitative indices of sleep physiology will better represent specific 

aspects of sleep in OSA and could be leveraged as part of the heterogeneity of this disorder 

and potentially other sleep disorders (refer to Younes (Younes 2017) for further discussion 

on these novel indices) Therefore, having valid automated systems with standardized 

measures will be helpful to discern biologically meaningful subtypes of OSA that are 

biologically homogenous sharing a similar pathway to disease and treatment.

6. Novel analytical approaches of physiological signals to identify OSA 

subtypes and severity classification

A substantial amount of data is already being collected during sleep studies and novel 

analytical tools have already been developed to utilize these data to further describe specific 

aspects of OSA (Table 1). To date, these novel analytical approaches have largely been 

reported as secondary outcome variables in observational studies to lend support to specific 

physiological characteristics of the disease. We argue that these well-studied novel 

approaches that use widely accepted computational methods should be systematically 

utilized as primary outcome variables to reveal OSA subtypes, provide a more clinically 

relevant measure of OSA severity, and help clinicians move towards a more personalized 

approach to OSA management. Currently, there is an opportunity to explore these already 

available clinical and physiological data, and evaluate how the development of 

computational algorithms improves the advance of personalized approaches to manage OSA. 

Several datasets were made publicly available, mainly through the National Sleep Research 

Resource (https://sleepdata.org) (Dean et al 2016, Zhang et al 2018), a National Heart Lung 

and Blood-funded resource established to improve access to sleep data, including 

information from overnight physiological signals. Therefore, the combined expertise of 

clinicians, physiologists, engineers and computer scientists can offer the field all the 

components to advance Precision Sleep Medicine. This final section describes initial studies 

that used novel approaches to identify OSA subtypes, and include a brief description of the 

computational methods that were utilized in these investigations.

While initial efforts to describe clinically meaningful OSA subtypes were done using 

symptoms assessment, anthropometric and demographic data (Ye et al 2014, Keenan et al 
2018, Kim et al 2018), the use of physiological signals from the PSG is still in its infancy. 

Two general types of analytical methods could facilitate the integration of these different 

sources of data in OSA: unsupervised and supervised. Unsupervised models can identify 

patterns in data that could potentially discover clinical insights not previously recognized. 

Methods like latent class analysis, K-means clustering and principal component analysis 

have been extensively used in the medical fields, and have provided support for the existence 
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of different OSA subtypes (Zinchuk et al 2018, Ye et al 2014, Keenan et al 2018, Kim et al 
2018). A recent retrospective study using conventional summary indices from the PSG and 

other demographic data found that OSA patients were grouped into seven different clusters 

by using unsupervised methods (Zinchuk et al 2018). These clusters, named ‘mild’, 

‘periodic limb movements of sleep’, ‘NREM and arousal’, ‘REM and hypoxia’, ‘hypopnea 

and hypoxia’, ‘arousal and poor sleep’ and ‘combined severe’ were distinguished by a 

number of polysomnographic features and were associated with a combined outcome of 

cardiovascular risk, while conventional AHI measured severity were not. Interestingly, the 

‘periodic limb movements of sleep’, ‘hypopnea and hypoxia’ and ‘combined severe’ clusters 

showed benefit of CPAP therapy on subsequent cardiovascular events compared to non-users 

while other groups did not exhibit such benefits (Zinchuk et al 2018) This study supports the 

notion that combining several different physiological aspects are more likely to identify 

OSA subtypes that exhibit cardiovascular benefits from CPAP therapy.

Supervised classification machine learning methods require labeled data to train predictive 

models that are further tested on an independent set of data. These approaches include 

logistic regression, support vector machine, classification and regression trees, and random 

forests. Usually, a number of metrics for classification performance are calculated and 

evaluated, so the researcher can assess the accuracy of the predictive model. Recently, these 

methods are becoming more popular to help predict OSA diagnosis and severity using 

different types of clinical and anthropometric features (Liu et al 2017, Bozkurt et al 2017, 

Lee et al 2009). An important issue when applying supervised machine learning methods is 

the balance between accuracy (i.e. how well the model performs) and model generalizability 

(i.e. how the model is applicable in a dataset that was not used to build the model). One 

factor that substantially affects these parameters is the feature selection strategy, or the way 

variables are selected as input in the prediction models. One study assessed different feature 

selection and classification methods to spectral and nonlinear traits extracted from oxygen 

saturation and PSG recordings, applied to OSA diagnosis (Alvarez et al 2013). The authors 

found that the combination of forward stepwise feature selection with logistic regression had 

the best performance using four features (83.2% validation accuracy), and the combination 

of a genetic algorithm with support vector machine had the best generalizability using 7 

features (84.2% validation accuracy). Other methods evaluation studies have been conducted 

(Al-Angari and Sahakian 2012, Nemati et al 2014) and suggest that further optimization of 

feature selection algorithms might improve classification of OSA diagnosis and severity.

While these methods have been applied to inform OSA risk and severity, the studies are very 

heterogeneous in terms of sample size, input variables, model selection and definition of 

outcome and severity. To our knowledge, there are no studies attempting to combine more 

than one set of input variables (e.g. physiological and craniofacial) efficiently. Also, other 

factors such as ethnicity and genetic background are still not incorporated into OSA risk and 

severity. Based on the existing literature, we need more studies to explore OSA classification 

based on all aspects of the disease to increase our ability to better characterize the 

heterogeneity of this disorder.
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7. Conclusion and future directions

This review highlights the extensive amount of available physiological PSG data that has yet 

to be incorporated into clinical practice. Use of the AHI limits our ability to advance 

precision medicine of OSA, as it does not reflect the heterogeneity of OSA. Advanced 

signal-processing methods and data analysis has been used to help subtype OSA, but only in 

the research setting. In the near future, respiratory, cardiac and EEG signals will undergo 

automated analyses, further standardizing PSG scoring, and provide, in addition, a rich set of 

reliable features that can more accurately describe OSA pathophysiology within an 

individual patient. Large, international consortia provide an ideal platform to collect 

standardized clinical, behavioral, anthropometric, molecular, imaging and physiological data 

on an ethnically diverse group of OSA patients. This, combined with advanced signal-

processing methods and modern data analysis algorithms, have the promise to transform the 

way we manage OSA patients.
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Abbreviations List

AASM American Academy of Sleep Medicine

AHI apnea-hypopnea index

CAP cyclic alternating patterns

CPAP continuous positive airway pressure

DFA detrended fluctuation analysis

ECG electrocardiogram

EEG electroencephalogram

EMG electromyogram

EOG electrooculogram

FFT fast Fourier transformation

HF high frequency

HRV heart rate variability

LF low frequency

NED negative effort dependence
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NN50 Number of pairs of adjacent NN intervals differing by more than 50 

ms

NREM non-rapid eye-movement

ODI oxygen desaturation index

ORP odds-ratio product

OSA obstructive sleep apnea

PAA: period-amplitude analysis

Pcrit pharyngeal critical closing pressure

pNN50 NN50 count divided by the total number of all NN intervals

PPG photoplethysmography

PSG polysomnography

PTT pulse transit time

REM rapid eye-movement

RMSSD square root of the mean squared differences of successive NN 

intervals

SDNN standard deviation of NN intervals

SDSD standard deviation of differences between adjacent NN intervals

SpO2 peripheral oxygen saturation

TST total sleep time

ULF ultra low frequency

VLF very low frequency
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Figure 1: 
Summary of polysomnography physiological signal features relevant to obstructive sleep 

apnea, potential analytical approaches and the goals of understanding these data towards 

personalized medicine for this disorder. Abbreviations: CAP: cyclic alternating pattern; 

ECG: electrocardiogram; EEG: electroencephalogram; SpO2: oxygen saturation; PPG: 

photoplethysmography. Some illustrations used with permission and adapted from 

(Petryszak et al 2016)
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Figure 2. 
Examples of arousal with different intensity scales (0-least intense to 9-most intense) in the 

same patient. C3/A2 and C4/A1 are central electroencephalograms. Figure used with 

permission (Azarbarzin et al 2014)
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