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Abstract

An indium phosphide (InP)-based photonic integrated circuit (PIC) transmitter for free space 

optical communications was demonstrated. The transmitter consists of a sampled grating 

distributed Bragg reflector (SGDBR) laser, a high-speed semiconductor optical amplifier (SOA), a 

Mach-Zehnder modulator, and a high-power output booster SOA. The SGDBR laser tunes from 

1521 nm to 1565 nm with >45 dB side mode suppression ratio. The InP PIC was also incorporated 

into a free space optical link to demonstrate the potential for low cost, size, weight and power. 

Error-free operation was achieved at 3 Gbps for an equivalent link length of 180 m (up to 300 m 

with forward error correction).
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I. INTRODUCTION

FREE space laser communication is of great interest recently for providing reliable, high-

speed connectivity for long-haul intersatellite and deep-space links [1–4]. In 2013, NASA 

demonstrated a two-way laser link between earth and a satellite in lunar orbits over 239,000 

miles at a data rate of 622 Mbps, which is more than six times that of previous state-of-the-

art radio systems flown to the moon. Commercial-off-the-shelf (COTS) components provide 

a ready solution to assemble free space optical systems. However, deployment of free space 

communication on small spacecraft, to enable low-cost and frequent missions that include 

high data rate downlink capability, requires photonic components with low cost, size, weight 

and power (CSWaP), while demonstrating high output optical power and power-efficient 

modulation formats [5–10]. Indium phosphide (InP) is the most mature and high-

performance photonic integrated circuit (PIC) platform. It allows for the monolithic 

integration of all the required active components (e.g. lasers, semiconductor optical 

amplifiers (SOAs), modulators / pulse carvers), and passive components (e.g. waveguide 

interconnects, filters, couplers), thus enabling complex single-chip implementations of 

advanced transmitters and receivers [9–17]. Additionally, this platform is ideal for the 

telecommunication C band, which is the wavelength region of choice for free space optical 

communication. InP is therefore the platform of choice for space applications where 

reliability and technology readiness are critical.

Some previous works demonstrated that InP-based PICs can operate above 40 Gbps [18–20]. 

Our work here focuses on a few Gbps data rates, which is representative of state of the art 

for free space laser communication. For free space communications, it is desirable to achieve 

high energy efficiency and high output optical power. In this work, an InP-based PIC 

transmitter is demonstrated for free space optical links. The transmitter was tunable from 

1521 nm to 1565 nm, covering the entire C band. The measured off-chip optical power was 

14.5 dBm. The transmitter can be configured for various modulation formats including on-

off keying (OOK), pulse position modulation (PPM), differential phase shift keying (DPSK), 

and frequency shift keying (FSK). The InP PIC was implemented in a free space optical link. 

Error-free operation was achieved at 3 Gbps for an equivalent link length of 180 m (up to 

300 m with forward error correction).

II. INTEGRATION PLATFORM AND FABRICATION

The fabricated PIC transmitter is shown in the microscope image of Fig. 1. It consists of a 

widely tunable sampled grating distributed Bragg reflector (SGDBR) laser, a high-speed 

SOA (SOA 1), a Mach-Zehnder modulator (MZM), and a high-power two-section output 

booster SOA (SOA 2). The second section of SOA 2 has a flared waveguide for high output 

saturation power. The waveguide at the output is angled with respect to the chip facet to 

reduce the reflectivity of this interface.

The epitaxial material structure was grown by metalorganic chemical vapor deposition 

(MOCVD) on an n-type (100) InP substrate. As shown in Fig. 2(a), the active region (used 

for laser and SOAs) consists of an indium gallium arsenide phosphide (InGaAsP) multi-

quantum-well structure that is situated above an InGaAsP waveguide core layer [21]. The 
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structure is designed to achieve a low confinement factor (4.2%) in the quantum well gain 

region, which is beneficial for providing SOAs with high saturation power. The active/

passive integration technique utilizes an offset structure with the quantum wells being 

selectively removed by wet etching for passive waveguides and modulators. A sideview of 

the active/passive interface following the regrowth step is illustrated in Fig. 2(b), also 

showing the gratings etched into the waveguide core layer.

Figure 3 shows scanning electron micrograph (SEM) images at various stages of the 

fabricated process. After the active/passive definition, the sampled grating mirrors were 

patterned by electron beam lithography and dry etched with chlorine-based ion beam etching 

(Fig. 3(a)). This was followed by a ‘blanket’ regrowth of the InP cladding and p+ InGaAs 

contact layer [21, 22]. The waveguide ridges were then defined by dry etching and a cleanup 

wet etch to form smooth vertical sidewalls (Fig. 3(b) and (c)). Next, Ni/AuGe/Ni/Au n-

contacts were deposited on the n InP substrate and annealed. The p+ InGaAs contact layer 

was removed between devices by wet etching to provide some electrical isolation. 

Photosensitive Benzocyclobutene (BCB) was used to reduce parasitic pad capacitance for 

the high-speed SOA and MZM (Fig. 3(d)). Ti/Pt/Au was deposited for p contacts and then 

annealed.

For backend processing, the fabricated samples were thinned to less than 180-μm thickness 

and then PICs were cleaved. Fabricated transmitters have a footprint of 5.5 mm x 0.36 mm. 

PICs were solder mounted to ceramic carriers and wire-bonded for characterization. Device 

submounts were fixed to a temperature-controlled stage.

III. DEVICE CHARACTERIZATION

A. SGDBR laser

The widely tunable SGDBR laser, used as the integrated light source, consists of a rear 

absorber, back mirror, phase section, active gain section, and front mirror (see Fig. 1). The 

SGDBR laser has a 5-period front sampled grating mirror with 4-μm wide bursts and 68.5-

μm period, a 12-period back sampled grating mirror with 6-μm wide bursts and 61.5-μm 

period [23, 24]. By controlling the injected current in the front and back mirrors, the 

emission wavelength can be tuned from 1521 nm to 1565 nm, demonstrating a 44-nm tuning 

range, thus covering more than the entire C-band. The tuning characteristics of the SGDBR 

laser are illustrated in Fig. 4, which presents the overlaid lasing spectra at various tuning 

conditions.

The light-current-voltage (LIV) characteristics were measured by using the reversed-biased 

high-speed integrated SOA as a photodetector. As shown in Fig. 5, the laser exhibits a 

threshold current of 45 mA and an output optical power of 15 mW at a gain section current 

of 100 mA; the peak power is well beyond 15 mW. The laser side mode suppression ratio 

(SMSR) across the tuning range is shown in Fig. 6, with a maximum SMSR of 55 dB at a 

wavelength near 1550 nm (see Fig. 7).

For laser linewidth characterization, the self-delayed heterodyne method was utilized and the 

measurement results are shown in Fig. 8 demonstrating a 3-dB linewidth of 6.4 MHz.
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B. Mach-Zehnder modulator

During the p-cladding regrowth, the zinc doping diffuses into the InGaAsP waveguide layer, 

significantly increasing the device capacitance. To address this issue, some of the waveguide 

layer adjacent to the fabricated ridge was removed with a low-power reactive ion etch step 

following ridge formation [25]. Then a BCB layer was patterned where metal pads would be 

later deposited in order to further reduce parasitic pad capacitance.

Figure 9 and 10 report plots of the DC modulation characteristics (transfer functions) for the 

MZM under forward bias and reverse bias, respectively. Under forward bias, the MZM 

demonstrates an extinction ratio (ER) of 25 dB and half-wave voltage (Vπ) lower than 0.25 

V at 1554 nm with approximately a 0.7-V forward voltage bias. Under reverse bias, the ER 

is 15 dB with a Vπ of −5.8 V. As expected, the MZM is significantly more efficient under 

forward bias. This is attractive especially for applications where an MZM is used for energy-

efficient PPM for lower symbol rates. In this case, the MZM and high-speed SOA (SOA 1) 

would be simultaneously modulated by using two phase-aligned waveform generators.

C. Semiconductor optical amplifier

The PIC transmitter comprises of two SOAs: a high-speed SOA for amplification/

modulation and a two-section booster SOA with curved/angled and flared ridge waveguides. 

SOA 1 is 3 μm wide and 400 μm long. It is placed after the laser and before the MZM, to 

compensate for modulator insertion loss, and could also be used for modulation. The gain 

characteristics of the high-speed SOA at different input power levels are shown in Fig. 11.

For SOA 2, it is constructed with two separate sections that can be pumped with different 

injection current levels, a scheme that may be utilized for optimizing power efficiency. The 

lengths of the two sections are 350 and 500 μm, respectively. The second section linearly 

flares from 3 μm to 5 μm, which reduces the optical power intensity thus enables an 

increased saturation power. This SOA at the transmitter output could potentially enable the 

PIC transmitter to be used in near-earth free space optical links without requiring an EDFA 

power amplifier.

IV. FREE SPACE OPTICAL LINK

To evaluate the transmitter performance, first a static characterization was performed. The 

transmitter optical output was coupled to an integrating sphere to measure the off-chip 

power. Figure 12 shows the off-chip power versus the current in the flared-waveguide 

section of the booster SOA. The current of the laser gain section, the SOA 1, and the first 

section of the SOA 2 are 150 mA, 110 mA and 90 mA, respectively. The maximum output 

power with the above DC biasing is 14.5 dBm (28 mW). The propagating loss of the curved 

and flared waveguides at the output is estimated to be 3 dB. The devices characterized were 

not anti-reflection (AR) coated, which would increase the coupled output power. Also, in 

future measurements with AR coated devices and improved heat sinking, it is expected that 

higher current levels can be achieved that will lead to higher measured output optical power.

To measure the high-speed performance of the transmitter, one arm of the MZM was wire 

bonded to a 50-Ω RF feeding transmission line and on the other side to a 50-Ω load mounted 
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to the ceramic carrier. Figure 13 shows the eye diagrams for 1 Gbps and 3 Gbps non-return-

to-zero (NRZ) OOK modulation at a reverse bias of −3.9 V. The extinction ratios (ER) are 

13.4 dB and 16.8 dB, respectively.

Utilizing the fabricated InP PIC transmitter, a free space optical link was constructed as 

shown in Fig. 14. A NRZ 210 −1 pseudo random binary sequence (PRBS) was generated and 

applied to the MZM through a bias-Tee. The optical signal emitting from the transmitter was 

collected by a lensed single mode fiber (SMF) and coupled to an optical collimator (with a 

beam divergence angle of 0.016°), and then transmitted in air and collected by an identical 

collimator. The distance between the two collimators was 1.35 m. At the receiver side, an 

erbium doped fiber amplifier (EDFA) partially recovered the link loss and the signal was 

then detected by a PIN photodiode. An in-fiber variable optical attenuator (VOA) was used 

to simulate the attenuation of the free space optical link.

Bit error rate (BER) measurement results at 1 Gbps and 3 Gbps are shown in Fig. 15 as a 

function of the link attenuation. The free space link operates free of errors (BER < 1 × 10−9) 

up to approximately 24 dB attenuation (180 m distance) at the data rate of 3 Gbps. With 

forward error correction (BER < 2× 10−3), the equivalent link length can be up to 300 m (28 

dB attenuation). At a lower date rate of 1 Gbps, the performance can be further improved. In 

this case, the corresponding link lengths at error free and forward error correction limit are 

300 m and 400 m, respectively. A reference transmitter, consisting of a 10 GHz commercial 

MZM and an external cavity source, was also tested in the link under the same setting for 

comparison. The overall link length could be drastically increased with a booster high-power 

EDFA, which is commonly used in free space optical links.

In future work, other energy-efficient modulation formats, such as PPM at lower symbol 

rates, will be demonstrated for free space optical links. On the other hand, higher data rate 

up to 40 Gbps can be achieved with more compact modulator designs. Instead of using 

offset quantum wells, a quantum well intermixing technique would eliminate the tradeoff 

between modulation efficiency and insertion loss. Furthermore, efforts will be made to 

improve the output optical power. Structures with ultra-low optical confinement factor in the 

active gain region would enable lower local optical intensity inside the SOAs, thus allowing 

for higher output saturation power.

V. CONCLUSION

An InP-based PIC transmitter was fabricated and characterized for free space optical 

communications. The SGDBR laser demonstrates a 44-nm tuning range and >45 dB SMSR 

across this range. With the high-power output SOA, the measured off-chip power was 14.5 

dBm. The InP PIC transmitter was inserted in a free space optical link. Error-free operation 

was achieved at a data rate up to 3 Gbps with an equivalent link length of 180 m (up to 300 

m with forward error correction).
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Fig. 1. 
Microscope image of fabricated InP-based PIC transmitter comprising of a five-section 

SGDBR laser (all sections are labeled in the figure), a high-speed SOA (SOA 1), a 1-mm 

long MZM, and a high-power two-section output booster SOA (SOA 2).
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Fig. 2. 
(a) Epitaxial structure in the active region; (b) Sideview of the active/passive interface 

following regrowth.
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Fig. 3. 
SEM images at various stages of the fabrication process: (a) The sampled gratings of the 

front mirror of the laser; (b) Top view of a 1×2 MMI structure; (c) Cross section of a MMI 

with silicon nitride passivation; (d) Cross section of the high-speed SOA.
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Fig. 4. 
Overlaid lasing spectra of the SGDBR laser.
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Fig. 5. 
SGDBR laser LIV curve (with CW current source) measured by using the SOA as a 

photodiode.
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Fig. 6. 
Measured SMSR across the tuning range.
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Fig. 7. 
Lasing spectrum near 1550 nm with a 55-dB SMSR measured by an optical spectrum 

analyzer with a resolution bandwidth of 0.02 nm.
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Fig. 8. 
Measured heterodyne laser linewidth spectrum demonstrating a 3-dB linewidth of 6.4 MHz.

Zhao et al. Page 17

IEEE J Sel Top Quantum Electron. Author manuscript; available in PMC 2019 November 01.

N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript



Fig. 9. 
MZM response under forward bias at various laser wavelengths.
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Fig. 10. 
MZM response under reverse bias at various laser wavelengths.
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Fig. 11. 
Gain as a function of current density for the high-speed SOA (3 μm x 400 μm) with different 

input power levels at a wavelength of 1560 nm.
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Fig. 12. 
Off-chip optical power of the PIC transmitter versus the current in the flared-waveguide 

section of the booster SOA.
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Fig. 13. 
Eye diagrams for 1 Gbps and 3 Gbps NRZ OOK modulation.
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Fig. 14. 
Schematic of free space optical link setup.
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Fig. 15. 
BER for 1 Gbps and 3 Gbps NRZ OOK transmission.
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