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Smoking cessation treatment outcomes may be heavily influenced by genetic variations among smokers.
Therefore, identifying specific variants that affect response to different pharmacotherapies is of major in-
terest to the field. In the current study, we systematically review all studies published in or after the year
1990 which examined one or more gene-drug interactions for smoking cessation treatment. Out of 644 ci-
tations, 46 articles met the inclusion criteria for the systematic review. We summarize evidence on several
genetic polymorphisms (CHRNA5-A3-B4, CYP2A6, DBH, CHRNA4, COMT, DRD2, DRD4 and CYP2B6) and
their potential moderating pharamacotherarpy effects on patient cessation efficacy rates. These findings
are promising and call for further research to demonstrate the effectiveness of genetic testing in person-
alizing treatment decision-making and improving outcome.
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Despite tremendous public health advances, smoking continues to be the leading preventable cause of death
worldwide [1-4]. Multiple treatment options and rigorous clinical practice guidelines have been developed but
cessation failure remains common [5,6]. The benefits smokers receive from individual therapies vary widely and
can be partially predicted by biomarkers [7-10]. The high cost of cessation failure combined with the wide range
of therapies with variable benefits lead to a need to identify treatments that are most likely to be effective for an
individual smoker. Thus, efforts have been directed toward a precision medicine approach: using biomarkers to
identify patients who may benefit from treatment. To date, the most investigated biomarkers for smoking cessation
pharmacotherapy have been genetic or metabolic [11,12].

Heritability estimates indicate that genomic factors drive the population variability in both smoking quantity
and smoking cessation [13]. Prior to the advent of genome-wide association studies (GWAS), multiple candidate
gene studies evaluated the association between genetic variants and smoking behaviors [14-17). The most robust
genetic association with smoking found to date is between smoking behaviors and the nicotinic receptor subunit
gene CHRNAS, first identified in a 2008 GWAS [18]. Further, GWAS meta-analyses have led to the discovery of
multiple other genetic factors associated with smoking [19].

There is a growing body of studies evaluating genome-based responses to smoking cessation therapies [11,20].
Evidence has pointed to at least two genetic loci for nicotine dependence and smoking cessation. The CHRNAS-
A3-B4 gene cluster on chromosome 15 has been associated with cigarettes smoked per day (CPD); with lung
cancer and chronic obstructive pulmonary disease and with smoking cessation [21-32]. The cytochrome P450 2A6
and the NMR 3-hydroxycotinine/cotinine have been associated with CPD, lung and other aerodigestive cancers
and smoking cessation [23,30,31,33-47]. Other candidate genes and pathways have been explored for association with
smoking cessation [25,48-60].
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Search result from PubMed n = 644

Articles screened on basis of title and

abstract n = 644 Excluded n = 578

< 1990/non-English/non-Human/editorial n = 55
Not evaluation of smoking n = 97

Not evaluation of genetics n = 34

Not a pharmacogenetic study n = 375

Expert review or opinion n = 45

Not RCT or open label multiple arms n = 4

Full text articles assessed for eligibility
n =66

Excluded n = 20

Not a gene* drug interaction study n = 7
Not RCT or open label multiple arms n = 11
Result reported in another paper n = 2

Articles included in the systematic review
n =46

Figure 1. Flowchart of study inclusion.
RCT: Randomized controlled trial.

A recent Cochrane review of clinical trials that studied smoking cessation across genotypes identified associations
between some polymorphisms in the CHRNA3-A5-B4 region (rs1051730 and rs16969968) with short-term efficacy
of nicotine replacement therapy (NRT), but not widespread differential treatment effects of pharmacotherapy [61].
Expanding upon this review, we conducted a systematic review of the literature that describes all studies of differential
treatment effects of pharmacotherapy in smoking cessation.

Methods

We took a systematic approach to review pharmacogenetics studies of smoking cessation pharmacotherapy.

Search methods

On 22 May 2017 we searched PubMed for articles published after 1 January 1990 that were related to both
smoking cessation and precision medicine. The full PubMed search text is given in the supplementary text, which
identified 644 articles. Second, we reviewed the title and abstract of 644 articles and excluded 578 articles based on
the following exclusion criteria (Figure 1): published before 1990, non-English, nonhuman, editorial, no smoking
content, no genetic content, not a pharmacogenetic study, expert opinion or review, not a primary research report
and not a clinical trial with multiple arms. For the remaining 66 articles, we reviewed the full text and excluded
the additional 20 articles based on the same exclusion criteria. A total of 46 articles were included in the systematic
review.

Inclusion criteria

The 46 articles were characterized based on the following study design criteria: trial design-randomized control trial

(RCT) or open-label multiple treatment arms; comparison: placebo or other medication and outcome: efficacy,

side effect or other outcomes. These characteristics for all included studies are outlined in Supplementary Table 1.
We then presented results in the following groups:

e RCT and open-label studies with comparative treatment arms for genes with identified GWAS hits (Table 1);
e RCT and open-label studies with comparative treatment arms for candidate genes based on a plausible biological
rationale (Table 2).
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Table 1. Genes based on genome-wide association study hits.

Gene Chromosome Medication SNP Number of positive Number of negative
studies (total n) studies
CHRNA5-A3-B4 15 NRT rs588765 2 (3776) 2
rs16969968 1(328) 4
rs16969968*rs680244 1(1073) 0
rs1051730 1(2633) 3
rs2036527 1(1143) 0
rs680244 0 1
rs578776 0 5
rs2229961, rs12914008, rs3813567, rs680244, 0 1
rs8192475
Bupropion rs16969968*rs680244 1(1073) 0
rs16969968, rs578776 0 2
rs588765, rs2036527, rs2229961, rs1051730, 0 1
rs12914008, rs3813567, rs680244, rs8192475
Varenicline rs16969968 0 3
rs578776 0 2
rs588765, haplotype rs16969968 and rs588765 0 1
Selegiline rs3813567 1(231) 0
rs680244, rs16969968, rs578776, rs1051730, 0 1
rs8192475, rs12914008
CYP2A6 19 NRT Slow/Fast (genotype-based metric) 1(709) 0
Bupropion Slow/Fast 0 1
CYP2A6-B6 NRT rs4105144, rs6474412 0 1
Varenicline rs4105144, rs6474412 0 1
DBH 9 NRT 1368DBH A 1 (755) 0
rs77905 0 1
Bupropion rs77905 0 1
CHRNA4 20 Varenicline rs1044396 1(483) Ok

Table includes only studies with efficacy outcome (abstinence or relapse).
Table includes genes that have GWAS hits and at least one positive gene x drug interaction study.
GWAS: Genome-wide association study; NRP: Nicotine replacement therapy.

To note, open-label studies with one treatment arm or studies not looking at gene x drug interaction were not
included. For more details about the studies included, refer to Supplementary Table 1.

Results
Genes with identified genome-wide association studies hits
CHRNA5-A3-B4

Several variants in the CHRNAS5-A3-B4 gene cluster have been identified as moderators to the efficacy of NCT.
A combined analysis of 8 randomized clinical trials comprising 2633 European-ancestry smokers showed that the
minor alleles of rs1051730 and rs588765 were both associated with increased abstinence on NRT versus placebo at
6 months [21]. The variant rs1051730 is of particular importance because of its genome-wide significant association
to smoking quantity [31]. However, rs1051730 was not found to be significantly associated with treatment outcomes
in three other studies, albeit with small sample sizes [27,62,63]. Also, among 1143 African—Americans, individuals
with the T-allele of rs588765 and A-allele of rs2036527 had higher and lower abstinence rates on nicotine gum
versus placebo, respectively [321. Of note, 12036527 has been shown to be associated with genome-wide significance
to CPD, in a genome-wide meta-analysis of 32,389 African-ancestry participants [24]. Another functional variant
1516969968, previously associated with smoking-related diseases such as cancer and COPD [64,65] has been shown
in multiple studies to be associated with treatment response. A RCT of 1073 European—American smokers showed
that individuals with high-risk haplotype, defined by rs16969968 and rs680244, had a threefold increased likelihood
of responding to active treatment (NRT or bupropion) than individuals with low-risk haplotype [22). Additional
analyses performed on the NRT and placebo arms only (n = 328) revealed that individuals with the AA genotype of
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Table 2. Candidate genes.

Gene

coMT

DRD2

DRD4

CYP2B6

Chromosome Medication SNP Number of positive Number of negative
studies (total n) studies
22 NRT Val108/158Met (rs4680) 2 (991) 1
Bupropion rs165599 1(511) 0
rs165599*rs737865 1(511) 0
rs4680, rs737865 0 1
1 NRT Taq1A (rs1800497) 1 (755) 2
Taq1B (rs1079597), 141C Ins/Del (rs1799732), 0 1
Pro319Pro (rs6277), Exon 8
Bupropion Taq1A (rs1800497) 3(1582) 3
141Cins/del (rs1799732) 1(414) 0
C957T variant, Exon Il VNTR 0 1
Varenicline Taq1A (rs1800497) 0 1
Venlafaxine Taq1A (rs1800497) 0 1
Taq1B (rs1079597) 0 1
Rimonabant Taq1A (rs1800497) 1 0
11 NRT VNTR, C-521T 0 1
Bupropion Exon Il VNTR 2(1123) 1
19 Bupropion CYP2B6*6 haplotype (rs2279343 + rs3745374) 1(326) 1
CYP2B6*4 (rs2279343) 1(478) 0
CYP2B6*5 (rs3211371), CYP2B6*9 (rs3745274) 0 1

Table includes only studies with efficacy outcome (abstinence or relapse).
Table includes genes that have at least one SNP that has one or more replication studies and total n >500.
NRT: Nicotine replacement therapy; VNTR: Variable number of tandem repeat.

rs16969968 were more likely to be abstinent at the end of treatment to NRT compared with placebo [66]. Multiple
studies however did not find a gene—drug interaction for this variant [32,63,67,68]. To note, the aforementioned results
may have been affected by methodological limitations, unaccounted environmental moderators, small sample sizes
and low statistical power. Importantly, the reported variants in CHRNAS5-A3-B4 cluster are highly correlated in
haplotype structure among individuals of European ancestry. For example, the correlation between rs16969968
and rs1051730 is 1.0 in individuals of European ancestry. Therefore, different variants reported in these studies
indicate a common genetic profile.

To note, no individual variants in the CHRNA5-A3-B4 cluster were associated with either bupropion or vareni-
cline (see Supplementary Table 1) (52,63,66-68]. The association of CHRNAS5-A3-B4 and response to transdermal
selegiline was reported in one study, where the minor C allele of rs3814567 was associated with lower abstinence
rates in selegiline-versus placebo-treated smokers [69).

CYP2A6

CYP450 2A6 enzyme represents the main metabolic enzyme for the conversion of nicotine to its inactive metabolite
cotinine [70]. In a large GWAS of 83,317 smokers of European ancestry for the number of CPD, the SNP
rs4105144 located in the vw-B6 region was significantly associated with smoking quantity with an effect size of
0.39 (p = 2.2 x 107'2) ;301. This SNB, however, was not seen to moderate the effect of NRT or varenicline after
1 year of treatment in an open-label study of 525 Caucasian smokers, albeit showing significant association with
tobacco dependence [68]. The interpretation of results is certainly limited by the absence of a placebo arm. In a
placebo-controlled RCT of 709 European ancestry smokers, the effect of NRT, but not bupropion, differed with
metabolism based on CYP2A6 genotype [71]. compared with placebo, NRT was effective in fast, but not slow
metabolizers, whereas bupropion proved effective regardless of CYP2A46 genotype.

DBH

A GWAS found a significant association between DBH rs3025343 polymorphism and smoking cessation (p = 3.6
x 10®) 311. A placebo-controlled RCT of 755 smokers found that when considering only smokers with GA/AA
of B8 DBH and CT/TT of 3% DRD2, subjects on the patch had an odds ratio (OR) of 3.59 of abstaining at
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12 weeks compared with the subjects on placebo. This OR is reduced to 1.41 when running the same analysis on
smokers with GG of 8 DBH and CC of 328 DRD2 (P for difference in ORs = 0.04) [72]. Results for the same
DBH SNP was not replicated in an open label study of 569 Caucasian smokers in Germany treated with either
NRT or bupropion, at the physician’s discretion [73].

CHRNA4

The CHRNA4 gene garnered attention after being identified as a novel locus (rs2273500) for nicotine dependence
in a GWAS meta-analysis of 17,074 Caucasian ever smokers (74]. CHRNA4 gene expression may significantly affect
smoking behavior as well as response to treatment. A cohort study of 483 smokers from mixed ethnicities who
received treatment with either varenicline, bupropion and/or NRT, found that, on one hand, for subjects with
CT/TT genotypes of CHRNA4 rs1044396 polymorphism, success rate seems comparable between varenicline,
varenicline plus bupropion (V+B) and bupropion plus NRT (B+NRT) (50.9, 50 and 42.2%, respectively). On the
other hand, CC genotype puts subjects on varenicline at a particular disadvantage (success rate 29.5%) compared
with the other two combination treatments (40% for V+B and 42.1% for B+NRT) (75].

Candidate genes based on pharmacogenetic association studies
COMT

Genes acting on the dopamine pathway are of obvious importance to the nicotine addiction pharmacogenetic
studies. Namely, the gene coding for the enzyme COMT, which degrades dopamine released in the extraneuronal
space. The Val108/158Met polymorphism or rs4680 of the COMT gene has been examined in multiple studies in
relation to NRT but results have been inconclusive. An RCT of 741 smokers of European ancestry found greater
benefit of active treatment compared with placebo on the likelihood of abstinence in the Met/Met genotype group,
in comparison to the Met/Val + Val/Val group [76]. In contrast, a more recent study of 250 Asian smokers resulted
in greater abstinence rates on NRT versus placebo in the group with Val/Val genotype versus the group with Met
allele [77). This may highlight the pharmacogenetic variability between different ethnicities, although the divergence
in study results might simply be attributed to low power. A third RCT found no gene—drug association for this
variant among 233 Caucasians smokers [62].

No gene—drug interaction was found either for rs4680 and bupropion in an analysis of two RCTs [78]. However,
in a placebo-controlled RCT of 511 smokers from different ethnic backgrounds, Caucasians with at least one
A allele of rs165599 had 19% abstinence on placebo and 33% on bupropion, while those with a GG genotype
displayed 38% abstinence on placebo versus 22% on bupropion. In contrast, although trending towards the same
results, no significant association was found among AA smokers, probably due to their small sample size [79].

DRD?2

DRD? gene is one of the most studied genes before the era of GWAS research in the pharmacogenetics of nicotine
dependence, especially Taq1A, or rs1800497. This variant has been shown to alter DRD2 availability in postmortem
striatal samples [80). Among 755 smokers participating in a placebo-controlled RCT, those who possessed at least 1
T-allele had a significantly better response to NRT than placebo (OR = 2.8), while the observed OR for the response
smokers with CC genotype on the patch compared with placebo was 1.41 (P for difference in ORs = 0.04) [72).
These results were not replicated however in two independent studies, an RCT and an open-label effectiveness
trial (62,73].

1ag1A showed more remarkable results when studied in association with outcomes to bupropion treatment. Three
independent studies, with a combined sample size of 1582 Caucasians, demonstrated consistently that smokers
with 72414 CC genotype had significantly higher rates of abstinence when treated with bupropion as opposed
to placebo, while showing no difference when possessing one or two T alleles (73,81,82]. One open-label trial did
not show however a gene—drug interaction with either bupropion or varenicline, perhaps owing to methodological
limitations (open label, lack of placebo, mixed ethnicities) (83]. Furthermore, rs1799732, an ins/del variant of the
DRD? gene, was associated with differential response to bupropion compared with placebo in that, on bupropion,
individuals with CC genotype responded better than those with at least one N allele, whereas on placebo, smoker
with at least one N allele were more likely to be abstinent [84]. This result still requires replication.
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DRD4

Pharmacogenetic studies have mostly focused on a variable number of tandem repeats (VNTR) polymorphism
located in exon III of the DRD4 gene. A study of two pooled RCTs resulted in a significant gene—drug interaction
for exon IIT VNTR in DRD4 and bupropion on smoking lapse rates [78]. In a more recent trial, participants with at
least one L allele of this same variant had higher odds of abstinence on bupropion compared with placebo while no
differential effect was seen in SS participants [85]. This result was not replicated however in a subsequent study of
416 smokers of European ancestry [86]. No association was found between exon III VNTR and NRT in a separate
placebo-controlled RCT of 720 Caucasians smokers [52].

CYP2B6

CYP450 2B6 gene, CYP2B6, encodes the isoenzyme that metabolizes bupropion to hydroxybupropion [87], therefore
playing an important role in bupropion treatment outcome. In an open-label study of 478 smokers receiving
bupropion or varenicline (+/- NRT, treated as a covariate), CYP2B6*4 152279343 was observed to moderate the
effect of bupropion, but not varenicline, on abstinence; wild-type AA genotype had higher success rate (48.0 %)
compared with patients carrying AG or GG genotypes (35.5 %) on bupropion therapy (p = 0.05). Success rates in
the varenicline sample remained virtually the same, regardless of genotype (43.4 and 43.2%, respectively) (83]. In
another placebo-controlled RCT, 326 Caucasian smokers were randomized to bupropion or placebo and haplotyped
for CYP2B6*6 (which comprises 1s2279343 and rs3745374). A genotype by treatment interaction was found after
10 weeks of treatment, the bupropion resulted in a higher abstinence rate than placebo in the CYP2B6*6 group
(CYP2B6*1/*6 or CYP2BG6*6/ *6 genotype), while no difference was observed between bupropion and placebo for
CYP2B6*1 group (CYP2B6*1/*I) (88]. The favorable effect of bupropion on smoking cessation in the CYP2B6*6
group may result from the association of the latter on decreased bupropion metabolism in the liver [89], leading to
increased bupropion plasma levels.

Discussion

With this systematic review, we identify the potential of genetic markers, identified by the GWAS discoveries,
in predicting the efficacy of smoking cessation pharmacotherapy, based on the review of 46 studies. Multiple
pharmacodynamics (e.g., CHRNAS, DBH, CHRNA4) and pharmacokinetic (e.g., CYP2A6) markers may predict
efficacy of NRT, although both positive and negative studies exist. These discrepant results may be influenced by
the sample ascertainment, study power, concurrent nonpharmacological therapy and other potential confounders.
One of the most studied gene clusters is CHRNA5-A3-B4, which has been heavily linked to smoking characteristics
including nicotine dependence [29], smoking quantity [90] and biomarkers of smoking [91,92].

Other GWAS-identified genes that were also shown to be associated with treatment efficacy included CYP2A46, a
highly polymorphic gene that has been associated with multiple smoking phenotypes (36,45], DBH that catalyzes the
conversion of dopamine to norepinephrine, hence playing an important role in the addictive properties of smoking
and CHRNA4 which encodes one of the subunits that form the nicotinic acetylcholine receptors, the activation
of which leads to downstream dopamine release. We also reviewed 30 pharmacogenetic studies for a treatment by
genotype effect of candidate genes, not yet identified by GWAS and show inconsistent results; however, multiple
candidate genes (e.g., COMT, DRD2, DRD4 and CYP2B6) may predict efficacy of bupropion.

In addition, we find that study design is crucial in the linkage of evidence and clinical applications. Randomization
is key in determining whether the difference is based on the medication or other selecting factors and 30% of the
studies categorized under pharmacogenetics do not have a randomization design. Having a placebo-controlled arm
is another key in determining whether the medication efficacy (defined as medication vs placebo) varies by genetic
markers. Many studies (60%) have no placebo control or use a different medication as control.

This systematic review also highlights the highly variable level of replication and nonreplication across these
gene—drug pairs examined in the RCTs. For example, for CHRNAS5, there are 4 reports from 11 studies showing
positive pharmacogenetics associations and seven reports from 14 studies showing negative associations. Replication
and sample size are both important in determining the strength of the evidence. In addition, few pharmacogenetics
studies (10%) examined individuals of non-European ancestry. This clearly indicates a research gap because the
effect and distribution of genetic markers may differ across diverse populations. For example, the frequency
distribution of risk haplotypes in CHRNAS5-A3-B4 varied significantly across individuals of European, African
and Asian ancestry [93]. Therefore, the validity and udility of these pharmacogenetics findings may vary across
populations.
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This review needs to be interpreted with several limitations in mind. First, findings that are not published or
indexed in PubMed before 5/22/2017 are not included. However, PubMed is the primary database that indexes the
medical literature including pharmacogenetics findings. Second, our focus is on pharmacogenetics (does the genetic
marker predict a superior or inferior efficacy of medication compared with placebo or a different medication?),
therefore we focused on papers with study design to answer the pharmacogenetic question (RCT with placebo
control, RCT with comparative arms and open-label trial with comparative arms). This paper does not cover the
other related questions (e.g., Does the genetic marker predict medication efficacy among individuals taking the
same specific medication? Does the genetic marker predict smoking cessation among individuals taking the placebo
or no medication?). Other reviews on genetics of smoking cessation [94,95] and a Cochrane review of different
pharmacogenetics studies are available to provide insights into these related questions [61].

Conclusion

In conclusion, pharmacogenetics of smoking cessation is a rapidly growing field and likely to benefit from these
scientific efforts: Larger GWAS of smoking behaviors [19,74] are likely to reveal exponentially increasing number
of promising genetic markers for translational investigation; we need more clinical trials with genetic markers
in diverse populations beyond European ancestry; meta-analyses of existing studies with careful adjudication are
necessary because of the limited sample size in treatment trials and the need to compare and combine different
pharmacotherapy arms. Replication and sufficient study power are only possible with large collaborative efforts and
necessary for clinical translation and anticipate future use of polygenic predictors in predicting cessation success,
smoking-related health outcomes, efficacy and side effects of pharmacotherapy. Smoking cessation pharmacotherapy
such as NRT, bupropion and varenicline are moderately effective, yet have side effects. Identifying genes predicting
efficacy and side effects may lead to improved treatment algorithms that further the precision treatment to help
smokers quit successfully.

Executive summary

Methods

e We conducted a systematic review of pharmacogenetics in smoking cessation.

e We searched the PubMed, identified 644 articles and included a total of 46 articles based on predefined criteria.

Genes with genome-wide association studies hits

e CHRNAS5-A3-B4 gene cluster is the most extensively studied in smoking cessation pharmacogenetics. The
following single nucleotide polymorphisms (rs1051730, rs588765, rs2036527 and rs16969968) have all shown
significant interaction with nicotine replacement therapy (NRT) outcomes. However, several studies have not
been able to replicate the results for rs16969968.

e CYP2A6 genotype variation moderates the outcome to NRT but not bupropion.

o GA/AA of 3%8DBH and CT/TT of 328%6DRD2 moderate the comparative effect of NRT to placebo.

e CHRNA4 rs1044396 polymorphism moderates the effect of varenicline when compared with combined varenicline
and bupropion or NRT and bupropion.

Candidate genes

e In COMT, rs4680 moderates the effect of NRT whereas rs165599 moderates the effect of bupropion.

e Moderating effects of DRD2 Tagq1A and DRD4 exon |ll VNTR on bupropion treatment outcome have been
replicated in several studies.

e CYP2B6*4 and CYP2B6*6 were both shown to be associated with bupropion treatment outcomes when
compared with varenicline and placebo respectively.

Conclusion

e Multiple pharmacodynamics marker (e.g., CHRNA5, DBH and CHRNA4) and pharmacokinetic marker
(e.g., CYP2A6) may predict efficacy of NRT.

e Multiple candidate genes (e.g., COMT, DRD2, DRD4 and CYP2B6) may predict efficacy of bupropion.

e Discrepant results may be influenced by the sample ascertainment, study power, concurrent nonpharmacological
therapy and other potential confounders.

e Study design is crucial, particularly the use of randomization and a placebo-controlled arm.

e Meta-analyses of existing studies with careful adjudication are necessary to generate pharmacogenetic evidence
before clinical translation.
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Future perspective

With increasing use of genetic markers in medicine, we anticipate future use of polygenic predictors for pa-
tients in predicting cessation success, smoking-related health outcomes and for providers in choice of cessation
pharmacotherapy for maximized efficacy and minimized side effects.

Supplementary data
To view the supplementary data that accompany this paper please visit the journal website at:
https://www.futuremedicine.com/doi/suppl/10.2217pgs-2018-0023
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