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ABSTRACT
Heritability analysis of the microbiota has demonstrated the importance of host genotype in
defining the human microbiota. The alpha (1,2)-fucosyltransferase 2 encoded by FUT2 is involved in
the formation of the H antigen and the SNP, rs601338 is associated with ABO histo-blood group
antigen secretion in the intestinal mucosa. Previous studies have provided non replicated results for
the association of this polymorphism with the composition and inferred function of intestinal
microbiota. We aimed to assess this relationship in a large cohort of 1,190 healthy individuals.
Genotyping was performed using the HumanCoreEXOME chip, microbial composition was
addressed by 16S rRNA gene sequencing. Firmicutes, Bacteroidetes, and Actinobacteria were the
dominant phyla in this cohort. Although we have sufficient power to detect significant associations
of FUT2 genotype/ inferred phenotype with the microbiota, our data demonstrate that FUT2
genotype and secretor status is not associated with microbial alpha diversity, microbial composition
or inferred microbial function after correction for multiple testing. Thus, FUT2 genotype and inferred
phenotype are not associated with human fecal microbial composition and imputed function.
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Introduction

The human gut microbiome is involved in a num-
ber of important metabolic functions.1 The major
microbial phyla comprising the human gut micro-
biome are Firmicutes, Bacteroidetes, Actinobacteria,
and Proteobacteria2 At the genus taxonomy level,
the composition varies markedly in healthy sub-
jects, with some subjects having > 80% of their
microbiota composition represented by a single
taxa such as Bacteroides or Prevotella genera.3

Although, the function and composition of the

human microbiome are subject to long-term tem-
poral stability there is considerable short-term
variability.4 The reason for high inter-individual
variability of the composition of the microbiome in
healthy individual is unknown; however, diet, envi-
ronmental factors and host genetics likely contrib-
ute to the variability of the composition of the
human gut microbiome.4-6

Heritability analysis of the microbiota has dem-
onstrated the importance of host genotype in
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defining the human microbiota.6,7 Although our
data in a large cohort failed to show any association
with inflammatory bowel diseases (IBD) risk associ-
ated genetic polymorphisms.7 other studies suggest
that specific genetic variants in key genes involved
in mucus composition such as FUT2 are associated
with microbial composition.8-11 Therefore, the asso-
ciation of IBD risk associated genetic polymor-
phisms with the diversity of the human microbiota
remains controversial.12,13 The protein encoded by
the alpha (1,2)-fucosyltransferase 2 gene (FUT2) is
responsible for secretion of the ABO histo-blood
group antigens in the mucosa. The FUT2 associated
SNP rs601338 is associated with the secretor/non
secretor status. The minor allele (A) confers a non-
secretor phenotype and is associated with Crohn’s
disease (CD) susceptibility with odds ratio of 1.11
(1.071–1.143 95% CI, p < 10¡15).13-15 Host-microbe
interactions can involve FUT2 through modification
of components of the mucus layer,16-19 and thus
FUT2 is an ideal candidate to test for association
with the gut microbiota variability. Indeed several
studies have already investigated the role of FUT2
in the composition of the microbiota but large bio-
logical (mucosal versus stool sample or bile duct)
and technical differences (DNA extraction and pro-
filing method of the microbiota) exist between stud-
ies resulting in potentially different results.8,10,11,20

Indeed the FUT2 expression in tissue is the highest
in salivary gland, then esophagus-mucosa, then ter-
minal ileum, and then transverse colon21 and it was
shown that the effects of the FUT2 genotype/secre-
tor status on bacterial phyla decrease in distal
region of the gastrointestinal tract.22 In addition
detecting an association of FUT2 with microbial
composition might also depend on other factor
such as the stress applied to the host and/or diet of
the host.19,23

We examined FUT2 associated SNPs with intestinal
microbial composition and inferred function using a
cohort of subjects collected as part of a prospective
cohort study of healthy first degree relatives of CD
subjects (The Genetic, Environmental Microbial
(GEM) project). We analyzed the association of FUT2
with intestinal microbiota in 1,190 healthy first degree
relatives of CD patients. Our results show that FUT2
genotype and secreting status are not significantly
associated with fecal microbiota composition and
inferred function.

Results

Demographics of the cohort

The cohort comprised a total of 1,190 healthy indi-
viduals of European descent. The majority of the
subjects were recruited from several Canadian
provinces with the highest number from Ontario,
Alberta and Quebec (37.3%, 24.5% and 14.4%) and
2.0% where recruited from either Israel or USA
(Supplementary Table 1). In the studied cohort,
there were more females (55.5%) and the mean age
was 19.8 § 7.7 (mean § SD).

Description of the microbiota composition
of the cohort

The three dominant bacterial phyla were Firmicutes
(relative abundance of 64.2% § 14.1), Bacteroidetes
(26.9% § 15.0), and Actinobacteria (5.0% § 5.2)
(Supplementary Figure 2). Of the 127 genera, we
found that Blautia, Coprococcus, Ruminococcus, Bac-
teroides, Dorea, Roseburia, Faecalibacterium, Strepto-
coccus and Oscillospira genera were found in all
subjects. The remaining 118 genera were irregularly
observed as present or not present across subjects. For
example two individuals harbour 8,468 and 4,881
reads assigned to a single OTU (28.2% and 16.2% of
their microbiota) assigned to Succinivibrio genus, an
OTU usually found in less than 5% of the general pop-
ulation. This confirms that our cohort have the exis-
tence of a core microbiome24 coexisting with highly
variable bacterial taxa of the human gut microbiome.4

Association of rs516246 with the gut microbiota

When examined against all OTUs, rs516246 genotype
and the inferred FUT2 phenotype was not associated
with microbial alpha diversity (Supplementary
Tables 3, and Supplementary Figure 3). Because Bifi-
dobacteriales taxon was previously associated with
alpha diversity index we subsampled our microbiome
data to perform an analysis restricted to this taxon.9-11

Our data showed that Bifidobacteriales alpha diversity
estimated by Chao1, Simpson, Shannon and observed
species indices were not associated with FUT2 geno-
type or secretor/non-secretor status (Supplementary
Tables 4).

PCoA analysis of beta diversity performed on all
OTUs as measured by unweighted UniFrac distances
revealed that there was no clustering by genotype
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(R2 D 0.002, p-value D 0.31) or inferred phenotype
(R2 D 0.001, p-value D 0.18) (Figure 1). Similar results
was observed using Bray-Curtis distances across geno-
type (R2 D 0.002, p-value D 0.28) or inferred pheno-
type (R2 D 0.001, p-value D 0.13) (Figure 1). The
difference in Bacteroidetes relative abundance
reported previously among non-secretors was not rep-
licated in our cohort (Figure 2).

We then applied the method published previously
to analyze the microbiota at lower taxonomic levels.8

Briefly, OTUs were filtered based on an observed pres-
ence in at least 60% of the samples and with a mini-
mum total count of 30 across samples. This strategy
reduces the total number of OTUs from 12,863 down
to 396, and consequently reduces the number of com-
parisons tested. Again, FUT2 genotype or inferred
phenotype was not significantly associated with any of
these filtered OTUs p>1.3 10¡4 (Supplementary
table 5).8

FUT2 genotype/ inferred phenotype are not
associated with microbial composition even with less
stringent filtering of OTU table

Filtering OTUs based on presence in at least 60% of
the samples has important consequences on microbial
composition characteristics (Supplementary Figure 1).
A rarefaction at 30,000 reads, followed by filtering
OTUs based on a presence in at least 60% of the sam-
ples decreased the number of reads to a mean of
23,952. For some individuals such filtering leads to an
inaccurate estimation of the microbial composition
(Supplementary Figure 1). By way of example, for five
individuals, a single OTU assigned to Prevotella copri
represents up to 40% of their microbiota. Filtering
applied such that OTU’s present in less than 60% of
samples are removed would result in a finding that
this bacteria represents <1% of the individual’s entire
fecal microbiota. In order to determine whether sensi-
tivity to this filtering would alter the association
between FUT2 and microbiota, we repeated the associ-
ation analysis to include OTUs with an observed pres-
ence in at least 5% of the samples. This strategy
reduces the total number of OTUs from 12,863 to
4,353 without altering the overall microbial composi-
tion (Procrustes of OTU table with no filtering against
OTU table filtered based on 5% of OTUs prevalence,
M2 D 0.0, p-value <10¡6) and removed most single-
ton and/or spurious OTUs.25

Given this compositional analysis we then assessed
the associations between bacteria at the level of Phy-
lum down to individual OTUs. Using this filtering of
OTUs we were able to detect several nominal associa-
tions but they did not survive correction for multiple
testing (Supplementary table 6).

Paired test in family members with FUT2 inferred
phenotype discrepancy

Finally, we applied a different strategy to assess
the relationship between secretor/non-secretor and
microbial composition. Within the original cohort we
had identified 102 individuals from 46 families who
did not share the same secretor status (Secretor and
non-secretor individuals from the same family). A
paired t-test for related subjects failed to identify sig-
nificant associations with taxa after correction for
multiple testing (with the lowest p-value being 0.001
for Tissierellaceae taxa) (Supplementary table 7).
The significant difference in phylotype abundances
reported previously, namely, the increase in Bacteroi-
detes among non-secretors8,9 was not confirmed in
this analysis (Supplementary Figure 4).

Imputed function failed to detect any association
between imputed microbial function and FUT2
genotype and secretor/non-secretor status

Microbial functions were imputed and tested for asso-
ciation with the FUT2 genotype/inferred phenotype
(See Material and Methods, Supplementary table 8,
Supplementary table 9). It was previously shown that
microbiome from secretor individuals separate from
non-secretor.8 Our PCoA analysis of beta diversity
performed on all OTUs as measured by Bray-Curtis
distances revealed that there was no clustering by
inferred phenotype (R2 D 0.0004, p-value D 0.77).We
did not identify any association of FUT2 genotype or
inferred phenotype with predicted metagenome com-
position by KEGG after correction of the p value for
multiple testing (Supplementary table 9). Previous
associations8 in amino acid biosynthesis, in carbohy-
drate and lipid metabolism, in cofactors and vitamins
metabolism and in glycan biosynthesis and metabo-
lism in non-secretor (AA) individuals as compared to
secretor (GG) were not replicated in our dataset. How-
ever some subcategories have nominal association
with FUT2 genotype such as K05988 (p-value <0.004)
and K01799 (p-value <0.03) involved in carbohydrate
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metabolism, or K03918 (p-value <0.02) and K13831
(p-value <0.04) involved in amino acid metabolism
(Supplementary table 9).

COG categories related to carbohydrate transport
and metabolism (class [G]) were not significantly
associated in pair comparison. Examining subcatego-
ries of COG specifically related to fucose metabolism,
i.e. COG2407 (L-fucose isomerase and related pro-
teins), COG3594 (Fucose 4-O-acetylase and related
acetyltransferases), COG0738 (Fucose permease), and
COG3669 (Alpha-L-fucosidase) failed to identify a
significant difference across genotype groups. How-
ever subcategory COG4154 (Fucose dissimilation
pathway protein FucU) had a nominal association
with FUT2 genotype (p-value <0.03) but this did not
survive correction for multiple testing. Other COG
function were nominally significant but were not
closely link to fucose metabolism of the mucus
(COG3465, an uncharacterized protein YwgA
COG3676, a transposase and inactivated derivatives,
COG3728, a phage terminase, and COG3774, a
mannosyltransferase).

Discussion

We examined a cohort of healthy first degree rela-
tives of CD patients to assess if FUT2

polymorphism and inferred phenotype was associ-
ated with microbial composition and inferred func-
tion using 16S rRNA gene sequencing and
PICRUSt software analysis to infer bacterial com-
munity function. The size of the cohort we exam-
ined allowed for the study to be sufficiently
powered to detect the previously reported effect
size for the association of FUT2 with microbial
composition.8-11 Indeed, standard procedure for
genetic-traits association was carefully applied that
include, control of population stratification by
restricting analysis to individuals
of European descent, control of type I error by
excluding related subjects (n D 272 individuals).
With a total number of 918 unrelated individual,
the power calculations in our study showed that we
have >80% power to detect the association of
FUT2 rs516246 associations with 10 out of 13 bac-
terial phyla (Supplementary Tables 10) based on
prior studies effect size.8,9 Despite the fact that the
size of our cohort is larger than that of previous
studies,8-11 our results indicated that FUT2 is not
associated with fecal microbial diversity, composi-
tion or inferred function. However, our results are
in agreement with another recent study using a
large cohort of 1,503 twins from the United King-
dom,26 as well in 3 different microbiome GWAS

Figure 1. PCoA plot using Unweighted Unifrac and Bray-Curtis distances for beta diversity measure. Individuals who are either homozy-
gous major (GG), heterozygous (GA) or homozygous minor (AA), at rs516246 are colored in orange, blue, and red respectively. Individu-
als with a secreting status are coloured in green and individuals non-secretor are coloured in purple.
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studies that all failed to identify any association of
FUT2 and fecal microbiome composition, even
after adjusting for age, sex covariates and taking
into account family structure.7,27,28

Alpha diversity was not significantly different
across genotype using Chao1 and number of species
index. These two indexes were applied and previously
reported to be decreased in AA and GA as compared
to GG, with a reported p values of 0.012 and 0.085
respectively.8 However, another study using PCR
Denaturing Gradient Gel Elecrophoresis (DGGE) and
pyrosequencing to characterise microbial diversity11

also failed to find any differences in alpha diversity
with respect to FUT2 genotype. In addition, the same
group found different results between DGGE, pyrose-
quencing and HITChip methods applied to the exact
same cohort.10,11 After subsampling our dataset to this
taxon, we failed to replicate any association with Bifi-
dobacteriales alpha diversity. Our sequencing protocol
was directed at V4 region of the 16S which a region
known to have adequate amplification and assignment
of members of Bifidobacteriaceae family.29-31 Thus, we
believe that our results concerning Bifidobacteriacea-
ceare are robust.

We found that FUT2 genotype and inferred pheno-
type was not associated with microbial composition.
This is different from previous studies which have
generally been small in sample size.8-11 Using PCR-
DGGE fingerprinting technology to characterise the
microbiome, it has been shown that non-secretors
have lower relative abundance and diversity of the
bifidobacterial taxa.10,11 Wacklin et al. reported that
this association was weak and pyrosequencing and
HITChip characterization of the microbiota did not
replicate all these findings in the same cohort.10,11

Another study has shown that FUT2 secretor status
was associated with gut microbiota compositio;n9

however, only 47 individuals were studied including
29 with CD, which could indicate a confounding effect
of disease phenotype rather than genotype.9 The asso-
ciation of FUT2 with intestinal microbial the composi-
tion and function in the cecum and sigmoid colon
from 39 healthy subjects has been reported. However
these authors only included OTUs observed in at least
60% of the cohort reducing the number of OTUs from
4074 to 419. Here, a q-value threshold of 0.25 for a
part of their analysis was used rather than the conven-
tional p-value threshold of 0.05, thus increasing type I

Figure 2. Beeswarm plot of the relative abundance of Bacteroidetes in individuals who are either homozygous major (GG), heterozygous
(GA) or homozygous minor (AA), at rs516246 in 918 unrelated individuals of European descent. The lines represent the first (blue), sec-
ond (bold red), and third quartiles (blue). Circles represent the relative abundance of the given family from an individual subject’s
sample.
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error.8 For comparison, we applied the same strategy,
but we could still not replicate previous results.8

Finally a small cohort of 35 individuals comprising 8
non-secretor individuals found no difference in alpha
diversity and beta diversity but differences in Prevotel-
laceae, Paraprevotellaceae were observed.32 Finally, a
more recent large cohort study also found that secre-
tor statuses are not associated with stool microbiota
composition in 1,500 twins.26 Our results are thus in
accordance with this larger cohort study and suggest
that studies with small sample size should be repli-
cated in well powered studies.

FUT2 genotype/ inferred phenotype was not associ-
ated with imputed microbial function assessed using
PICRUSt. A report from Tong et al. was the only pre-
vious study to evaluate the function of the human
microbiota in the context of FUT2.8 FUT2 was shown
to be associated with several KEGG pathways includ-
ing carbohydrate and lipid metabolism, cofactors and
vitamins metabolism and glycan biosynthesis and
metabolism. In our dataset none of these pathways
associations were replicated. The discordance between
our report and that of Tong et al could be due to
numerous technical differences: DNA extraction
(PowerSoil DNA Isolation Kit versus QIAamp DNA
Stool Mini Kit), sequencing technology (HiSeq versus
MiSeq). We used the same primers to sequence the
16S gene; however, HiSeq allows the generation of a
higher numbers of reads per run compared to
MiSeq.30 Due to lower number of sequences generated
by MiSeq we chose a rarefaction of 30,000 sequences
per sample while Tong et al. used a rarefaction of
300,000 sequences per sample. This difference in rare-
faction depth might affect the presence/absence of
particular OTUs with more rare OTUs and related
inferred functions detected. As PICRUSt software uses
OTU composition to infer bacterial function, it might
be sensitive to OTUs richness and prevalence resulting
in different conclusion.33 A report by Langille et al.
has demonstrated that only 105 16S sequences are
required to accurately impute bacterial function.34

Thus we believe that our conclusions are robust even
with a lower number of sequences per sample.

The major difference between our study and previ-
ous reports is the bio-specimen used to investigate
intestinal microbial composition. Tong et al. used
mucosal lavage collected from the cecum and sigmoid
colon.8 Rash et al. used colonic sigmoid biopsies,9

while in our study faecal samples were used. The

microbial composition is known to differ across lumi-
nal and fecal samples.35 Also, there is a decreasing gra-
dient of fucose and ABH blood group expression from
ileum to rectum.36,37 Thus the alpha (1,2) fucosylated
components are likely decreased in stool as compared
to sigmoid or cecal samples. In addition, age is an
important factor that is associated with differences in
microbial composition.38 The mean age of the GEM
cohort (19.8 § 7.7) was lower than previous stud-
ies8,10,11 and thus the microbiota composition and/or
inferred function in our population might be different
from these studies. Nevertheless, the overall microbial
composition in our cohort was consistent with that
described in microbiome studies2,6 (Supplementary
Figure 2). Finally technical differences might explain
some discrepancy such as DNA extraction, microbial
identification method, primers, and regions of 16Sr
RNA.39,40 Indeed, DNA extraction was different across
all these study and include the FastDNAH SPIN Kit
for Soil (MP Biomedicals),10,11 prep DNA/RNA Mini
Kit (Qiagen),9 and PowerSoil DNA Isolation Kit (MO
BIO Laboratories)8 while the QIAamp DNA Stool
Mini Kit (Qiagen) was used in this study. These DNA
extractions are known to result in differences in
microbiome profiling even if the same sample was
used for each extraction.39 In addition, Waclkin et al.
use DGGE, pyrosequencing and HITChip methods,
while Rausch et al. used pyrosequencing and Tong
et al. used Illumina HiSeq 2000 while Miseq was used
in the GEM project.41 All these methods make it diffi-
cult to directly compare the biological output of each
study. To summarise, stool sampling, DNA extraction
and the age of the cohort are the three most important
factors which differ between this and previous studies
which could explain the absence of a FUT2 association
with microbial composition and inferred function
observed in this study.

With 1,190 individuals, this study represents one of
the largest human cohorts to assess the association of
FUT2 genotype and inferred phenotype with the
human gut microbiota. We found that FUT2 was
nominally associated with numerous inferred micro-
bial functions and with microbial composition but
none of these associations survive correction of the p-
value for multiple testing. In addition no clustering
based on FUT2 genotype could be observed and the
alpha diversity was similar across FUT2 genotype and
secreting status. However dietary habits, variation in
stool sampling, and DNA extraction might explain
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discrepancy with other studies. In conclusion we
found that FUT2 was not associated with human
microbiota. Genetic factors that are associated with
microbial composition and function remain to be
defined and replicated.7,27,28

Methods

Patient recruitment

Subjects were recruited as part of a prospective cohort
study of healthy first degree relatives of CD subjects
between 6 – 35 years of age from 2008 to 2013 (The
Genetic, Environmental Microbial (GEM) project)
(http://www.gemproject.ca/, Table 1, Supplementary
Table 1). After consent, each subject provided stool
and blood samples and completed a standardized
questionnaire to exclude any history or symptoms of
IBD or gastro-intestinal disease as defined by the clini-
cal sub-committee of the GEM Project (Supplemen-
tary Note 1). Demographic information and
environmental risk data were recorded (Supplemen-
tary Note 1, Supplementary Note 2, Table 1, and Sup-
plementary Table 1). All subjects and/or their
guardians gave written informed consent to partici-
pate in the study. Subjects were excluded if they had
received antibiotic treatment within three months
prior to their recruitment into the study. The study
cohort comprised 1,190 asymptomatic individuals of
European descent. The study was approved by the
Mount Sinai Hospital Research Ethics Board (Toronto
– Managing center) and each participating recruit-
ment center.

Genotyping of healthy first degree relatives
by HumanCoreEXOME chip

Blood was collected from subjects and genomic deoxy-
ribonucleic acid (DNA) extracted using the Gentra
Puregene Blood Kit (Quiagen, CA, USA, catalog
#158389). DNA samples were quantified by Nanodrop
dilutions. DNA was then prepared at a final concen-
trations of 20 ng/ml and aliquoted into 96-well reac-
tion plates. SNP genotyping was performed using the
HumanCoreExome-24 v1.0 chip (Illumina, Inc. San
Diego, CA). We restricted the analysis to subjects with
self-declared Caucasian ethnicity due to the fact that
rs601338 (W143X, G428A) is the most common cause
of secretor status in European ancestry, while other
polymorphisms may be responsible in other ethnicity

as reviewed previously.42 Since, rs601338 is not geno-
typed in the HumanCoreEXOME chip we used
rs516246, which is in strong linkage disequilibrium
with rs601338 to infer secretor phenotype. According
to the International HapMap Project (HapMap3
release 2, Northern and Western Ancestry population)
these two SNPs are in perfect linkage disequilibrium
with one another (r2 D 1.0).43 The minor allele (A)
frequency was 49.9% and the genotype distribution
were in Hardy-Weinberg equilibrium (p-value D
0.27). Individuals with AA genotype were defined as
non-secretor while AG and GG were defined as secre-
tor. Genotyping data and corresponding stool identi-
fiers is available in Supplementary Table 11.

Taxonomic profiling of the gut microbiota

Stool sampling from 1,190 subjects (comprising 918
unrelated subjects) was performed as described previ-
ously.41 Briefly, stool samples were collected in FB
Commode Specimen Collector (Fisher Scientific, Wal-
tham, MA, catalog #23-038032), put into Polypropyl-
ene vials (Starplex Scientific Inc, Etobicoke, ON,
catalog #V302-F) and kept in freezers, then shipped
from study sites and stored at -80�C. Fecal bacterial
DNA was extracted using the QIAamp DNA Stool
Mini Kit (Qiagen, Hilden, Germany, catalog #51504)
with slight modifications which included physical dis-
ruption of the bacterial cell wall using ceramic beads.
The V4 hypervariable region of bacterial 16S ribo-
somal RNA (16S) was sequenced in paired-end mode
(2 £ 150 base pair) on MiSeq platform (Illumina Inc.,
San Diego, CA, USA).30 The resulting paired reads
were assembled using PANDAseq v 2.7 to generate an
amplicon size of 250 base pairs.44 To test for inter and
intra-sequencing run variation, a subset of 45 samples
belonging to 12 different subjects were replicated (2–8
replicates depending on subjects) for quality control
(Supplementary Table 2). Sequencing across multiple
MiSeq runs was consistent (Supplementary Table 2).
Assembled reads were demultiplexed and processed
by the quantitative insights into microbial ecology
(QIIME v1.8.0) pipeline using the default parame-
ters.45 Chimeric sequences were identified de novo
and reference based and then removed using
usearch61.46 The non-chimeric sequences were then
clustered into operational taxonomic units (OTUs) at
97.0% sequence similarity using a closed reference-
based picking approach with UCLUST software
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against Greengenes database 13_8 of bacterial 16S
sequences.47 All samples had a minimum of 30,000
reads after quality filtering. Alpha diversity was deter-
mined after rarefication at a depth of 30,000 reads per
sample using Chao1, Simpson, Shannon and observed
species indices.48

Power calculation

Power calculation was performed using QUANTO
v1.2.4.49 Power calculation was defined as the power
at two-sided alpha of 5% to detect difference between
genotypes using a recessive model, the observed coeffi-
cients of determination (R2), and observed minor
allele frequency in 918 unrelated individuals.

Association of gut microbiota with FUT2 genotype
and inferred phenotype

Since including related subjects in genetic association
analysis inflates type 1 error,50 we choose to restrict
the first part of this study to 918 unrelated individuals
of European descent. To assess if FUT2 genotype/
inferred phenotype is associated with the microbial
composition we applied the same methods as Tong
et al.8 which showed that rs516246 genotype (AG and
GG vs AA) is associated with alpha diversity measured
by Chao1 index and beta diversity estimated by using
Bray-Curtis and unweighted UniFrac distances
between samples.8,51 In our cohort, we found that
rs516246 genotype (AG and GG vs AA) have a similar
alpha diversity. In addition, because Bifidobacteriales
taxon was also previously associated with alpha diver-
sity as determined by DGGE,10 we restricted our
microbiome dataset and investigated this taxon specif-
ically. Bacterial community grouping was assessed
using the Adonis test for 10,000 permutations on the
first five dimensions of the principal coordinates anal-
ysis (PCoA).52 Pair-wise comparisons between FUT2
secretor versus non secretor was assessed using the
non-parametric Kruskal-Wallis test to identify

differentially abundant phylum taxa and OTU levels
of taxonomy.

Analysis of bacterial taxa and OTUs were per-
formed using two different filtering. The first analysis
applied the filtering used in Tong et al.8 Briefly, to
analyze at lower taxonomic levels, we filtered out low-
abundant OTUs based on the criteria of minimum
total observation count of 30 across all samples and
being observed in at least 60% of the samples, reduc-
ing the total number of OTUs from 12,863 to 396.8 A
second approach was then applied because filtering
OTU that are observed in at least 60% of the samples
had consequences on characterization of each individ-
ual’s microbiota (Procrustes of OTU table with no fil-
tering against OTU table filtered based on 60% of
OTUs prevalence, M2 D 0.01, p-value <10¡6) with
some individuals having a biased microbiota profiles
after applying this filtering (Supplementary Figure 1–
2). Such approaches also decrease the number of com-
parison made. For such reason, we decided to apply
less stringent criteria to filter OTUs that are observed
in at least 5% of the samples and a minimum read
count of 30 across all samples, leaving 4,353 OTUs (R
software v2.14.1; http://CRAN.R-project.org). We
then analysed bacterial composition based on OTUs
grouped within the same taxonomic assignment at
each level of bacterial taxonomy. A Bonferroni cor-
rected p-value threshold of 0.05 was considered as sig-
nificant (while 396 comparisons were performed at
OTU level of bacterial taxonomy and 166 bacterial
taxa). Raw p-values are reported. All genotype classes
were compared in addition to secretor status and the
p-value were corrected for intra-group compared.

Imputed function of the gut microbiota

The function of the fecal microbial communities was
imputed using PICRUSt V0.1.34 Briefly, The OTU
table was used as the input file for metagenome impu-
tation after a rarefaction step to 30,000 sequences per
sample. The pre-calculated table of gene counts was
used to identify the gene counts in the organisms pres-
ent in the microbiome.53 The Kyoto Encyclopedia of
Genes and Genomes (KEGG)54 and clusters of orthol-
ogous groups (COG)55 databases were used to identify
the gene families. The metagenomic prediction had a
relatively low weighted nearest sequenced taxon index
(0.07 §. 0.017). Pair-wise comparisons between
secretor/non-secretor were assessed using the non-

Table 1. Demographic and genetic data in unrelated individuals
of European descent.

Total number of unrelated Subject FUT2 genotype rs516246

(918) GG (244) AG (436) AA (238)

Gender F (501) 119 246 136
M (417) 125 190 102

Age Mean 19.4 19.7 20.8
St Dev 8.0 7.4 7.8

364 W. TURPIN ET AL.

http://CRAN.R-project.org


parametric Kruskal-Wallis test to identify differen-
tially abundant inferred functions from KEGG and
COG pathways. A Bonferroni correction for multiple
testing was applied and significant association was
considered below a corrected p-value threshold of 5%.
All Procrust analyses were based on Bray-Curtis dis-
tance.56 Monte Carlo simulation was performed using
10,000 permutations on the first five dimensions of
the PCoA.
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