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SUMMARY

Regulatory variation influencing gene expression is a key contributor to phenotypic diversity, both 

within and between species. Unfortunately, RNA degrades too rapidly to be recovered from fossil 

remains, limiting functional genomic insights about our extinct hominin relatives. Many 

Neanderthal sequences survive in modern humans due to ancient hybridization, providing an 

opportunity to assess their contributions to transcriptional variation and test hypotheses about 

regulatory evolution. We developed a flexible Bayesian statistical approach to quantify allele-

specific expression (ASE) in complex RNA-seq datasets. We identified widespread expression 

differences between Neanderthal and modern human alleles, indicating pervasive cis-regulatory 

impacts of introgression. Brain regions and testes exhibited significant downregulation of 

Neanderthal alleles relative to other tissues, consistent with natural selection influencing the 

tissue-specific regulatory landscape. Our study demonstrates that Neanderthal- inherited sequences 

are not silent remnants of ancient interbreeding, but have measurable impacts on gene expression 

that contribute to variation in modern human phenotypes.
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INTRODUCTION

The sequencing of the Neanderthal genome revealed that approximately 2% of the ancestry 

of each non-African modern human traces to ancient gene flow from Neanderthals (Green et 

al., 2010; Prüfer et al., 2014). Recent studies have extended this observation by developing 

approaches to identify Neanderthal-inherited haplotypes in individual modern human 

genomes from globally diverse populations (Vernot et al., 2014; Sankararaman et al., 2014; 

Vernot et al., 2016). Many of these sequences encompass protein-coding genes and other 

functional genomic features, raising the intriguing possibility that they may influence 

variation in modern human traits. Lending support to this hypothesis, several introgressed 

haplotypes overlap annotated hits from published genome-wide association studies 

(Sankararaman et al., 2014). Furthermore, a recent analysis of electronic medical records 

presented evidence that Neanderthal alleles are associated with a range of clinical traits, 

including depression, actinic keratosis, hypercoagulation, and tobacco use (Simonti et al., 

2016). While these studies suggest phenotypes that may be impacted by past hybridization, 

the functional mechanisms by which these associations arise remain poorly characterized. 

Regulatory variation influencing gene expression is a key source of phenotypic variation 

within and between species (King and Wilson, 1975). We thus sought to characterize the 

functional legacy of ancient gene flow by systematically investigating the contribution of 

Neanderthal-introgressed sequence to the landscape of modern human cis-regulatory 

variation.
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A powerful approach for detecting and quantifying the impacts of cis-regulatory variation is 

to test for allelic differences in transcript abundance for individuals heterozygous at 

transcribed polymorphisms (Yan et al., 2002; Skelley et al., 2009; Figure 1a). By contrasting 

counts of reads supporting each allele within heterozygous individuals, this approach is less 

susceptible than expression quantitative trait locus (eQTL) mapping to batch effects and 

other confounding variables. While sophisticated methods have been developed to detect 

ASE in a single sample (Skelley et al., 2009), across individuals (van de Geijn et al., 2015), 

or across tissues (Pirinen et al., 2015), no generalized approach has been developed to 

combine all information simultaneously. Integrating this information is complicated, 

however, by the complex structure of large- scale RNA-seq datasets such as Genotype-

Tissue Expression (GTEx) Project (GTEx Consortium, 2015), wherein many individuals are 

sampled across many tissues, alleles vary in frequency, and genes vary in expression level 

across individuals and tissues. These challenges require a flexible method that capitalizes on 

the wealth of information contained in such complex data structures. To this end, we 

developed a Bayesian generalized linear mixed model (GLMM) approach (Figure 1a; STAR 

Methods) to combine expression data to estimate allele-specific effects, augmenting 

statistical power by integrating information across multiple individuals and tissues (Figure 

1b). Applying this method on a genome-wide scale to the GTEx dataset (214 individuals, 52 

tissues) revealed abundant cis-regulatory effects of Neanderthal-introgressed sequences and 

evidence of tissue-specific variation in regulatory divergence.

RESULTS AND DISCUSSION

Allele specific expression of Neanderthal-introgressed sequences

Within the GTEx dataset, we identified 5055 transcribed single nucleotide polymorphisms 

(SNPs) that tag Neanderthal-introgressed haplotypes (2034 genes; Figure S1). Across all 

samples and tissues, these SNPs comprised a total of 259,338 heterozygous (i.e. one modern 

human and one Neanderthal-introgressed allele) observations. As a control, we compared 

these data to 581,124 non-introgressed SNPs in 26,437 genes (52,040,533 total heterozygous 

observations) across the same set of samples.

Applying our statistical framework to the GTEx data identified 1236 introgressed SNPs 

(24.5%) in 767 genes that showed significant ASE at a false discovery rate (FDR) of 10% 

(Figure 2; Figure S2). Introgressed SNPs showing significant ASE were significantly 

enriched for directionally-concordant single-tissue eQTL identified in previous GTEx 

analyses (Fisher’s Exact Test: OR = 2.51, 95% CI [2.06, 3.06], P < 1 × 10−10), as were non-

introgressed SNPs showing significant ASE (Fisher’s Exact Test: OR = 2.40, 95% CI [2.36, 

2.44], P < 1 × 10−10). The magnitude of enrichment was greatest at low minor allele 

frequencies, reflecting the fact that rare variants must have large effects to be called as 

significant eQTL and are thus more likely to show concordant ASE (Figure S3). Of 

introgressed SNPs showing concordant ASE and eQTL effects, 80% fall within an eGene 

whose lowest p-value SNP has an alternative allele that matches an Altai Neanderthal allele, 

supporting the ability of our analysis to tag potential causal regulatory variants of 

Neanderthal-introgressed origin. Most of the remaining 20% are also expected to be 
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Neanderthal in origin, with mismatches attributable to diversity within and between the 

introgressing Neanderthal and Altai Neanderthal populations.

We observed that the Neanderthal allele was upregulated for 49.8% and downregulated for 

50.2% of SNPs showing significant ASE, indicating no overall directional bias (binomial 

test: 95% CI [0.469, 0.526], P = 0.887). Notable examples of variants exhibiting extreme 

ASE include linked SNPs (r2 = 1.0) rs73236617, rs3924112, rs5743557, and rs5743556 in 

TLR1, an innate immunity gene previously suggested to be a target of adaptive introgression 

(Danneman et al., 2016; Gittelman et al., 2016; Quach et al., 2016; Nédélec et al., 2016). 

The Neanderthal haplotype is associated with significantly increased expression of TLR1 
(rs5743557, binomial GLMM: β = 1.122, 95% CI [0.708, 1.563], P = 5.50 × 10−9, MAFEUR 

= 0.221), consistent with recent eQTL results from Danneman et al. (2016).

Several additional introgressed variants exhibiting significant ASE were previously linked to 

human disease traits in published genome-wide association studies (GWAS), suggesting 

potential cis-regulatory mechanisms underlying these associations. In total, we identified 8 

Neanderthal regulatory variants associated with 9 distinct phenotypes, including rs3765107 

(binomial GLMM: β = −0.428, 95% CI [−0.475, −0.384], P < 1 × 10−10, MAFEUR = 0.111), 

which lies within the lysosomal transporter- encoding gene SLC15A4 and is associated with 

systemic lupus erythematosus (Table 1; Han et al., 2009). SLC15A4 is required for 

endosomal Toll-like receptor (TLR) signaling and secretion of proinflammatory cytokines 

by plasmacytoid dendritic cells (Blasius et al., 2010). This example thus adds to growing 

evidence that Neanderthal introgression contributed to risk of autoimmune disorders 

(Sankararaman et al., 2014) and innate immune response (Quach et al., 2016; Nédélec et al., 

2016).

Disease-associated Neanderthal regulatory variants furthermore reveal how hybridization 

contributed to the genomic complexity of modern humans. These include rs950169, a SNP 

in extracellular matrix protein ADAMTSL3 that is significantly associated with both height 

(Table 1; Wood et al., 2014) and schizophrenia risk (Table 1; Schizophrenia Working Group 

of the Psychiatric Genomics Consortium, 2014). In the GTEx data, rs950169 shows tissue-

wide downregulation of the Neanderthal- introgressed allele (binomial GLMM: β = −0.413, 

95% CI [−0.463, −0.362], P < 1 × 10−10, MAFEUR = 0.273), though a SNP on the same 

haplotype (rs2135551, r2 = 1.0) shows nearly balanced expression of the two alleles 

(binomial GLMM: β = −0.020, 95% CI [- 0.030, 0.073], P = 0.0151, MAFEUR = 0.273). 

This pattern is consistent with a model of splicing regulation proposed by Need et al. (2009), 

which provides a detailed mechanistic explanation for the observed ASE. Specifically, the 

Neanderthal allele introduces a splice acceptor site in exon 30 (Figure 3), resulting in 

alternative splicing and truncation of the protease and lacunin (PLAC) domain 

encompassing rs950169.

Introgressed variants are not enriched for regulatory effects

Recent theoretical work predicts that Neanderthals suffered a high load of weakly 

deleterious mutations accumulated during extended population bottlenecks (Harris and 

Nielsen, 2016). Assuming additive fitness effects, this mutational burden was estimated to 

have reduced Neanderthal fitness by at least 40% compared to modern humans (Harris and 
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Nielsen, 2016). Under this model, deleterious haplotypes introgressed into larger modern 

human populations would have been subject to strong selection during the first ~20 

generations after hybridization—a prediction with growing empirical support from genetic 

data (Sankararaman et al., 2014; Vernot et al., 2016; Currat and Excoffier, 2011; 

Sankararaman et al., 2016). Nevertheless, many weakly deleterious variants (s < x 10−4) are 

predicted to persist in present-day human populations, with a cumulative impact comparable 

to that of the Out-of-Africa bottleneck (Harris and Nielsen, 2016). As many of these 

deleterious mutations presumably influence gene regulation, we hypothesized that 

Neanderthal-introgressed variants may be enriched for ASE compared to segregating 

mutations that arose in modern humans. We therefore contrasted the proportions of 

introgressed and non-introgressed variants exhibiting significant ASE, stratifying by derived 

allele frequency to control for power differences (see STAR Methods). Within frequency 

bins, we found no significant differences between the proportions of introgressed and non-

introgressed SNPs exhibiting ASE (Figure 4b). This finding suggests that purifying selection 

after introgression has largely equalized the frequencies of introgressed and non-introgressed 

regulatory variants with similar magnitudes of allelic effects.

Brain sub-regions show downregulation of Neanderthal alleles

The model for detecting ASE described above effectively averages information across 

tissues. To test more fine-scaled regulatory hypotheses, we therefore extended our mixed 

model approach to consider all introgressed SNPs together and examine whether the 

direction of ASE varied among tissues. A model including tissue parameters was favored 

over a reduced model without this term (ΔWAIC = 150; χ2(df = 51) = 281.3, P < 10−10), 

indicating significant differences across tissues (Figure 5a; see STAR Methods). 

Contributing to this result, we observed a striking bias toward downregulation of 

Neanderthal alleles in the brain and testes (Figure 5a). This observation was robust when 

limiting the analysis to 1) common variants with derived allele frequency >5% and 2) 

variants that were also called as eQTL in one or more tissue based on published GTEx data, 

together suggesting that linked rare variants do not drive the effect (Figure S4). Brain 

regions had significantly lower expression of Neanderthal alleles (binomial GLMM: β = 

−0.0168, 95% CI [−0.0200, −0.0136], P < 10−10) than non-brain tissues, particularly in the 

neuron-rich cerebellum (BRNCHA) and basal ganglia regions (BRNCDT, BRNPTM, 

BRNNCC). Supporting analyses confirmed that this effect was not driven by reference 

mapping bias, as Neanderthal haplotypes of brain-expressed genes have lower levels of 

divergence with the human reference genome than genes expressed in other tissues (Figure 

S6). This level of downregulation is exceptional, as equal-sized samples of non-introgressed 

SNPs matched for sample sizes of individuals and tissues showed no such bias (P < 1 × 

10−3). Further consistent with these data, brain regions including the cerebellum were 

enriched for significantly downregulated compared to significantly upregulated Neanderthal 

SNPs (binomial test [BRNCHA]: P = 1.7 × 10−4; Figure 5b; Table S1). Significant 

downregulation of introgressed alleles in the brainis particularly remarkable given the 

previous observation by the GTEx Consortium that brain-expressed genes show less ASE 

overall, a finding which was attributed to reduced levels of genetic diversity in this gene set 

(GTEx Consortium, 2015).
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One brain-specific gene that exemplifies this pattern of downregulation is NTRK2 (Figure 

5d), which encodes a neurotrophic tyrosine receptor kinase that regulates neuron survival 

and differentiation as well as synapse formation (Nakagawara, 2001). This gene contains a 

pair of adjacent Neanderthal tag SNPs, heterozygous in 22 individuals, which show strong 

signatures of downregulation (rs138535351, binomial GLMM: β = −0.542, 95% CI [−0.604, 

−0.480], P < 10−10, MAFEUR = 0.037; rs74356179, binomial GLMM: β = −0.554, 95% CI 

[−0.615, −0.493], P < 10−10; MAFEUR = 0.037). Mutations and polymorphisms in this gene 

have been associated with a range of neuropsychiatric and neurological disorders including 

depression (Juhasz et al., 2011), suicide attempts (Murphy et al., 2008; Kohli et al., 2010), 

impaired speech and language development (Yeo et al., 2004), severe obesity (Gray et al., 

2007), autism (Correia et al., 2010), obsessive-compulsive disorder (Alonso et al., 2008), 

Alzheimer’s disease (Chen et al., 2008), anorexia nervosa (Ribases et al., 2005), nicotine 

dependence (Li et al., 2008; Beuten et al., 2007), and pilocytic astrocytoma (Jones et al., 

2013). Intriguingly, NTRK2 is among a small set of brain-specific genes whose regulatory 

domains overlap signatures of modern human selective sweeps that occurred after 

divergence from Neanderthals (Peyregne et al., 2016).

Morphometric studies of hominin fossils have demonstrated substantial anatomical 

differences between brains of Neanderthals and modern humans that may be consistent with 

divergent regulatory evolution targeting this organ. While overall brain size was similar, 

Neanderthal endocranial capacity was less than that of modern humans when adjusted for 

body size and size of the visual system (Pearce et al., 2013). Our analysis revealed that 

downregulation of Neanderthal alleles was especially pronounced in the cerebellum and 

basal ganglia (Figure 5a). These brain regions have traditionally been associated with motor 

control and perception, but a broader role in cognitive function—including language 

processing—and behavior is now appreciated (Booth et al., 2007; Mariën et al., 2014). 

Intriguingly, the cerebellum has undergone rapid expansion in the great ape lineage (Barton 

and Venditti, 2014), and modern humans possess proportionally larger cerebella (greater 

cerebellum to total brain volume ratio) than did Neanderthals (Hublin et al., 2015).

Neanderthal alleles are down-regulated in the testes

Similar to brain-expressed genes, testis-expressed genes exhibited significant 

downregulation of Neanderthal alleles relative to genes expressed in other tissues (Figure 5a; 

binomial GLMM: β = −0.0145, 95% CI [−0.0231, −0.0058], P = 0.001). This pattern was 

again evident in the excess of significantly down- versus upregulated testis- expressed SNPs 

(binomial test: P = 5.5 × 10−4; Figure 5b; Table S1) and is unexpected based on equivalent 

samples of non-introgressed SNPs (P = 0.04). Testis-expressed genes exemplifying the 

broader pattern of downregulation of Neanderthal alleles include DNALI1 (rs41267319, 

binomial GLMM: β = −0.476, 95% CI [−0.519, −0.432], P < 10−10, MAFEUR = 0.055), 

which encodes an axonemal dynein protein that functions in the sperm flagella. Highlighting 

the potential fitness consequences of introgression on testis-expressed genes, altered 

regulation of this gene set has been shown to contribute to hybrid incompatibility in other 

species (Turner and Harr, 2014). Consistent with this observation, genes with high 

expression in the testes are significantly depleted of Neanderthal ancestry, suggesting that 

purifying selection disproportionately removed Neanderthal haplotypes at these genes 
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following introgression (Sankararaman et al., 2014). This finding is also consistent with the 

hypothesis that male hybrid individuals may have incurred reduced fertility (Sankararaman 

et al., 2014; Currat and Excoffier, 2011; Sankararaman et al., 2016).

Tissue-specific effects of individual introgressed variants

Of 3401 introgressed SNPs expressed in more than one tissue, we identified only SNPs 

showing strong evidence of tissue heterogeneity of ASE (Bayes factor [BF] > 10) and 9 

additional SNPs showing weak to moderate evidence (1 < BF < 10). The paucity of SNPs 

exhibiting large effects is consistent with previous studies showing that cis-regulatory effects 

are generally consistent across tissues and experimental conditions (Price et al., 2011). 

While we note that power to detect heterogeneity for any individual SNP may be limited, 

this finding also implies that the tissue-specific patterns we previously observed are largely 

attributable to genes differentially expressed among tissues. Indeed, introgressed SNPs with 

more total read counts in brain than non-brain tissues (i.e. genes differentially expressed in 

the brain) had lower representation of Neanderthal alleles than other SNPs, even when 

limiting the analysis to non-brain samples (binomial GLMM: β = −0.0227, 95% CI 

[−0.0421, −0.0033], P = 0.022). The small set of variants displaying strong effects is 

nevertheless intriguing. The most extreme example (BF = 3.01 × 109) is rs746885 (MAFEUR 

= 0.055) in the apelin receptor gene (APLNR). This variant exhibits strong ASE favoring the 

Neanderthal allele in brain tissues (binomial GLMM: β = 0.631, 95% CI [0.470, 0.791], P = 

1.48 × 10−9), but ASE favoring the modern human allele in non-brain tissues (binomial 

GLMM: β = −0.340, 95% CI [−0.491, −0.191], P = 3.06 × 10−4). Apelin is a signal peptide 

that influences several aspects of cardiac, digestive, brain, and vascular function, including 

regulation of oxygen levels. The peptide and its receptor encoded by APLNR have been 

implicated in cardiovascular disease (Yu et al., 2014) and regulation of fluid homeostasis 

(O’Carroll et al., 2013).

Models of tissue-specific regulatory divergence

We propose that downregulation of Neanderthal alleles in brain- and testes- expressed genes 

may be explained by elevated rates of regulatory divergence affecting these tissues. 

Regulatory divergence may manifest as gene expression divergence, but expression 

divergence is not necessary in the case of compensatory co-evolution between cis- and trans-

elements of regulatory circuits (Landry et al., 2005). When Neanderthal cis-regulatory 

elements introgressed into the modern human trans- regulatory background, genes may have 

failed to be expressed at the same level as in their native regulatory environments (Figure 6). 

Such epistasis between cis- and trans- acting factors is well documented in nature, can arise 

rapidly as a consequence of selection on gene regulation, and is known to contribute to 

hybrid incompatibilities (Mack & Nachman, 2017). We note, however, that the functional 

epistasis invoked by our model need not affect fitness and is presumably much more 

common than the fitness epistasis contributing to hybrid dysfunction. While misregulation 

due to epistasis may also lead to increased expression, decreased expression may be more 

common, as recently concluded by Guerrero et al. (2016) who found significant 

downregulation of introgressed genes in nightshade plants. Global downregulation compared 

to parental strains has also been documented for Drosophila interspecific F1 hybrids 

(Michalak et al., 2003) and was specifically enriched among male reproductive genes, which 

McCoy et al. Page 7

Cell. Author manuscript; available in PMC 2018 November 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



are known to experience rapid divergence in both sequence and gene expression (Brawand et 

al., 2011). More recent work on heterospecific introgression in fertile Drosophila found 

comparable levels of downregulation of autosomal introgressed spermatogenesis-related 

genes, which were similarly attributed to regulatory incompatibilities (Ferguson et al., 2013). 

Elevated regulatory divergence in the brain— especially neuron-rich sub-regions—is 

meanwhile supported by enrichment of human- accelerated conserved non-coding sequences 

for regulation of genes with neuronal activity (Prabhakar et al., 2006; Capra et al., 2013; 

Gittelman et al., 2015). Furthermore, modern human genomic regions with signatures of 

ancient selective sweeps, postdating divergence from Neanderthals, are enriched for 

regulatory elements of brain-expressed genes (Peyrégne et al., 2016).

One alternative model to explain our observations is a bias toward upregulation of brain- and 

testis-expressed genes in the modern human lineage or downregulation of these genes in the 

Neanderthal lineage. Human-specific upregulation of brain- expressed genes was indeed 

suggested in several early comparative studies of gene expression (Cáceres et al., 2003), but 

is now thought to be an artifact of species- specific microarray probes (Gilad et al., 2006). 

Furthermore, these studies compared expression in humans to extant non-human primates, 

such that most of the “human- specific” expression divergence is likely to have been shared 

with Neanderthals.

A second alternative model involves selection to attenuate the expression of deleterious 

Neanderthal alleles, for example by purging Neanderthal alleles that confer upregulation of 

genes expressed in the brain or testes. To assess the evidence for this model, we tested 

whether Neanderthal haplotypes harboring deleterious introgressed variants showed any bias 

toward downregulation. We detected no significant association between the maximum 

(binomial GLMM: β = −0.00398, 95% CI [−0.0122, 0.00422], P = 0.338) or mean (binomial 

GLMM: β = −7.58 × 10−5, 95% CI [−0.0218, 0.0217], P = 0.989) CADD score (Kircher et 

al., 2014) of Neanderthal tag SNPs on introgressed haplotypes and the level of 

downregulation. Neanderthal-introgressed haplotypes possessing missense variants predicted 

as deleterious with SIFT (Kumar et al., 2009; binomial GLMM: β = 0.00426, 95% CI 

[−0.0553, 0.0637], P = 0.893) or PolyPhen2 (Adzhubei et al., 2010; binomial GLMM: β = 

−0.0154, 95% CI [−0.0774, 0.0466], P = 0.622) also showed no significant biases toward 

downregulation.

One phenomenon potentially complicating our interpretations is that some mutations on 

introgressed haplotypes arose in the modern human lineage subsequent to admixture. If such 

variants were to confer regulatory effects, these could drive ASE that we would spuriously 

attribute to regulatory substitutions that occurred prior to introgression. Based on coalescent 

theory and reasonable estimates of demographic parameters, we estimate that these recent 

mutations comprise only 5–10% of all differences between the average introgressed and 

non-introgressed haplotype (see STAR Methods). This result arises from the fact that 

introgression occurred recently (~50 kya) relative to the time of divergence between modern 

humans and Neanderthals (~700 kya). The incorporation of a more complex demographic 

model including recent human population growth should not qualitatively alter this estimate, 

as levels of individual variation are relatively insensitive to the resulting excess of rare 

mutations at the population level (Fu et al., 2014).

McCoy et al. Page 8

Cell. Author manuscript; available in PMC 2018 November 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Neanderthals went extinct approximately 40,000 years ago, yet much of their DNA lives on 

in the genomes of modern humans. Our study demonstrates that many of these sequences are 

functionally significant, contributing to genome complexity and patterns of gene expression 

variation in modern humans. Together, these data provide the first functional genomic 

evidence that divergence in the regulatory architecture of modern humans and Neanderthals 

varied across tissues, with implications for phenotypes that may have distinguished our 

species.

All results generated by our study can be accessed through an interactive web application 

that facilitates visualization of ASE patterns at individual loci: https://neanderthal-

ase.shinyapps.io/neanderthal_ase. This resource should be useful for experimental studies 

seeking to map the causal variants underlying these signals as well as further investigation of 

evolutionary mechanisms driving tissue-specific patterns.

STAR METHODS

Contact for Reagent and Resource Sharing

Further information and requests for resources should be directed to and will be fulfilled by 

the Lead Contact, Joshua Akey (akeyj@uw.edu).

Experimental Model and Subject Details

All analyses were performed using published RNA-seq data obtained from GTEx 

Consortium (v6; phs000424.v6.p1), which derive from 53 tissues from 544 deceased 

individuals, 449 of whom were also genotyped to facilitate eQTL analysis. Information 

about the donors (gender, ethnicity, age, cause of death) can be found at http://

www.gtexportal.org/home/tissueSummaryPage#donorInfo. The donor enrollment, 

biospecimen acquisition, and the consent process is thoroughly described in Lonsdale et al. 

(2013) and at https://biospecimens.cancer.gov/resources/sops/library.asp.

Method Details

Overview of GTEx RNA-seq data—RNA-seq data were collected and processed as part 

of the GTEx Project (GTEx Consortium, 2015; Version 6; dbGaP Accession 

phs000424.v6.p1). The GTEx Consortium aligned data to the human genome (hg19) using 

TopHat (Kim et al., 2013) based on GENCODE (Harrow et al., 2012; V19) reference 

annotations of 57,820 transcribed genes. They then used the GATK (McKenna et al., 2010; 

v3.4) ASEReadCounter tool (Castel et al., 2015) to tabulate reads supporting each allele at 

heterozygous sites which were identified based on separate exome sequencing. As reference 

allele bias has the potential to confound analysis of ASE (Degner et al., 2009), we undertook 

multiple steps to filter potentially biased sites in accordance with best practices (Castel et al., 

2015), as well as confirming the robustness of key results in light of possible residual biases 

(see below). We further required at least 10 total reads per site per sample and between 10% 

and 90% of reads supporting the alternative allele (i.e. 10–90% reference ratio). This step 

eliminates the contribution of erroneous heterozygous genotypes to false ASE signal, but has 

the side effect of filtering true cases of monoallelic expression (Castel et al., 2015).
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Identifying Neanderthal-introgressed haplotypes—Neanderthal-introgressed 

haplotypes were previously identified (Vernot et al., 2014; Vernot et al., 2016) using the S* 
approach (Plagnol and Wall., 2006), which detects putative introgressed sequences based on 

extreme divergence from the human reference and high identity to the Neanderthal reference 

genome. Tag SNPs were then defined as the set of SNPs that maximized S* on an individual 

haplotype that was later classified as putatively introgressed from Neanderthals (Vernot et 

al., 2014; Vernot et al., 2016). S* is a dynamic programming algorithm that enriches for 

archaic haplotypes before comparing to an archaic genome (Plagnol and Wall, 2006). S*-

maximizing SNPs are thus SNPs that define highly divergent haplotypes not present in the 

African reference population. An S* value for an individual in a 50 Kb window is 

considered significant if it is in the 99th percentile based on simulations. Putative 

Neanderthal-introgressed haplotypes are the set of S* significant haplotypes, bounded by the 

furthest S*-maximizing SNPs that have a significant match to the Neanderthal genome 

(Vernot et al., 2014; Vernot et al., 2016).

We restricted analysis to the RNA-seq read counts from individuals whose self- reported 

race was white. We note that these individuals also cluster together when applying principal 

component analysis (PCA) to a genotype matrix of all samples, indicating that the grouping 

is biologically meaningful in this case. This subsample was chosen on the basis that 1) 

Neanderthal ancestry is limited to non-African individuals, 2) introgressed haplotypes and 

the SNPs tagging those haplotypes were discovered in an ethnically similar population 

(Vernot et al., 2014; Vernot et al., 2016), and 3) the subsample comprises more than half of 

the total number of individuals in the GTEx dataset. Of 139,694 SNPs (genic and non-genic) 

meeting the initial tag-SNP criteria, 5674 SNPs within 2230 unique annotated genes as well 

as unannotated transcribed regions were observed among the sequences in the filtered GTEx 

dataset.

To further refine the set of tag SNPs, we used the 1000 Genomes data (1000 Genomes 

Project Consortium, 2012) to require that the alternative allele at each SNP be nearly fixed 

(frequency > 0.9) on Neanderthal-introgressed haplotypes and nearly absent (frequency < 

0.1) on non-introgressed haplotypes or vice versa (Figure S1), reducing the set to 5055 tag 

SNPs in 2034 unique genes and unannotated regions. All other SNPs were considered non-

introgressed.

Estimating the proportion of recent mutations—Suppose we have identified an 

individual heterozygous for an introgressed haplotype. We wish to estimate the proportion of 

variants on the Neanderthal haplotype that arose more recently than introgression, as these 

are variants that arose in the modern human population. We use a coalescent argument in a 

simplified demographic model in which introgression occurred tGF coalescent time units 

ago, and Neanderthals and modern humans share a common ancestor tN coalescent time 

units ago. Given that the two haplotypes coalesce T time units ago (n.b. T > tN by 

assumption that the individual is heterozygous for a Neanderthal haplotype), the proportion 

of variants that arose on the Neanderthal haplotype in the human lineage is simply tGF / T. 

We then need to integrate over all possible T, noting that
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E
tGF

T ≈
tGF
E T +

tGF

E T 3Var T

after expanding in a Taylor series about E(T). Under the standard coalescent model, T =tN + 

THN where THN, the waiting time for coalescence in the human-Neanderthal ancestral 

population, is distributed exponentially with rate 1. Hence, E(T) = tN + 1 and Var(T) = 1. So, 

the expected proportion of variants that arose more recently than introgression is 

approximately

tGF
tN + 1 +

tGF

tN + 1 3,

which is expected to be accurate for tGF << tN. Taking tGF to be between 50,000 and 

100,000 years ago, tN to be between 500,000 and 800,000 years ago, an effective population 

size of 10,000, and a generation time of 25 years, we estimate that approximately 4.5 to 10% 

of the mutations arose in the modern human population.

Generation of figures—Graphs were generated using the ggplot2 (Wickham, 2009) and 

gplots packages in R.

Quantification and Statistical Analysis

Statistical model to detect ASE—We developed a Bayesian generalized linear mixed 

model approach to quantify ASE based on RNA-seq counts. The model was implemented 

using the INLA package (Rue et al., 2009) in the R statistical computing environment (R 

Core Team, 2015). For the individual SNP analyses, data were subset by SNP and a 

binomial mixed model was fit with counts of reference and non-reference reads as the 

outcome variable and random effects of tissue (αt) and subject (γi): logit(pit) = β0 + αt + γi, 

where pit is the proportion of reads supporting the alternative allele in individual i and tissue 

t. The posterior probability distribution of the intercept term (β0) was used to quantify the 

degree of ASE. Confidence intervals were estimated by taking empirical quantiles of these 

distributions, and two-tailed posterior predictive p-values were calculated based on the areas 

in the tail more extreme than the null alternative allele ratio. This null ratio (0.4896) was 

based on the median across all observations (introgressed and non-introgressed) in the 

filtered dataset. Based on these p-values, we used the Benjamini–Hochberg procedure 

(Benjamini and Hochberg, 1995) to control the FDR at 10%. Results for a range of FDRs are 

presented in Figure S2.

When comparing the proportions of SNPs with significantly up-versus downregulated 

Neanderthal alleles within tissues (Figure 5b), we did not use the FDR procedure, but 

instead considered variants significant if a 95% credible interval of the marginal posterior 

distribution of the intercept term did not include the null alternative allele ratio. Direction 

was then assessed by considering whether the Neanderthal allele matched the reference or 

alternative allele at each SNP.
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Evaluating the method using simulation—To evaluate the sensitivity and specificity 

of our statistical method, we simulated alternative allele read counts by sampling from the 

total read counts in the observed data. This approach maintains important structure of the 

data: sample sizes of individuals, sample sizes of tissues, allele frequencies, and gene 

expression patterns. We performed simulation under two different distributions of allelic 

effects (proportion of alternative alleles), rescaled to the interval (0.5, 1): a gamma 

distribution (shape and scale parameters of 1) and a uniform distribution. While the true 

distribution of effect sizes is unknown, we suspect that it more closely resembles the gamma 

distribution, with many regulatory variants of small effect. We then logit transformed these 

effect sizes and added tissue-specific, individual-specific, and random noise, all of which 

were sampled from a normal distribution (mean of 0 and standard deviation of 0.1). We also 

simulated an equal number of SNPs with null effects (proportion of alternative alleles =0.5), 

again adding tissue-specific, individual-specific and random noise to these observations. 

Receiver operating characteristic (ROC) curves (Figure 1b) were calculated by combining 

the null SNPs with the effect SNPs and determining the true positive and false positive rates 

at various thresholds of the posterior predictive p-values.

Comparison of ASE results to eQTL data—Overlaps between ASE and eQTL effects 

were assessed using published single-tissue eQTL data obtained from the GTEx Portal 

(http://gtexportal.org/static/datasets/gtex_analysis_v6/single_tissue_eqtl_data/

GTEx_Analysis_V6_eQTLs.tar.gz). A 2×2 Fisher’s Exact test was used to evaluate the 

proportion of introgressed SNPs with/without significant ASE with/without significant 

eQTL effects in the same gene and same direction in one or more tissues. This analysis was 

then repeated for non-introgressed SNPs and stratifying into 5% bins of European minor 

allele frequency (Figure S3).

Significant eQTL were defined according to thresholds described by the GTEx Consortium 

(http://www.gtexportal.org/static/doc/analysis/Portal_Analysis_Methods_v6_08182016.pdf). 

Briefly, within tissues, genes with significant eQTL (“eGenes”) were identified by 

permuting sample labels for gene expression matrix data. For each permuted set, the 

minimum nominal p-value for all SNPs in a cis- window (±1 Mb from the transcription start 

site) of a given gene was used as a test statistic to produce an empirical distribution. The 

observed minimum p-value was compared to this distribution to produce an empirical p-

value. These empirical p-values were then used to control the FDR at 5% using the method 

of Storey (2003). To define significant eQTL within eGenes, a permutation threshold was 

then defined as the empirical p-value of the gene falling on the q-value = 0.05 threshold. For 

each eGene, a gene-specific nominal p-value threshold was calculated as the minimum p-

value from the permutations that corresponded to this permutation threshold. SNPs with 

nominal p-values less than or equal to the gene-specific nominal p-value threshold were 

defined as significant eQTL of that eGene.

Contrasting ASE at non-introgressed SNPs—At an FDR of 10%, a total of 1236 

introgressed SNPs (24.5%) in 767 genes showed significant ASE (Figure 2; Figure S2). In 

comparison, 161,590 non-introgressed SNPs (27.8%) in 19,955 genes showed significant 

ASE at the same FDR. We restricted analysis to the 526,000 biallelic SNPs (4964 

McCoy et al. Page 12

Cell. Author manuscript; available in PMC 2018 November 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://gtexportal.org/static/datasets/gtex_analysis_v6/single_tissue_eqtl_data/GTEx_Analysis_V6_eQTLs.tar.gz
http://gtexportal.org/static/datasets/gtex_analysis_v6/single_tissue_eqtl_data/GTEx_Analysis_V6_eQTLs.tar.gz
http://www.gtexportal.org/static/doc/analysis/Portal_Analysis_Methods_v6_08182016.pdf


introgressed and 521,036 non-introgressed) for which the ancestral state was confidently 

inferred by the 1000 Genomes Project (1000 Genomes Project Consortium, 2012) and 

matched either the reference or alternative allele. Complicating comparison between 

introgressed and non-introgressed SNPs, power to detect ASE is a function of the number of 

heterozygous samples, which in turn depends on allele frequency and expression profile 

across tissues.

We thus repeated the calculation of the proportion of SNPs showing significant ASE, 

stratifying by derived allele frequency in bins of 1% (Figure 4a). Frequencies were based on 

the European (EUR) individuals in the 1000 Genomes Project, Phase 3 and polarized based 

on the ancestral allele recorded in the same VCF files. As expected, the proportion of SNPs 

showing significant ASE was highest at intermediate derived allele frequencies (where the 

number of heterozygotes is maximized). To assess differences within bins, we used the 

following procedure. Suppose that the true proportion of introgressed SNPs showing ASE is 

pN, while the true proportion of non-introgressed SNPs showing ASE is pH. The total 

number of introgressed and non-introgressed SNPs are denoted by NN and NH, respectively. 

The number of introgressed and non-introgressed SNPs in our dataset observed to show 

significant ASE at 10% FDR (YN and YH, respectively) are then drawn from binomial 

distributions:

YN pN Binomial(NN, pN)

YH pH Binomial(NH, pH)

Assuming uniform priors on pN and pH, we have:

pN YN Beta(YN + 1, NN – YN + 1)

pH YH Beta(YH + 1, NH – YH + 1)

For each frequency bin, we then simulated 100,000 draws from each of these distributions to 

form the distribution of pN – pH, taking empirical 2.5% and 97.5% quantiles of this 

distribution to form credible intervals (Figure 4b). We note that while the FDR (10% overall) 

may vary across frequency bins, it is not expected to differ between introgressed and non-

introgressed SNPs within frequency bins.

Overlap with GWAS data—Intersection with GWAS results was conducted by first 

identifying all SNPs in strong linkage disequilibrium with Neanderthal introgression tag-

SNPs that showed significant ASE at 10% FDR. This step was implemented using the SNAP 

Proxy Search tool (Johnson et al., 2008), extracting all SNPs with pairwise r2 > 0.8 based on 

European populations from the 1000 Genomes Pilot dataset. We excluded SNPs that had a 

frequency greater than 5% in any African population from the 1000 Genomes dataset, then 
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queried the GWAS Central (Beck et al., 2014) and NHGRI-EBI Catalog of Published GWAS 

(Welter et al., 2014) for overlaps with this remaining set.

Models to test differences in across tissues—The binomial mixed model approach 

was extended to test for associations between the direction of ASE and various fixed effect 

predictors, such as tissue. Rather than subsetting by SNP, we included all SNPs together and 

added a random effect of gene (ζg) to the model including the random effect of subject (γi) 

and converted the random effect of tissue (previously αt) to a fixed effect (βt): logit(pit) = β0 

+ βt + γi + ζg. We then compared this model to a model without tissue parameters using the 

Watanabe-Akaike information criterion (WAIC; Watanabe, 2010; Gelman et al., 2014), 

thereby assessing the significance of the tissue parameters. We also fit the same model using 

frequentist methods with lme4 (Bates et al., 2015) and compared them with a likelihood 

ratio test.

To further examine the robustness of downregulation of brain- and testis-expressed 

Neanderthal-introgressed alleles, we fit GLMMs to all introgressed SNPs with binary 

variables indicating whether the tissue was brain/non-brain (βbrain) or testis/non-testis 

(βtestis): logit(pit) = β0 + βbrain/testis + αt + γi + ζg. We then compared the relevant regression 

coefficient estimates (𝛽̂, respectively) to those obtained from an equal sized control samples 

of non-introgressed SNPs matched on number of subjects, number of tissues, and number of 

genes. Covariate matching was implemented using the Matching package (Sekhon, 2011) in 

R. This procedure was repeated a sufficient number of times to achieve accurate empirical p-

value estimates to one significant digit. Empirical p-values were obtained by taking the 

proportion of matched samples of non-introgressed SNPs with coefficient estimates as 

extreme or more extreme than that estimated for introgressed SNPs.

Measuring divergence across tissues—To understand how divergence varied across 

genes expressed in different tissues, we calculated mean sequence divergence between the 

Neanderthal and human reference gene sequences, weighting by corresponding gene 

expression in each tissue. Expression was defined as the median RPKM across individuals, 

taken from summary data available in the GTEx Portal (http://www.gtexportal.org/static/

datasets/gtex_analysis_v6/rna_seq_data/GTEx_Analysis_v6_RNA-seq_RNA-

SeQCv1.1.8_gene_median_rpkm.gct.gz). Divergent sites were defined by considering all 

genomic positions where the Altai Neanderthal is homozygous for an allele that is at less 

than 2% frequency in African modern human populations (based on continental frequencies 

recorded in the Altai Neanderthal VCFs). We applied minimal quality filters to the Altai 

variants (map35_50%; https://bioinf.eva.mpg.de/altai_minimal_filters/) and limited the 

analysis to the 2034 expressed genes harboring Neanderthal tag SNPs (i.e. the data 

underlying all previous analyses).

Individual SNPs exhibiting tissue-specific ASE—In addition to detecting overall 

differences in patterns of ASE across tissues, we were interested in identifying individual 

SNPs that showed tissue-specific effects. To this end, we tested for each SNP whether a 

model including tissue as a fixed effect (M1:logit(pit) = β0 + βt + γi) fit the data significantly 

better than a reduced model without this term (M0: logit(pit) = β0 + γi), where pit is the 

proportion of reads supporting the alternative allele in individual i and tissue t and γi is the 
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random effect of individual. We then compared the likelihoods of the nested models by 

calculating a Bayes factor (BF):

BF1, 0 = p data M1
p data M0

We considered SNPs with BF > 10 as showing strong evidence of tissue heterogeneity in 

ASE.

Accounting for reference mapping bias—Reads originating from alleles that match 

the reference genome preferentially map to that reference (Degner et al., 2009). This 

phenomenon is amplified by sequencing error and may confound analyses of ASE by 

generating an allelic bias that is technical rather than biological in origin. While some 

studies have argued that this confounding effect is limited (Panousis et al., 2014), analyses 

involving introgression may especially susceptible because introgressed haplotypes are more 

divergent from the reference genome than are alternative haplotypes of intraspecific origin. 

We thus undertook several steps to mitigate this effect:

1. We restricted the analysis to high quality tag SNPs (Vernot et al., 2014; Vernot et 

al., 2016).

2. We removed SNPs in regions of low mappability (ENCODE 50-mer mappability 

score < 1). Mappability reflects the uniqueness of a genomic region. Repetitive 

regions of low mappability can cause false mapping and inaccurate quantitation 

of read originating from a given genomic location. This effect may be magnified 

by attempting to map divergent introgressed haplotypes (which may themselves 

be repetitive) to these regions.

3. We removed SNPs that showed mapping bias in simulation (Panousis et al., 

2014; http://jungle.unige.ch/~lappalainen/

EUR01_50bp_result_stats_05bias_fixed.vcf.gz). Previous work demonstrated 

that this reduces the proportion of sites with strong bias by approximately 50% 

(Castel et al., 2015).

4. We adjusted the null alternative allele ratio to the median across all sites 

(0.4896). This accounts for the modest mapping bias that remains after removing 

known biased sites.

Further supporting the robustness of our results, we detected no consequential effect of 

sequence divergence on tissue-specific patterns of downregulation, indicating that the impact 

of reference bias on this analysis is minimal. To test this effect, we extended the GLMM to 

include sequence divergence in the corresponding gene: logit(pit) = β0 + βt + βdiv + γi + ζg, 

where γi is the random effect of individual, ζg is the random effect of gene, βt is the fixed 

effect of tissue, and βdiv is the fixed effect of Neanderthal-modern human divergence of the 

gene in which the SNP lies. While we detected a marginally significant negative effect of 

divergence on representation of Neanderthal alleles (binomial GLMM: β = −38.3, 95% CI 

[−69.2, −7.32], P = 0.0151), this did not alter the qualitative pattern of downregulation 
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across tissues, with both brain and testis remaining strongly enriched for downregulation 

(Figure S5).

Furthermore, we observed that brain-expressed genes had lower rates of sequence 

divergence—both overall divergence (Figure S6) and non-synonymous divergence (Figure 

5c)—than other tissues, consistent with previous observations in mammals (Brawand et al., 

2011). These less divergent haplotypes should be less susceptible to reference mapping bias, 

thereby indicating that the apparent downregulation of Neanderthal alleles in brain tissues is 

not an artifact of reference bias.

Correlation in ASE among linked SNPs—The presence of multiple SNPs tagging a 

single introgressed haplotype may amplify apparent directional patterns of ASE in particular 

tissues. The previously-described mixed model approach (Figure 5a) accounts for this issue 

by including a random effect of gene and thus combining across SNPs within genes. We also 

examined the robustness of comparisons between counts of significantly up- and 

downregulated SNPs to linkage among SNPs within genes by randomly sampling one SNP 

per gene and repeating the calculation of these proportions. As expected, the signal is 

reduced upon accounting for correlated effects of SNPs within genes in this manner, yet 

brain tissues and testis both remain enriched for SNPs with down- versus upregulation of 

Neanderthal-introgressed alleles (Figure S7).

KEY RESOURCES TABLE

The table highlights the genetically modified organisms and strains, cell lines, reagents, 

software, and source data essential to reproduce results presented in the manuscript. 

Depending on the nature of the study, this may include standard laboratory materials (i.e., 

food chow for metabolism studies), but the Table is not meant to be comprehensive list of all 

materials and resources used (e.g., essential chemicals such as SDS, sucrose, or standard 

culture media don’t need to be listed in the Table). Items in the Table must also be 
reported in the Method Details section within the context of their use. The number of 

primers and RNA sequences that may be listed in the Table is restricted to no more than 

ten each. If there are more than ten primers or RNA sequences to report, please provide this 

information as a supplementary document and reference this file (e.g., See Table S1 for XX) 

in the Key Resources Table.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Schematic describing the method of detecting allele-specific expression (ASE) of 
Neanderthal-introgressed haplotypes.
(a) We identified expressed variants (SNPi) that tag Neanderthal haplotypes and examined 

their expression across multiple tissues (tissuej) in heterozygous individuals (indk) from the 

GTEx dataset. (b) Receiver operating characteristic (ROC) curves for the Bayesian GLMM 

fit to data simulated under gamma (red) and uniform (blue) distributions of allelic effect 

sizes (see STAR Methods).
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Figure 2. Allelic effect estimates for Neanderthal-introgressed variants.
Estimates for 1236 Neanderthal tag SNPs exhibiting significant ASE at 10% FDR. Error 

bars indicate 95% credible intervals. The right panel depicts allelic imbalance at selected 

SNPs (highlighted in red) showing strongest evidence of ASE (lowest posterior predictive p-

values in each tail [P < 1 × 10−5]). Each point represents one sample and is color-coded 

according to tissue group to convey the diversity of tissue expression patterns. See also 

Figure S2 and Table S2.
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Figure 3. Introgression introduced functional variants with complex regulatory effects.
Height and schizophrenia-associated introgression tag SNP (rs950169) in ADAMTSL3 
shows evidence of ASE mediated by an effect on splicing regulation. The Neanderthal-

introgressed (T) allele of this variant is predicted to increase binding of the SRp55 splicing 

factor compared to the modern human (C) allele and splice out a portion of exon 30 

containing the SNP itself. Patterns of ASE (histograms) are consistent with this model of 

splicing regulation. The SRp55 consensus motif was obtained from http://krainer01.cshl.edu/

tools/ESE2/ESEmatrix.html (Liu et al., 1998).
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Figure 4. Evidence of purifying selection on introgressed regulatory variation.
(a) Allele frequency spectra of variants tagging Neanderthal-introgressed haplotypes (upper 

panel) and non-introgressed variants (bottom panel). SNPs with significant ASE are plotted 

in red, and while non-significant SNPs are plotted in blue in the stacked histograms. (b) No 

significant differences in the estimated proportions of introgressed (pN) and non-introgressed 

(pH) variants showing significant ASE (at 10% FDR), stratified by derived allele frequency. 

Error bars indicate 95% credible intervals.
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Figure 5. The impact of Neanderthal introgression on ASE varies across tissues.
(a) Model estimates of the proportion of reads supporting the Neanderthal allele per tissue 

(see Table S2 for tissue abbreviations). Tissues with fewer than 10 samples are excluded. (b) 

Heatmap (upper panel) of SNPs showing significant ASE in the testes or at least one brain 

region. Purple cells indicate significant upregulation of the Neanderthal allele, while blue 

cells indicate significant downregulation. The lower panel contrasts the proportions of up- 

and downregulation for all SNPs with significant ASE in that tissue. (c) Tissue-specific 

expression-weighted levels of nonsynonymous divergence per site between the human 

reference and Altai Neanderthal genomes. Error bars indicate 95% confidence intervals. (d) 

Expression of NTRK2 (probe A_23_P216779), a brain-specific gene exemplifying the 

pattern of downregulation of Neanderthal-introgressed alleles. Sagittal (left panel) and 

coronal (right panel) views of NTRK2 expression profile from donor H0351.2002 in the 

Allen Human Brain Atlas (Hawrylycz et al., 2012). NTRK2 is broadly expressed across 
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brain tissues, with somewhat elevated expression in the basal ganglia and reduced expression 

in the cerebellar cortex, as indicated by expression Z-scores across samples from different 

brain tissues. Histograms (lower panel) demonstrate that Neanderthal haplotype- tagging 

SNPs in NTRK2 exhibit allele-specific expression biased against the introgressed allele. See 

also Figures S4, S5, S6, S7, and Tables S1 and S2.
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Figure 6. A model of regulatory incompatibility arising from cis-trans regulatory divergence.
Levels of RNA transcription depend on interactions between trans-acting factors and cis-

regulatory regions (e.g. binding of a transcription factor to a gene promoter). Lineage-

specific co-evolution between cis- and trans-elements (left panels) of regulatory networks 

can generate incompatibilities at introgressed loci, potentially leading to reduced 

transcriptional output (lower panel). In the absence of cis-trans co-evolution, similar 

incompatibilities can arise due to changes in cis-regulatory elements in one species along 

with changes in interacting trans-regulatory elements of the other species (reviewed in Mack 

& Nachman, 2017).
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Table 1.
Neanderthal-introgressed haplotypes are associated with modern human phenotypes.

Negative values of β0 indicate downregulation of Neanderthal alleles, while positive values indicate 

upregulation.

 Tag SNP  β0  ASE P  Gene Symbol  GWAS P  Phenotype

 rs950169  −0.413  < 1 × 10−10  ADAMTSL3  6 × 10−23

 2 × 10−11
 height
 schizophrenia

 rs72705102  −0.813  < 1 × 10−10  CEP72  4 × 10−11  cystic fibrosis lung function

 rs3765107  −0.428  < 1 × 10−10  SLC15A4  2 × 10−11  systemic lupus erythematosus

 rs5744258  0.474  1.89 × 10−9  IL18  1 × 10−8  IL18 levels

 rs61854810  −1.504  0.00264  2 × 10−10  optic disc size

 rs2235371  −0.146  0.0127  IRF6  1 × 10−14  cleft lip

 rs10418340  −0.103  0.0212  CEP89  5 × 10−11  serum creatinine levels

 rs35370743  −0.120  7.17 × 10−6  INTS12  1 × 10−16  pulmonary function (interaction
 with smoking)
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