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ABSTRACT: The quest for subwavelength coherent light
sources has recently led to the exploration of dark-mode based
surface lasers, which allow for independent adjustment of the
lasing state and its coherent radiation output. To understand
how this unique design performs in real experiments, we need
to consider systems of finite size and quantify finite-size effects
not present in the infinite dark-mode surface laser model.
Here we find that, depending on the size of the system,
distinct and even counterintuitive behavior of the lasing state
is possible, determined by a balanced competition between
multiple loss channels, including dissipation, intentional out-coupling of coherent radiation, and leakage from the edges of the
finite system. The conclusions are crucial for the design of future experiments that will enable the realization of ultrathin
coherent light sources.
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Dark states are localized, resonant electromagnetic modes
that do not radiate.1 This individual feature is what

makes them ideal for energy storage and, in particular, laser
resonators.2,3 In comparison to other existing laser systems,
such as dielectric-based designs4−9 that are efficient but not
subwavelength or metal (plasmon)-based designs10−16 that are
indeed subwavelength but not efficient, the lasing dark surface
mode concept overcomes this apparent dead end; it allows for
independent adjustment of the resonant state and its coherent
radiation output, and significantly high Q factors can therefore
be sustained even when the system size becomes subwave-
length.2,3

A simple numerical realization was demonstrated in refs 2
and 3 in which the system was assumed infinite, accounting for
realistic systems of sufficiently large numbers of unit cells. But,
how many unit cells make a “sufficiently large” system, is not
straightforward. In general, very few publications related to
photonic crystal systems,17−20 metamaterials,21,22 certain
disordered systems,23−25 and nanolasers,26,27 have considered
this aspect.
In this work, we investigate aspects that arise when

metasurface lasers of finite size are considered, as is necessary
to understand in real experiments. We find that the overall
performance depends on the balanced competition between all
existing loss channels, including dissipation, intentional out-
coupling of coherent radiation, and leakage from the edges of
the finite system, in a nontrivial way. As it turns out, the size of
the aperture (metasurface size) plays a crucial role, as it can
qualitatively alter the physical behavior of the system, leading
to distinct regimes of operation, which in some cases are

counterintuitive. To relate the performance of finite-sized
systems with their infinitely large counterparts we introduce a
metric based on energy balance. To facilitate the experimental
identification of the lasing mode we also propose how far-field
imaging techniques can be utilized in a configuration suitable
for experimental demonstration in the near-infrared.

■ PRINCIPLE OF OPERATION
The principle of operation of dark-mode metasurface lasers
was previously introduced in ref 2. A thin dielectric slab that
supports a (dark) waveguide mode with continuous dispersion
(red line in Figure 1b) is periodically interrupted by a
subwavelength grating of silver scatterers of uniform thickness
d and a certain periodicity a (Figure 1a), in order to spatially
quantize the modes and to achieve a spectrally discrete set of
resonant dark states with (in-surface) wave vectors that are
multiples of π/a. In practice, a band structure emerges,
splitting the modes at the edge of the Brillouin zone into two
distinct categories: those modes that are located at the bottom
of each gap (filled blue dots in Figure 1b), having their E-field
minima (nodes) overlap with the metal inclusions and those
modes that are located at the top of each gap (open blue dots
in Figure 1b), which are spatially shifted by quarter unit cell,
thus overlapping at E-field maxima. Therefore, the former have
significantly higher Q factors than their latter, π/2-phase
shifted counterparts. Embedding the dielectric region with an
appropriate gain material that supports stimulated emission at
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the frequency of the desired dark mode (Figure 1c), the
composite system becomes a dark mode resonator. When the
gain medium is pumped above the lasing threshold, the pump
power stores electromagnetic energy in the dark mode, because
dissipative loss in the dielectric is low and radiative damping is
suppressed as the mode is dark; the system lases, that is, builds
macroscopic photon population in the dark state, but does not
radiate.2 In order to deliver the stored energy to radiation, a
small dielectric scatterer is placed on the surface at distance δx
from the unit cell boundary such that the stored power can be
subsequently outcoupled as Ez-polarized waves, with a
controllable small amount of radiative damping of the lasing
mode. The system is periodic and, hence, the scatterer is
placed periodically as well, forming a passive metasurface that
serves as a vehicle for outcoupling.28−31 In Figure 1, a design
for operation at 1.5 μm is illustrated, utilizing the second of the

quantized TE0
(even) modes (red circle in Figure 1b), which has

an antisymmetric electric field profile with respect to the center
of the slab. The periodicity is a = 960 nm, the width of silver is
2wm = 100 nm, and the thickness of the overall metasheet is d
= 60 nm, which is thin enough to be subwavelength, but still
can accommodate a gain material, such as a single quantum
well.32,33 In our system we have assumed a gain slab of
(unpumped) permittivity εr,slab = 12.1 and a Drude silver of
permittivity based on Johnson and Christy data.34,35 Our
system is examined with full-wave vectorial Finite Element
Method (FEM) eigenfrequency simulations, utilizing the
commercial software COMSOL Multiphysics (see Supporting
Information for additional details). To understand the
macroscopically observable behavior of the system when it
lases and how that depends on the finite size, here we calculate
quantities, such as the mode structure (eigenmodes) and the
balance between loss channels (Q factors), which are present
even when the system is not lasing, that is, in the simulations,
the system is unpumped. For our study, this is a satisfactory
approximation, as our independent calculations for the lasing
thresholds using self-consistent FDTD calculations that
consider the full, nonlinear gain system2,3 verify that the
pump induces only a slight change of the host refractive index
(of the order of 0.1%).

■ EFFECTS OF FINITE SIZE
Because the system is infinite along the x axis, the in-plane
wavenumber k∥ changes continuously, approaching multiples
of ka = π/a at the Brillouin-zone edge. For a finite version with
N unit cells (a finite radiating aperture of the metasurface) the
total length L = N × a of the metasurface introduces an
additional in-plane wavenumber kL = π/L due to the boundary
conditions at the far edges of the finite structure, which now
forces k∥ to change in discrete steps m of kL (kL ≪ ka because L
≫ a). In essence, making the system finite, makes the Bloch
momentum discrete; the smaller the system, the more sparsely
it becomes spectrally discretized. A direct consequence is that
the Bloch waves are modulated to have an additional sine-like
envelope of periodicity 2π/mkL = 2L/m.36,37

Due to this fact, the Bloch momentum cannot be situated
exactly at the Brillouin edge anymore, but the closest available
Bloch wave (m = 1) is kL units away from the edge, the second
(m = 2) 2kL, the third (m = 3) 3kL, and so on. This is the first
fundamental difference between the infinite system and its
finite counterparts. For example, in Figure 2, the first three
modal envelopes (m = 1, 2, 3) closest to k∥ = 2π/a are shown
for a system with N = 30 unit cells (length L = 30a). The TE2,0
dark mode, which is expected at this band edge for the infinite
system, can be clearly seen within each unit cell of the finite
system and is now modulated according to an overall envelope
with periodicity 2 × 30a/m (m = 1 top, m = 2 middle, and m =
3 bottom figure). In the infinite system, for k∥ = 2π/a all unit
cells oscillate in phase. However, in the finite system this holds
only for m = 1. For higher orders the envelopes split into
groups that oscillate π-out of phase, as can be seen in Figure 2
(two groups of N/2 unit cells for m = 2, three groups of N/3
unit cells for m = 3, etc.38).
Due to the overall modulation, the dark mode amplitude

acquires a minimum (maximum) at those unit cells that are
situated at the nodes (antinodes) of the envelope. This
modulation leaves residual radiating moments that lead to
leakage, even without any scatterer present. The more rapid
the modulation, the stronger the residual moments and the

Figure 1. Dark-mode metasurface laser. (a) Perspective view of the
unit cell, illustrating the spatial distribution of the dark mode, with
which we work throughout this study (its operation point is marked in
(b) with a red circle). A schematic of the laser containing 7 unit cells
is shown as well. (b) TE0 branch of dispersion relation for the
unpumped uniform dielectric slab of thickness d (red line) and band
structure for the composite dielectric-metal system (connected dots).
The TM0 branch is also shown as a dotted line. The electric field
distribution (Ez) within the unit cell is shown at the bandedges, which
are denoted with the open and filled dots. The shaded region is
bounded by the air- and slab- lightlines and the gradient zone depicts
the line width of the gain material. (c) Spectral emission profile of
gain material.
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more intense the leakage. As the envelope follows a sine-like
form, the maximum slope is located at its zeros and this is why
radiation is expected to be stronger at the nodes of the
envelope and especially at the edges where the system is
sharply terminated. This can be clearly seen in |Ez|

2 in Figure 2,
where the intensity range is shown from 0 (black) to ∼1.7 ×
10−3 |Ez|

2
max, to emphasize the leaked power over the much

stronger energy density in the local fields due to the stored
energy. From this plot it is also evident that the weakest
leakage is associated with the m = 1 envelope order (which
contains the minimum amount of nodes) and we will therefore
focus on this wave for the rest of the analysis (information
about the other orders can be found in the Supporting
Information).
Leakage competes against two other loss channels to

dissipate the modal energy, namely (undesired), dissipation
due to material absorption and (intended) outcoupling due to
the scatterers, once they are introduced. All three loss channels
constitute the total Q factor:

Q Q Q Qtotal
1

diss
1

leak
1

scat
1= + +− − − −

(1)

where the last two terms comprise the purely radiative part,
that is, Qleak

−1 + Qscat
−1 ≡ Qrad

−1. Qleak does not depend on the
scatterers, but is a function of N that acquires finite values for
finite N and diverges as N → ∞ (when leakage is suppressed).
In the absence of any scatterer, that is, when Qscat → ∞ (and,
hence, Qrad ≡ Qleak), the amount of the leaked energy (W, leak)
over the total modal energy (W, mode) follows a ∼L−2

dependence, as depicted in Figure 3a (left panel, filled
connected dots) and repeated calculations with the metal
loss artificially set to zero verify that material absorption does
not interfere with this effect (open connected dots). The
competition between leakage and dissipation is shown in
Figure 3a (right panel) and, although dissipation does not
depend on the system size, the radiative part clearly follows a
∼L2 law. The system size N for which Qleak = Qdiss separates

this plot into two regions, rendering the total Q factor leakage
dominated for Qleak < Qdiss and dissipation dominated for Qleak
> Qdiss. The more our system lies within the dissipation
dominated region, the more its behavior approaches that of its
infinite counterpart. On the other hand, Qscat does not depend
on N, but is a function of the scatterer’s position, δx, material,
and geometry. In the absence of any leakage, that is, when the
system is infinitely large and consequently Qleak → ∞ (and,
hence, Qrad ≡ Qscat), as we scan δx, Qscat acquires finite values
except when δx/a = 0, 0.5, and 1, where it diverges, as no
power is outcoupled.2,3 Qscat varies within a [Qscat

min,∞) range
(Qscat

min is the minimum Qscat and is marked with the blue dashed
line in Figure 3a,b), spanning Qtotal accordingly, as shown in
the shaded region of Figure 3b, for which a scatterer with a
permittivity of 12.1 and a rectangular cross section of 30 nm ×
60 nm has been considered (as in ref 2). Finally, when both
contributions are combined (finite system with scatterer), the
total Qrad varies within the range [(1/Qleak(N) + 1/
Qscat

min)−1,Qleak(N)], spanning Qtotal accordingly [shaded area in
Figure 3a (right panel)].

Figure 2. Example of the discretized dispersion due to finite size, for a
system with N = 30 unit cells (detail of dispersion diagram close to
the 2nd bandgap). The first three discretized modes are marked with
the green dots (identified with #1, #2, and #3), where the dispersion
of the infinite system (interrupted black line) and of the
homogeneous dielectric slab (continuous red line) are shown as
well. The spatial distributions of Re(Ez) and |Ez|

2 for the three modes
are shown below. In the intensity plots on the right panel, a narrow
range is shown from 0 (black) to ∼1.7 × 10−3 |Ez|2max, to emphasize
the leaked over the stored energy.

Figure 3. Competition between edge radiation and intended
operation. (a) Finite system (metasurface with finite radiating
aperture size) without scatterer (Qscat → ∞). Amount of modal
energy radiated (left) and Q factors (right) as a function of the system
size. The dotted line denotes Qleak = Qdiss, indicating the transition
from leakage dominated behavior of the finite system to outcoupling
dominated behavior equivalent to the infinite system. The limit of the
infinite system is reached very soon (for as few as 100 unit cells). (b)
Infinite system (unbound radiating metasurface with infinite aperture
size) with scatterer (Qleak → ∞); Q factors as a function of the
scatterer position. The dashed line denotes Qscat

min, that is, the strongest
outcoupling achievable with the chosen scatterer. (c) Finite system
with scatterer. Q factors as a function of the scatterer position, for
systems with 10 (strong leakage), 22, and 100 (weak leakage) unit
cells.
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The system is designed to maximize the intended out-
coupling when the scatterer is placed at positions where the
fields are the strongest. At those positions the polarization
currents induced on the scatterer by the dark mode are the
strongest and hence outcoupling becomes maximum.2,3 For
infinite (Figure 3b) or very large systems (N = 100, Figure 3c,
right panel), which lie in the dissipation dominated regime
(Qdiss < Qleak), the total Q factor is characterized by a double
dip with respect to the scatterer’s position, as the dark mode
that we have worked with exhibits two maxima along the unit
cell. However, as the system size approaches and eventually
enters the leakage dominated regime, things may change
dramatically. The reason is that in this region Qdiss and Qleak
can become strongly coupled and consequently the double-dip
behavior of Qtotal, which is expected when leakage is absent or
decoupled from dissipation may change or even disappear
entirely, exhibiting counterintuitive features. In particular, if the
scatterer is strong (Qscat

min < Qdiss, Qleak), the double-dip pattern
of the total Q factor can be still observed, as the strong
outcoupling obscures any interplay between Qdiss and Qleak.
However, due to the coupling between Qleak and Qdiss, new
features might appear, as shown in Figure 3c (left panel) for N
= 10. There, one can observe that besides the double-dip
pattern, the total Q factor rises and then drops again as we
approach the unit cell boundaries, which is something that
cannot be observed in large systems. If, on the other hand, the
scatterer is weak (Qscat

min > Qdiss, Qleak), then Qtotal is dominated
by the interplay between Qdiss and Qleak, and may exhibit
nonexpected features, such as inverted or multiple dips (see
Supporting Information for examples). In Figure 3c, besides
the two extreme cases of N = 10 where leakage is particularly
strong (left panel) and N = 100 where leakage is highly
suppressed (right panel), the intermediate case of N = 22
(middle panel), where leakage becomes equal to dissipation, is
also shown.
The chosen scatterer induces stronger radiation damping

than leakage for a broad range of system sizes (down to N =

15). However, this condition alone is not sufficient to
guarantee the tunability of the total Q factor; this is ensured
by the condition Qdiss > Qscat

min. In fact, if dissipation becomes
significantly stronger than outcoupling from the scatterer (Qdiss
≪ Qscat

min), then this tunability may cease, both for the leakage
and the dissipation dominated regimes. In other words, the
scatterer cannot be arbitrarily weak if we wish that it has an
effect.

■ OBSERVABLE FAR-FIELD

Already without the scatterer, the particular way light leaks out
of the finite structure implies that a simple plane wave is not to
be expected (see, for example, intensity plots in Figure 2).
Depending on the mode order different interference patterns
appear, leading to distinct near- and far-field formations. These
are expected to be altered when a scatterer is present, so it is
important to be able to identify whether an observed field is
due to the scatterer or to the leakage. In Figure 4 intensity
patterns of the m = 1 order TE20 mode are shown for a system
with N = 100 unit cells, as the outcoupling strength increases.
For this example, we have introduced a more realistic version
of the system examined so far, which is now mechanically
supported by a glass substrate of 1.5 refractive index and has
(reduced) periodicity a = 860 nm, to maintain the operation
point at 1.5 μm (the 60 nm × 100 nm metal scatterers have
also been transferred on top of the slab, to simplify
fabrication). To enable full control over the emission direction,
we have incorporated a second scatterer below the gain slab;2

to tune the outcoupling strength we have fixed the position of
both scatterers as shown in Figure 4a and varied their
permittivity instead. An increased permittivity leads to stronger
polarization currents driven by the dark mode and therefore
stronger radiation by the scatterers. As shown in Figure 4, it
can pass from being weaker (Figure 4b) to being comparable
(Figure 4c) and finally stronger (Figure 4d,e) than leakage,
leading to distinct far-field formations. For absent or weak

Figure 4. Intensity patterns due to leakage of the 1st order dark mode for a system with N = 100 unit cells, for different outcoupling strengths. The
scatterers have a 30 nm × 60 nm rectangular cross section, fixed positions as shown and the outcoupling strength is tuned via their permittivity
εr,scat, which is set to 2.5 in (b) (weak), 4.5 in (c) (moderate), 9 in (d) (strong), and 12.1 (e) (very strong). The top row shows |Ez|

2 at the vicinity
of the metasurface, which is located horizontally in the middle of the panel. The far-field image seen with a camera is shown in the two middle rows,
for ideally infinite aperture and realistically finite aperture of NA = 0.32 (shown as density plot as well). *Aperture here refers to the numerical
aperture of the imaging lens, as opposed to the aperture size of the radiating metasurface. The bottom row shows the far-field angular distribution.
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scatterers, the outcoupled light propagates in the far-field as
two lobes in small off-normal angles (Figure 4b) dominated by
leakage from the edges. When imaged by a camera, it is seen as
two intense sharp edges with a node in between. As the
scatterers become stronger, this distribution starts to become
stronger in the middle, because the scatterers induce stronger
propagating k’s normal to the surface (Figure 4c), which is the
intended outcoupling. The two angular lobes start to merge as
well, until for very strong scatterers a single lobe is observed in
both far-field patterns (Figure 4d,e). In this limit, leakage
becomes negligible and the finite system behaves very similar
to the infinite surface. This behavior is very distinctive to the
first order TE20 dark mode, as compared to the rest orders or
the equivalent TE20 bright mode, which is located at the top of
the bandgap (see Supporting Information for additional
information).
To calculate the far-field angular distribution, we take a

cross-section of the E-field along the metasurface−air interface
and we apply a Fourier Transform, which projects all
propagating plane wave components with real wavevectors in
the far-field (the evanescent components with complex
wavevectors spatially decay away from the interface and,
consequently, do not enter the calculation). Then we calculate
the normalized intensity |E|2 of the distribution and express it
as a function of the angle, rather than a function of the in-plane
component k of the wave vector (parallel to the interface). To
retrieve the camera image we perform the inverse Fourier
Transform on the far E-field calculated in the previous step,
modeling the phase compensation introduced by a focusing
camera lens. This gives the image that would be produced by
an ideal, aberration free, focusing lens with infinite aperture. It
should be noted that the result is different from the E-field
distribution at the taken cross-section, as the inverse Fourier
Transform restores only the propagating k’s, while the actual
field at the metasurface-air interface contains both real and
imaginary in-plane k’s. To be more realistic, we also take into
account the finite numerical aperture (NA) of the lens, which
collects only a subset of the propagating k’s (the use of
“aperture” for the finite imaging lens should not be confused
with the finite radiating aperture of the metasurface). Hence, in
this case we first truncate the propagating k’s up to a maximum
k before applying the inverse Fourier Transform, according to
the lens aperture, which we have considered to be NA = 0.32.
The comparison between camera images with infinite and

finite NA shows that the qualitatively different far-field profiles
originate from the actual lasing mode and not from the
particular imaging system. Experimentally, camera images can
be retrieved if the source is imaged to a microscope objective, a
schematic of which is shown in Figure 4a. The angular
distribution can be measured by standard Fourier plane
scanning techniques. As our simulations verify, the parity of the
system (even or odd number of unit cells) does not play any
role, neither in the Q factor nor in the field distributions.
Leakage depends only on the actual size of the system, and the
lasing mode can be therefore identified uniquely from the field
patterns.

■ CONCLUSION
With this work we intend to guide future experiments, both in
terms of fabrication and measurements. As our study reveals,
the behavior will strongly depend on the size of the system, as
the same lasing mode may manifest qualitatively differently in
the far-field, depending on whether the leakage is weak or

strong. This means that the observation of the experimental
results will not give unambiguous information on the lasing, if
there is not an a priori knowledge of the regime that the
experiment actually operates. Our study provides the basis for
interpreting the experimentally observable behavior for the
finite aperture lasing metasurface. Quantitatively, our study
demonstrates how to predict the amount of leakage as the
system deviates from its infinite limit, providing guidelines as
to how big a system and how strong the scatterers should be
fabricated, in order to achieve the desired features. In addition,
we propose convenient ways to identify which mode is lasing,
that is, standard, well-established, and easy to perform far-field
techniques, instead of involved near-field instrumentation.
These necessary measurements will help lift any ambiguity on
the origin of the emitted light, facilitating the design of further
experiments. In this work we have shown how to tailor the
amount of intentionally out-coupled coherent radiation over
the leaked light and obtain control on the desired operation,
thus, carving the path to the realization of subwavelength
coherent light sources in realistic finite-aperture designs.
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