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Abstract

Objective: While noninvasive electroencephalography (EEG) based brain-computer interfacing 

(BCI) has been successfully demonstrated in two-dimensional (2D) control tasks, little work has 

been published regarding its extension to practical three-dimensional (3D) control.

Methods: In this study, we developed a new BCI approach for 3D control by combining a novel 

form of endogenous visuospatial attentional modulation, defined as overt spatial attention (OSA), 

and motor imagery (MI).

Results: OSA modulation was shown to provide comparable control to conventional MI 

modulation in both oneand two- dimensional tasks. Furthermore, this work provides evidence for 

the functional independence of traditional MI and OSA, as well as an investigation into the 

simultaneous use of both. Using this newly proposed BCI paradigm, sixteen participants 

successfully completed a 3D eight target control task. Nine of these subjects further demonstrated 

robust 3D control in a twelve target task, significantly outperforming the information transfer rate 

achieved in the 1D and 2D control task (29.7±1.6 bits/min).

Conclusion: These results strongly support the hypothesis that noninvasive EEG based BCI can 

provide robust 3D control through endogenous neural modulation in broader populations with 

limited training.

Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/
redistribution requires IEEE permission. See http//www.ieee.org/publications_standards/publications/rights/index.html for more 
information.

Correspondence: bhe1@andrew.cmu.edu. 

HHS Public Access
Author manuscript
IEEE Trans Biomed Eng. Author manuscript; available in PMC 2019 November 01.

Published in final edited form as:
IEEE Trans Biomed Eng. 2018 November ; 65(11): 2417–2427. doi:10.1109/TBME.2018.2872855.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Keywords

Brain-computer interface; three-dimensional control; overt spatial attention; motor imagery; 
continuous feedback

I. INTRODUCTION

Brain-computer interfacing (BCI) is a promising method for providing alternative 

connections between the brain and the outside world in concert with natural connections or 

as replacements for natural links potentially disrupted by disease or injury [1],[2]. One of the 

ultimate goals of BCI is to establish and restore natural limb movement in prosthesis, robotic 

substitutes, and natural limbs. While invasive BCI research has shown promise in 

demonstrating the control of prosthesis [3]–[6] and restoring function in limbs through 

electrical stimulation [7], the invasive nature of these approaches poses risks to the patients, 

often requiring surgeries, the implantation of cortical electrodes, and the management of 

post-implantation complications and maintenance [8]. Efforts have been made to develop 

noninvasive BCI techniques that offer alternatives to invasive technology. While there are a 

few studies which have tried to use noninvasive electrophysiological signals for advanced 

control, such as the one-dimensional (1D) control of a prosthetic limb [9],[10] or the pseudo 

three-dimensional (3D) control of a robotic arm [11] through the sequential combination of 

two-diamensional (2D) and 1D control signals, there still exists a noticeable gap, especially 

in noninvasive BCI, between the tasks involved in experimentation and those of daily-life.

Electroencephalography (EEG) is particularly suitable for BCI due to its portability, safety 

and relatively low cost for researchers and end users [12]. Furthermore, the development of 

dry electrodes [13,14] and the wireless transmission of EEG signals, allows for the creation 

of more practical BCI applications in daily life, including drowsiness detection [15] and 

wearable robotics [16]. There are effectively three different kinds of BCI systems based on 

noninvasive EEG: BCI based on endogenous modulation [2],[17],[18], exogenous 

stimulation presentation, such as P300 [19] and steady state evoked potential (SSVEP) [20],

[21], and a mixture of the different modalities [22]–[24]. BCI based on the endogenous 

modulation of brain rhythms is particularly suitable for real world continuous control in 3 or 

lower dimensional space because it does not require stimulus targets, which would have to 

be displayed in pre-designated locations. Although the motor imagery (MI) based 

modulation of brain rhythms has successfully demonstrated robust performance in various 

continuous control applications [2],[11],[18],[25]–[29], the number of independent MI 

induced signals is fairly restricted, due to EEG’s limited spatial resolution. The most 

common, reproducible brain patterns used in MI BCI consist of combinations of imagery 

involving both hands and feet [25],[30]. Unfortunately, as there is high variability in 

individual aptitude, a large portion of subjects find the immediate control of MI BCI 

(without training) difficult [31]. Furthermore, tasks become much more challenging when 

several different motor imaginations, such as hands and feet, are combined for high 

dimensional control in a non-intuitive fashion. So much so that outside of this work there 

exists a singular noninvasive continuous 3D control study in which only four subjects 

demonstrated proficiency [32]. As endogenous modulation provides a control strategy with 
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high agency, and has been previously demonstrated as suitable for continuous control, a 

feature not-defined in exogenous control strategies, it is essential to explore novel strategies 

for endogenous modulation, further expanding the number of independent control signals 

and facilitating the 3D control of BCI in a wider population.

In this study, we introduce a BCI control strategy based on the endogenous modulation of 

overt spatial attention (OSA). Previous studies have demonstrated abundant evidence that 

human subjects can covertly deploy their attention to different spatial locations [33]–[36] 

although the underlying mechanism and the relationship between neuronal modulation and 

behavioral outcome are still largely unknown [37],[38]. Traditionally, covert spatial attention 

(CSA) induces a distinct spatial and temporal modulation of alpha rhythms, which are 

hypothesized to be functionally correlated with the enhancement and or suppression of 

neuronal activity associated with attended and unattended targets [36],[38],[39]. Previous 

studies have demonstrated the viability of using CSA to classify the subjects’ spatial locus of 

attention through offline analysis [40]–[42] or online binary classification [43]. However, no 

control utilizing continuous feedback, which is critical for its natural application [25]–[29], 

has been shown. Noting that the direction of gaze and the direction of attention are usually 

aligned [37], we hypothesized that the modulation of visuospatial attention might be 

significantly increased if subjects are allowed to shift their gaze voluntarily. Additionally, 

attention might have to be dynamically deployed for the natural control of a robotic or 

prosthetic arm in practical, interactive scenarios. Therefore, we propose OSA (Fig. 1A) as a 

strategy to perform BCI control. In this work, we investigated (hypothesis I) whether 

subjects are able to gain BCI control via the newly proposed OSA modulation strategy and if 

said control was comparable to conventional MI modulation (Fig. 1A), and (hypothesis II) 

whether the concurrent modulation of the newly proposed OSA and established MI allows 

for 3D control.

With the research questions in mind, twenty-three healthy subjects were recruited to 

participate in multiple sessions of experiments. They were randomly assigned into one of 

two groups for the first three screening sessions in order to compare the performance 

between the OSA and MI modulation tasks (hypothesis I). After which, a subset of the 

subjects who exceeded a specified performance threshold was asked to participate in several 

sessions of 3D control (hypothesis II).

The paper is organized as follows. The experimental design, online signal processing and 

offline evaluation criterions are described in Section II. The experimental results and 

neurophysiological analyses are presented in Section III with the discussion and conclusion 

following in Sections IV and V, respectively.

II. MATERIALS AND METHODS

A. Subjects and Experimental Setup

Twenty-three healthy subjects (9 females; 1 left handed; average age 26.1±8.9; range: 19–

55; 5 subjects had BCI experience with the MI task, none had experience using OSA for 

BCI) participated in the study of online cursor control BCI. Each subject was requested to 

participate in 3 screening sessions, 3 sessions of 3D 8 target cursor control and 2 sessions of 
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3D 12 target cursor control. Twenty-one out of 23 subjects completed all 3 screening 

sessions, with 2 subjects dropping due to scheduling conflicts. Sixteen subjects passed the 

screening sessions and finished the three sessions of 3D 8 target tasks, while 9 subjects 

completed the two additional sessions of 3D 12 target tasks. All procedures and protocols 

were approved by the Institutional Review Boards of the University of Minnesota and 

Carnegie Mellon University. Informed consent was obtained from all subjects prior to their 

participation in the experiment.

Sixty-four channels of EEG were acquired at a sampling frequency of 1kHz using a 

Neuroscan SymAmps RT system (Neuroscan Inc, Charlotte, NC). A bandpass filter 

encompassing 0.5 to 200 Hz as well as a notch filter at 60 Hz were applied to the raw EEG 

signals. During all recordings, the vertex was used as the reference while the forehead 

served as the ground. The impedances of all electrodes were kept below 5kΩ at the 

beginning of the experiment. Impedance was not checked during the active portion of the 

experiment in order to avoid interrupting both the experiment and the subject. However, the 

impedance was checked at the conclusion of each session with 97% of electrodes remaining 

below 5kΩ.

An eye tracker (Gazepoint GP3) was used to track the eye movement during each session, 

and the data were recorded and synchronized with BCI2000 key events through a 

customized MATLAB script.

B. Experimental Design and Protocol

For each session, subjects were randomly assigned to one of two groups (see Fig. 1B). The 

number and types of trials were consistent across groups, but shuffled to diminish potential 

confounds introduced through subject exhaustion. Subjects either performed OSA before MI 

(Group One) or the converse (Group Two).

Each session is composed of a fixed number of runs, with each run consisting of 25 trials. 

During each trial of the OSA modulation task, the subjects were instructed to focus their 

attention on the highlighted target bar (corresponding to the directions of left, right, up and 

down) and to minimize their gaze movements away from the target (try their best to avoid 

saccades induced by cursor movement, See Fig. 1A). The eye tracker was used to record 

their gaze points during the whole experiment and to make sure that the subjects followed 

the instructions properly. The operator would provide a gentle reminder if the subjects did 

not follow the instructions. They were instructed to move the cursor towards the designated 

target through their spatial attention. During each trial of the MI modulation task, the 

subjects were instructed to imagine the repeated movement of either their left or right hand, 

in order to move the cursor left or right respectively, both hands to move the cursor up and to 

relax to move the cursor down [11]. Note that the subjects also felt comfortable moving the 

cursor forward and backward by imagining either both of their hands or relaxing, during the 

3D control task.

Each trial started with a black screen for 2 seconds. During these initial seconds the subject 

was instructed to stay relaxed and still. Following the initial two seconds a highlighted 

yellow bar appeared at either the top, bottom, left, or right edge of the screen in 2D cases, 
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depending on the task and target, or at the edges of the unit cube in the 3D 8 and 12 target 

tasks. To allow for subject preparation, the highlighted yellow bar was shown to the subjects 

for 1.5 seconds prior to allowing control. A pink cursor appeared at the center of the screen 

at second 3.5 and the subjects were allowed to move the cursor through the modulation of 

their brain waves. Subjects were given a maximum of 9 seconds in each trial to hit the 

correct target while avoiding the other targets. Under this paradigm each trial could result in 

a hit, miss (incorrect target), or abort (no target reached). During a one second period 

following feedback the cursor remained on-screen, frozen in place. Then a new trial began 

under the same procedure. In all experimentation, the movement of the cursor was presented 

in the software BCI2000 [44].

In the first session, group one performed the OSA tasks first, which consisted of two runs of 

left versus right (LR) control without feedback followed by two runs of LR control with 

feedback. This procedure was then repeated with the up versus down task (UD). Each run 

was followed by a short break, about 1–3 minutes, with the length depending on a subject’s 

willingness to proceed. Following the completion of the OSA tasks in group one, the same 

series of experiments were performed using MI for control instead of OSA. So that the 

influence of feedback on these modulations could be determined, control tasks consisting of 

no feedback (either LR or UD) were always presented to the subject prior to the 

corresponding task containing feedback. As mentioned previously, group two performed the 

MI tasks first, followed by the OSA tasks (See Fig. 1B, 1st column). In the second session, 

group one performed four runs of LR and UD control with feedback using MI first followed 

by OSA, while group two performed the same tasks utilizing OSA for control first (Fig. 1B, 

2nd column). In the third session, both groups performed two runs of LR control, followed 

by two runs of UD control, and 4 runs of 2D control. As before, group one performed OSA 

before MI, with group two performing the converse (Fig. 1B, 3rd column). For all 

experimentation, each subject underwent a maximum of one session per day.

Subjects with Percent Valid Correct (PVC) [11],[45] higher than 70% in any two of the 

consecutive runs of LR control, as well as UD control and PVC higher than 40% in any two 

consecutive runs of 2D control [46] were considered eligible for participation in the 

subsequent 3D control experiments. This criterion was set to exclude subjects who could not 

gain meaningful BCI control during their limited exposure. For each of the participants, an 

optimal combination of MI and OSA modulation was customized for subject specific 3D 

control. If the OSA performance was higher than the MI performance for a particular 

subject, then OSA modulation was used to control the movement in the frontal plane, while 

MI modulation was chosen for the control of the 3rd dimension, i.e. depth control (see Fig. 

1B, top panel of the right column). On the other hand, if the MI performance was stronger, 

then MI modulation was selected to control the movement in the 2D horizontal plane while 

OSA modulation was chosen for control of the 3rd dimension, i.e. the UD control (see Fig. 

1B, bottom panel at the right column). Each of the three sessions of 3D control was 

performed on a different day. During these sessions, 8 runs of 8 target 3D BCI control were 

performed with the targets located on the edges of the front and back faces of a cube 

centered on the cursor’s starting position Subjects who demonstrated sufficient 3D control 

were asked to subsequently participate in two additional sessions of 12 target 3D BCI, in 
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which the targets were placed on all edges of a cubic workspace, centered on the starting 

position.

C. Online Signal Processing

For online cursor control, the channels which cover the sensorimotor and parietal-occipital 

regions were selected (22 electrodes in total). Higher alpha band (10–14 Hz) power was 

extracted using an autoregressive (AR) approach, previously described [11], from the C3 and 

C4 electrodes located over the bilateral sensorimotor areas for MI control, and the P3, P4, Pz 

and Poz electrodes located over the parietal-occipital areas for OSA control. Previous studies 

have verified that during MI modulation the higher alpha rhythm is functionally dissociated 

from the lower alpha rhythms and has a more focal and movement-specific topography [47],

[48]. We adopted a similar idea for OSA modulation here, and used the higher alpha power 

for online control. A small Laplacian filter [49] was used to filter out common sources of 

local electrical activity, and was applied to each of the electrodes prior to calculating the 

alpha power. A weighted sum of the alpha power in either C3 and C4 or P3, P4, Pz and Poz 

was used for instantaneous cursor control in the MI and OSA tasks respectively. The weights 

for each electrode were fit to the data collected during the appropriate task without feedback 

by maximizing the discrimination accuracy and/or adjusting the results based on prior 

electrophysiological knowledge and experience [11],[45]. The instantaneous control signals 

for each dimension were stored in an online buffer and were normalized to zero mean and 

unit variance to control the cursor’s speed, effectively smoothing out cursor movement and 

correcting for large transient artifacts in the non-stationary EEG signals. Besides the filtering 

previously mentioned, no artifact removal algorithm was utilized during online signal 

processing.

D. Evaluation of Behavioral Performance and Electrophysiology

The behavioral performance of online BCI control was evaluated in terms of Percent Valid 

Correct (PVC) [41] and information transfer rate (ITR) [46]. PVC and ITR are both widely 

adopted metrics [19]–[24] in various BCI applications for the evaluation of online 

continuous BCI control. PVC is calculated as the number of hits divided by the sum of the 

number of hits and misses (valid trials) [11],[45]. ITR measures the information content of 

the BCI decisions, measured in bits per run, and depends on both the accuracy of the task as 

well as how fast and how many hits can be performed in each run [50]. The statistical 

analysis was performed using custom scripts in R by comparing the group average 

performance among different modulation conditions, e.g. the OSA tasks and MI tasks, 1D 

control, 2D control and 3D control. When applicable, results were expressed as mean ± 

SEM (standard error of the mean), unless otherwise stated. Mixed repeated measures 

ANOVAs, linear mixed effect models (lme, a function included in an R package ‘nlme’) and 

paired T-tests were employed to evaluate the statistical significance of group performance 

(across sessions) or group average R-values among different modulation conditions. The 

level of significance testing was set to p<0.05. When appropriate, a post hoc Tukey’s test 

was used to correct for multiple comparisons.

In addition to the evaluation of behavioral performance, the examination of neural 

electrophysiology could help discern characteristics of the modulation due to the OSA and 
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MI tasks. R-values are frequently used to quantify how strongly the means of two 

distributions, e.g. the band power of left and right hand imagination or attentional 

modulation, differ relative to their variance [2],[51]. R-values can be calculated at each 

electrode, according to their definition, with the corresponding R-value topography showing 

how strongly the band-power of electrodes correlates with the task. In the offline analysis, 

R-values were calculated based on all trials and a subset of trials in which the correct targets 

were hit, separately, in the alpha frequency band previously used for online control. As all 

subjects performed the instructed tasks first without any online neuronal feedback, and then 

with online feedback, which consisted of the cursor movements generated from decoded 

EEG signals, this dataset offers a unique opportunity to investigate the role of neuronal 

feedback on electrophysiology. The R-values were calculated for all subjects and sessions 

independently, with an R-value topography grand average over subjects and sessions during 

different conditions being derived and compared.

III. RESULTS

A. BCI Behavioral Performance of 1D, 2D control across Sessions

The behavioral performance of the OSA and MI modulation was compared in the conditions 

of LR control (Fig. 2A), UD control (Fig. 2B) and 2D control (Fig. 2C), separately (N=21). 

No statistically significant differences were found between the PVC of the OSA and MI 

modulation tasks (L/R or U/D) across all three sessions. The group average performance and 

the standard error of the mean (SEM) across all three sessions of OSA and MI modulation 

for LR and UD control were 73.5±3.9% and 84.0±4.2% (LR), and 80.0±3.2% and 

77.6±4.2% (UD), respectively. A mixed repeated measures ANOVA was used to determine 

whether the two methods produced different BCI performance over the three sessions. For 

the LR control task, the main effect of the method is F(1,40) 3.36, p = 0.07, n2 = 0.07 

(generalized Eta-Squared measure of effect size); the main effect of session is F(2,80) = 

0.77, p = 0.47, n2 < 0.01; interaction effect of method and session is F(2,80) = 0.21, p =0.81, 

n2 < 0.01. For the UD control task, the main effect of the method is F(1,40) = 0.52, p = 0.47, 

n2 = 0.01; the main effect of session is F(2,80) = 0.22, p = 0.80, n2 < 0.01; the interaction 

effect of method and session is F(2,80) = 0.05, p =0.95, n2 < 0.01. In the 2D control task, 

individual performance was displayed on the left side of the dashed line while the group 

average was shown on the right. The group averages of the OSA and MI modulation for 2D 

control were 48.0±3.7% and 55.0±5.5%, respectively, with no significant difference 0.30). 

Although there were no statistically significant group level differences between the control 

achieved by OSA and MI, a large portion of individuals did demonstrate different 

performances, which can be clearly seen in Fig. 2C.

B. BCI Behavioral Performance of 3D Control Across Sessions

Sixteen of the twenty-one subjects qualified to participate in the 3 sessions of 8 target 3D 

BCI control (Fig. 3A). Of these sixteen subjects, five demonstrated that OSA modulation 

was suitable for controlling movement in the frontal plane while concurrently using MI for 

the 3rd dimensional control (Group One), while the remaining eleven subjects demonstrated 

UD control via OSA and horizontal plane control via MI (Group Two). Both paradigms 

performed control in an identical workspace, where targets were placed on the frontal and 
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rear planes of a unit cube centered on the cursor’s starting position. The group average 

performances for each session of 3D Group One (N=5) were 47.5±5.0%, 46.5±4.8% and 

58.4±7.1%, and (N=11) 52.5±7.1%, 60.0±5.9% and 59.1±5.6% in 3D Group Two. The 

average of the two groups in the total of sixteen subjects for the 8 target 3D control task is 

shown in Fig. 3C. The average performance and SEM for each session were 50.9±5.3%, 

55.8±4.8% and 58.9±4.8%, with random chance being 12.5%. A linear mixed effect model 

was applied to determine the effect of training across sessions. Statistical analysis revealed 

that there was a significant improvement in accuracy from session one to session three (p = 

0.048) after Tukey’s correction for multiple comparison. Nine out of the sixteen subjects 

(1/5 3D Group One , 8/11 3D Group Two) were able to finish two additional sessions of 3D 

control in 12 target tasks (Fig. 3B). Their average performance and SEM for the two 

sessions were 51.5±6.9% and 50.5±7.1%, respectively (Fig. 3D). No significant difference 

of accuracy was found between the two sessions. Note that with the increase in the number 

of targets in the 12 target task, the random chance level fell to 8.3%.

C. Comparison of ITR among 1D, 2D and 3D Control

The classification accuracy revealed that subjects succeeded in each modalities individually 

and in combination, although overall classification accuracy decreased with increased task 

complexity (2D and 3D control). Besides the apparent flexibility the subjects gained through 

higher degrees of freedom, i.e. 2D and 3D control, the efficiency of 2D and 3D control was 

examined through the calculation of ITR. The group averaged ITR of the subset of nine 

subjects who completed all tasks can be seen in Fig. 4A. The highest group average ITR 

across one and two dimensional control was achieved via MI (1D control 15.1±1.7 (SEM) 

bits/min 2D control 21.2±3.4 bits/min). The group average ITR and SEM of 3D control for 

the 8 target and 12 target tasks were 24.1±1.5 bits/min and 29.7±1.6 bits/min, respectively. 

A linear mixed effect model was applied to evaluate both the effects of the control strategy 

and the number of dimensions on the ITR. The statistical analysis (after correction for 

multiple comparisons) in Fig. 4B showed that there was a significantly higher ITR for the 

complex 3D control task (8 target and 12 target) compared to both the 1D and 2D tasks. 

There was no significant difference in ITR between the 3D 8 target task and the 12 target 

task, although the ITR was on average higher in the 3D 12 target task.

D. Comparison of Electrophysiology with and without Neuronal Feedback

The R-value topography can be used to measure the task-related modulation and is 

calculated by regressing the EEG alpha power during the control task against the target 

labels/locations, allowing us to analyze the underlying electrophysiology of the paired 

control tasks with and without neuronal feedback. The analysis for LR control (first row of 

Fig. 5A and Fig. 5B) and UD control (second row of Fig. 5A and Fig. 5B) was performed 

for the OSA modulation (left column of Fig. 5A and Fig. 5B) and the MI modulation (right 

column of Fig. 5A and Fig. 5B) separately. All of the trials were included in the calculation 

of the R-values shown in figure 5. The topography of R-values before receiving any 

feedback is displayed in Fig. 5A and its counterpart after feedback is shown in Fig. 5B. 

There were obvious focal regions of modulation across electrodes covering the parietal-

occipital cortical regions for OSA modulation and bilateral motor cortical regions for MI 

modulation. An apparent difference of modulation strength was also observed before and 
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after the feedback was given. Quantitative comparisons of the electrodes used for control 

(OSA: P3, P4, Pz and Poz; MI: C3, C4) were performed for both control dimensions during 

the corresponding modulation strategy. Paired t-tests were used to evaluate whether there 

exists a change in modulation at each relevant electrode between the two conditions, before 

and after the feedback was given. There was a significant difference in the P3 (p = 

9.3×10−4), but not P4 electrodes (p = 0.1) between conditions with and without feedback for 

LR control via OSA modulation (see Fig. 5C); there were significant differences in the PZ (p 

= 8.8×10−6) and POZ (p = 5.5×10−6) electrodes between the with and without feedback 

conditions for the UD control task during OSA modulation (see Fig. 5E). In contrast, 

statistical analysis revealed that during MI there were no significant differences in the C3 (p 

= 0.60) and C4 (p = 0.18) electrodes between the with and without feedback conditions for 

LR control (see Fig. 5D) and that there were significant differences in the C3 (p = 0.1×10−3) 

and C4 (0.1×10−3) electrodes between the with and without feedback conditions for the UD 

control task (see Fig. 5F).

A subset of the trials in which correct targets were hit was used in the calculation of the R-

values in figure 6, and demonstrated similar results to figure 5. Quantitative comparisons in 

the P3, P4, Pz and Poz electrodes were performed for both control dimensions during OSA 

modulation, since these electrodes were used for the online cursor control. Similarly, 

quantitative analysis of the C3 and C4 electrodes was performed for both the LR and UD 

control conditions during MI modulation. Note that the topography shown in Fig. 6 is 

similar to the topography in figure 5, with much stronger R-values being found when only 

hit trials were used, compared to the use of all trials in figure 5. There was a significant 

difference in the P3 (p = 4.8×10−4) and P4 electrodes (p = 3.9×10−4) between conditions 

with and without feedback for the LR control via OSA modulation (see figure 6C). There 

was a significant difference in the PZ (p = 1.7×10−12) and POZ (p = 2.9×10−13) electrodes 

between conditions with and without feedback for the UD control via OSA modulation (see 

figure 6E). Similarly, the statistical analysis revealed that there was a significant difference 

in the C4 (p = 8.0×10−3) electrode but not the C3 electrode between the conditions with and 

without feedback for the LR control via MI modulation (see figure 6D) and that there was a 

significant difference in both the C3 (p = 5.3×10−8) and C4 (1.8×10−8) electrodes between 

the conditions with and without feedback for the UD control via MI modulation (see figure 

6F).

E. Confusion matrices of different strategies for the 3D control tasks

The confusion matrices for the two groups using different strategies (illustrated in Figure 

7A–7B) were calculated separately in order to determine if both strategies were effective in 

producing 3D control (Figure 7). The group level confusion matrices for group one and 

group two were displayed in Figure 7C–7D, respectively and the corresponding standard 

deviation of the confusion matrices is shown in Figure 7E – 7F, respectively, for group one 

and group two. These group level confusion matrices provide details regarding the 

occurrence of false positives and negatives for each target type. This analysis was performed 

in order to rule out the possibility of highly proficient 2D control being the underlying 

mechanism of the behavioral results. Instead, the results demonstrate that there were no 

global preferences to individual planes, given a control strategy, and that both strategies were 
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suitable for 3D control. Six representative individual confusion matrices (4/11 from group 

one, 2/5 from group two) are displayed in Figure 8. While no clear patterns of group level 

target preference were found between or within control strategies (Figure 7C–7F), individual 

subjects demonstrated notable preferences (Figure 8). These notable differences in subject 

specific preference highly influence the global map, leading to non-obvious or easily 

interpreted patterns. We suspect that these patterns arise from the high variance in our 

measurements, due to low sample numbers, and the innate variability [31] of BCI (Figure 

7E–7F).

F. Average cursor trajectory

An example of the average cursor movement trajectories for a particular subject was shown 

in figure 9. This example corresponds to the subject in figure 8A, one of the better 3D 

control performers. The average trajectories showed a relatively linear path from the starting 

point (origin) to the middle point of the targets. Note that the cursor is a sphere with a 

diameter of 10% of the workspace, thus the ellipsoids which display the estimated 

distribution of the cursor center’s endpoint may not be in contact with the targets. The 

average trajectories of this particular example demonstrated that online cursor control was 

performed in three dimensions continuously, and was not the product of sequential 2D and 

1D manipulations.

IV. DISSCUSSION

A. Comparison of performance between conventional paradigms and the proposed OSA

In the current study, we demonstrated a new modulation modality, OSA modulation, which 

produces a similar performance level in terms of the classification accuracy compared to 

conventional MI modulation. Compared to previous studies using covert (visuo)spatial 

attention (CSA), our online classification accuracy results were marginally higher than the 

average offline results of both 69% for 1D and 41% for 2D tasks in a group of 15 subjects 

[40] and were comparable or higher than other studies [41]–[43]. It is important to note that 

most of the studies previously reported only include offline analysis, and none demonstrated 

online 2D control. Although a valid form of analysis, performing classification offline 

allows the researchers ample opportunity to potentially fit their data in a non-generalizable 

fashion, and to employ resources or methods which are not accessible during rapid online 

decoding. In our current iteration of the OSA modality, subjects were allowed to shift their 

gaze towards targets as well as covertly pay attention to the movement of the cursor, in order 

to hit the correct target. This is slightly different than the previous CSA studies, where 

subjects were instructed to focus on the center while covertly attending to a peripheral target. 

The flexibility of overtly shifting their gaze allows subjects to naturally and comfortably 

deploy their spatial attention along with the attended direction. Through this flexible 

shifting, subjects were capable of easily combining OSA and MI modulation. There were 

shown to be no group level statistical differences between 1D and 2D control using either 

modality, although some individuals demonstrated superior modulation abilities in a specific 

modality. As an estimated 15%−30% of the population is incapable of producing the 

conventional MI based BCI control signal [52], the introduction of OSA modulation 

potentially provides an effective alternative for BCI control. Moreover, OSA modulation 
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utilizes the parietal-occipital cortex, unlike MI’s use of the sensorimotor cortex, providing 

the possibility to extend BCI control beyond 2D.

B. 3D control strategy was individualized according to subjects’ performance preference 
but no difference was found between strategies

In the 3D experiments, a combination of OSA and MI modulation was used for online 

control. We found that two particular combinations worked best and were accepted by the 

participants. Subjects with superior performance using MI, compared to OSA, preferred to 

use MI and OSA for the horizontal plane and vertical axes respectively. While subjects who 

demonstrated superior performance via OSA, compared to MI modulation, preferred to use 

OSA to control the cursor in the frontal (parallel to the screen) plane and MI (both hands 

versus relax) to control the cursor’s depth (in/out of the frontal plane). We utilized identical 

target positions for both groups, regardless of the control strategy being employed. By using 

consistent target locations, we were able to further demonstrate the lack of preferred control 

dimensions within either control strategy in the same experiment. This is further exemplified 

in the confusion matrices, which reveal that on average both strategies used in this study 

produced successful 3D control. Although the group level averages were similar, there were 

noticeable individual differences among the subjects’ control abilities. Some subjects, like 

the example in figure 8A, demonstrated superior performance for all target locations, while 

others preferred specific axes. Although both the MI and OSA modulations consume 

attention resources, the 3D control results revealed that subjects could effectively deploy 

their attentional resources simultaneously and properly in order to successfully complete the 

tasks. This simultaneous deployment of attentional resources corroborates our previous 

study, in which we explored cognitive flexibility through simultaneous SSVEP and MI 

modulation for BCI control [53].

More recently, wearable BCI systems have become more readily available due to the rapid 

improvement of dry EEG electrodes [13,14] and wireless, compact EEG systems. These 

wearable BCI systems have been used in a diverse set of applications, ranging from the 

evaluation of driver vigilance [54] to robotic exoskeletons [16]. The 3D control paradigm 

proposed in this study uses a sparse electrode configuration for online control, an advantage 

that allows for its simple implementation within wearable BCI systems. Not only can 

previously established algorithms, such as the one presented here, be implemented in 

wearable systems, given the increased comfort and mobility offered to BCI users by these 

systems, there is no doubt that they will help attract more BCI users, helping to further the 

development of BCI technology.

C. New paradigm of 3D control does not require extensive training and improve ITR 
significantly

Prior to our work, there was only one study of noninvasive 3D BCI control based on 

endogenous modulation. In it, McFarland et al. proposed to use the imagination of 

movement of both hands and feet to perform EEG based 3D control [32]. They designed a 

center out task with eight targets located in the corners of a cubic workspace, where only 

one target was displayed per task. Each subject was asked to move a cursor, which appeared 

in the center, to the displayed target at one of the corners within a 15s time limit. If the 
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subject was unable to contact the target by the end of the 15 seconds, the trial was recorded 

as a miss. Unlike the work presented here, if the cursor moved to other target locations, it 

did not result in a miss. In their work, they studied four subjects (one naïve BCI subject) 

who practiced 1–4 sessions of 1D control, 10–12 sessions of 2D control and 21–42 sessions 

of 3D control. Initially these subjects completed about 20%−60% of the 3D trials, improving 

to 60%−90% following extensive training. Our current study demonstrated that a group of 

16 subjects (11 BCI naïve subjects) could complete three sessions of 3D 8 target tasks with 

starting and ending group accuracies of 50% and 59%. Unlike the previous work done by 

McFarland and colleagues, these subjects only performed three sessions of 1D and 2D BCI 

training before moving on to the 3D control task. Note that the two accuracies are not 

directly comparable since the first accuracy [32] represented the proportion of completed 

trials, while the accuracy in the present study was PVC, where contact with incorrect targets 

results in misses. This difference increases the difficulty of the task in this study and is also 

closer to daily life application. Furthermore, the subjects in our study underwent 

substantially less training in the 3D tasks (3–5 sessions versus 21–42), and still 

demonstrated high levels of accuracy and control, further suggesting that our proposed 

control strategy is useful in practical situations. The efficiency of the BCI system was 

investigated through the evaluation of the ITR, which not only depends on the classification 

accuracy but also correlates with the number of hits and speed in each run. Previous studies 

[40],[50],[55] have reported the ITR for 1D (two classes) and 2D (four classes) cursor 

control tasks or up to five classe offline analysis, which produced ITRs of 4.9 bits/min – 

14.1 bits/min for 1D tasks [40],[55], ITRs of 11.0 bits/min – 20 bits/min for 2D tasks [50],

[55], and ITRs of 0.42 bits/trial – 0.81 bits/trial for the five class individual offline analysis 

[50]. It is difficult to directly compare ITRs across these studies since some of these works 

only reported the peak ITR for individuals and the experimental paradigms were different, 

potentially affecting the evaluation of ITR. In our work, the average ITR for 1D control is 

11.1 bits/min (0.68bits/trial), which is comparable to the reported maximum individual ITR 

across all tasks (two to five class offline analysis) [50]. This verifies that the ITR for 1D 

control in this study can serve as a strong baseline, and that the improvement of ITR through 

increased dimensionality is not a trivial result due to weak starting accuracy. Moreover, all 

of the 1D, 2D and 3D tasks in this study were performed and evaluated in the same 

paradigm, which allows for a more fair comparison between different control tasks.

D. Online control increase R-value significantly

Event-related (de)synchronization (ERD/S) has been suggested to be a product of specific 

cognitive processes which might be related to the selective attention of multiple neuronal 

systems, such as the motor [56] and visual systems [38],[39]. The modulation of mu rhythms 

was topographically quantified via the regression analysis R-value displayed in Fig. 5. A 

clear pattern or cluster of active electrodes between the compared tasks usually suggests the 

discriminability of the designed tasks and the possibility of online control. The R-value 

topography, without any feedback, demonstrates similar results to the previous studies which 

employ covert spatial attention [40],[41]. Here, we showed that the OSA modulation task 

produces similar but much stronger parietal-occipital activity, especially after providing 

online feedback. The statistical analysis of the R-values of the corresponding control 

electrodes (P3/P4 LR OSA; Pz/Poz UD OSA; C3/C4 LR/UD MI) revealed that following the 
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presentation of feedback, there was a significant increase in the modulation of activity. This 

further validates that online feedback could greatly promote the cognitive processes [57] and 

might be essential for BCI control [58],[59].

CONCLUSION

In this work we propose a new OSA task which utilizes the endogenous modulation of 

visuospatial attention and demonstrate similar performance to conventional MI BCI control. 

The OSA task, without feedback, produces activity patterns similar to those presented in 

previous studies of CSA. These patterns which are focused around parietal-occipital cortices 

are further strengthened through the presentation of feedback. This stronger cognitive 

process coincides with the successful modulation of the brain rhythms and the completion of 

the tasks. A substantial portion of the subjects further demonstrated that the combination of 

the two strategies (MI and OSA) allows for the control of a virtual cursor in 3D space 

through the completion of center out tasks with significantly higher accuracy than chance. 

Furthermore, subjects showed significant performance improvement across the three 

sessions of 8 target 3D tasks. Note that, nine of these subjects further demonstrated robust 

control in a twelve target 3D control task, resulting in a group average information transfer 

rate of 29.7±1.6 bits/min, which significantly outperformed the lower dimensional 1D and 

2D control task. The successful completion of a 3D task through the combination of multiple 

control strategies corroborates our previous findings that subjects have the cognitive 

flexibility to simultaneously deploy their attention in two different cognitive tasks. By taking 

advantage of this cognitive flexibility, future work could improve and expand upon the 

efficiency and dimensionality of BCI control, as well as potentially shed light on the study 

of cognitive processes, such as attention, through BCI.
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Significance:

Through the combination of the two strategies (MI and OSA), a substantial portion of the 

recruited subjects were capable of robustly controlling a virtual cursor in 3D space. The 

proposed novel approach could broaden the dimensionality of BCI control and shorten 

the training time.
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Fig. 1. 
A) Overall experimental strategy for control via OSA and MI. Subjects overtly attend to 

either the left or right side according to the task cue, directing the cursor’s movement to 

either the left or right; subjects imagine the repeated movement of their left or right hand, 

according to the task cue, directing the movement of the cursor to the left or right during MI 

modulation. B) Overall study design. Each participant was randomly assigned to one of two 

groups and completed three screening sessions. In group one, OSA was performed first, 

followed by MI; while group two performed the reverse. A subset of the subjects whose 
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performance was higher than the pre-determined threshold was invited to complete three 

sessions of 3D 8 target tasks with further subsection of those subjects participating in two 

additional sessions of 3D 12 target tasks.
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Fig. 2. 
BCI behavioral performance of online cursor control via the OSA modulation and the MI 

modulation in terms of PVC. The performance accuracies of OSA are shown in solid bars 

and those for MI tasks are shown in striped bars. A) Comparison of accuracy for left vs right 

1D control task. B) Comparison of accuracy for up vs down 1D control task. C) Comparison 

of accuracy for 2D control task. In the bottom panel, the individual performance for each 

subject is shown on the left side of the dashed line and the group average performance for 

each task is displayed on the right side of the dashed line. Subject IDs are sorted according 
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to the difference in performance between the two tasks and are color coded; the color bar 

shows the percentage difference between OSA and MI.
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Fig. 3. 
BCI behavioral performance for online 3D cursor control via the combination of OSA and 

MI modulation in terms of PVC. A) A scene of the 8 target 3D cursor control task. The 

highlighted bar indicated the target to hit. B) A scene of the 12 target 3D cursor control task 

where the highlighted bar indicated the target to hit. C) BCI accuracy of 3D control across 

the three sessions with the dashed green line indicating random chance (12.5%). D) BCI 

accuracy of 3D control in the 12 target task across the two sessions with the dashed green 

line indicating random chance (8.3%).
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Fig. 4. 
Comparison of ITR in a subset of nine subjects for all of the experimental conditions. The 

group average of ITR for each condition is displayed by the height of the bar with the SEM 

being overlaid. The p-values for statistical analysis by a linear mixed effect model are shown 

in the subplot at the bottom. A post hoc Tukey’s test was used to correct for multiple 

comparisons.
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Fig. 5. 
The R topography map of OSA modulation (the first column of each panel) versus MI 

modulation (the second column of each panel) without feedback in subfigure (A) and with 

feedback in subfigure (B). R values were calculated using all trials. The first row of each 

subfigure displays the R topography of the left versus right control task; the second row of 

each subfigure shows the R topography for the up versus down control task. C) The 

statistical comparison of R-values at the P3 and P4 electrodes during left versus right control 

via OSA modulation, D) at the C3 and C4 electrodes during left versus right control via MI 
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modulation, E) at the Pz and Poz electrodes during up versus down control via OSA, and F) 

at the C3 and C4 electrodes during the up versus down control via MI modulation.
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Fig. 6. 
R topography map of the OSA modulation (the first column of each panel) versus the MI 

modulation (the second column of each panel) without any feedback in subfigure A) and 

with feedback in subfigure B). Calculation is based on the subset of the trials in which 

targets were correctly hit. The first row of each subfigure displays the R topography of left 

versus right control task; the second row of each subfigure shows the R topography of the up 

versus down control task. C) Statistical comparison of R-value at the P3 and P4 electrodes of 

OSA modulation during the left versus right control, D) at the C3 and C4 electrodes of MI 
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modulation during the left versus right control, E) at the Pz and Poz electrodes of OSA 

modulation during the up versus down control, and F) at the C3 and C4 electrodes of MI 

modulation during the up versus down control.
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Fig. 7. 
Confusion matrices for the 3D control tasks. A) The target location and the control strategy 

for the 5 subjects who preferred to use OSA modulation to move the cursor in the frontal 

plane (parallel to the screen) and MI modulation to move the cursor in and out of the vertical 

plane. The workspace was rotated for the sake of visualization and subjects viewed the 

workspace from the top down perspective. B) The target location and the control strategy for 

the 11 subjects who preferred to use the MI modulation to move the cursor in the horizontal 

plane and the OSA modulation to move the cursor along the vertical axis. A similar rotation 
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was applied for visualization with the subjects also viewing the workspace from the top 

down perspective. C) Group level confusion matrices (colorbar unit: percentage) for the 5 

subjects who use the strategy illustrated in A). D) Group level confusion matrices for the 11 

subjects who use the strategy displayed in B). The true target is indicated by the row and the 

predicted target by the column. E) Standard deviation of confusion matrices for the 5 

subjects. F) Standard deviation of confusion matrices for the 11 subjects.
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Fig. 8. 
Individual confusion matrices (color bar unit: percentage) for the 3D control tasks. A)–D) 

Four examples of individual confusion matrices among the 11 subjects who use the 

strategies in the figure 7B. E)–F) Two examples of individual confusion matrices among the 

5 subjects who use the strategies in the figure 7A.
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Fig. 9. 
Average cursor movement trajectories for a particular subject. The virtual cubic workspace 

was rotated for easier visualization of all of the trajectories. The colored bars show the 

targets in the workspace and the ellipsoids display the estimated distribution of the end 

points of cursor during all of the hit trials. The movement path was derived by averaging all 

of the hit trials.
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