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ARTICLE INFO ABSTRACT

Keywords: Malaria-infected individuals often harbor mixtures of genetically distinct parasite genotypes. We studied intra-
Plasmodium falciparum host dynamics of parasite genotypes co-infecting asymptomatic adults in an area of intense malaria transmission
Single Nucleotide Polymorphism in Chikhwawa, Malawi. Serial blood samples (5 ml) were collected over seven consecutive days from 25 adults
Superinfection

with asymptomatic Plasmodium falciparum malaria and analyzed to determine whether a single peripheral blood
sample accurately captures within-host parasite diversity. Blood samples from three of the participants were also
analyzed by limiting dilution cloning and SNP genotyping of the parasite clones isolated to examine both the
number and relatedness of co-infecting parasite haplotypes. We observed rapid turnover of co-infecting parasite
genotypes in 88% of the individuals sampled (n = 22) such that the genetic composition of parasites infecting
these individuals changed dramatically over the course of seven days of follow up. Nineteen of the 25 individuals
sampled (76%) carried multiple parasite genotypes at baseline. Analysis of serial blood samples from three of the
individuals revealed that they harbored 6, 12 and 17 distinct parasite haplotypes respectively. Approximately
70% of parasite haplotypes recovered from the three extensively sampled individuals were unrelated (proportion
of shared alleles < 83.3%) and were deemed to have primarily arisen from superinfection (inoculation of un-
related parasite haplotypes through multiple mosquito bites). The rest were related at the half-sib level or greater
and were deemed to have been inoculated into individual human hosts via parasite co-transmission from single
mosquito bites. These findings add further to the growing weight of evidence indicating that a single blood
sample poorly captures within-host parasite diversity and underscore the importance of repeated blood sampling
to accurately capture within-host parasite ecology. Our data also demonstrate a more pronounced role for
parasite co-transmission in generating within-host parasite diversity in high transmission settings than pre-
viously assumed. Taken together, these findings have important implications for understanding the evolution of
drug resistance, malaria transmission, parasite virulence, allocation of gametocyte sex ratios and acquisition of
malaria immunity.

Parasite co-transmission
Within-host parasite diversity
Asymptomatic malaria

1. Introduction

Malaria remains a major global health problem and one of the
leading causes of morbidity and mortality especially in tropical regions
of the world. There were 216 million malaria cases and 445,000 ma-
laria-related deaths in 2016 alone (World Health Organization, 2017).
Compared with estimates for the year 2000, these figures represent a
41% and 62% decline in malaria cases and malaria-related deaths re-
spectively. Although these statistics show remarkable progress in global

malaria fight, they represent only subtle gains for sub-Saharan Africa
where most (> 80%) of the global malaria burden is concentrated. The
intransigence of malaria in the face of concerted and sustained control
efforts in sub-Saharan Africa calls for renewed political will to fight
malaria as well as new interventions and novel delivery systems for
existing interventions to maximize their impact on reducing malaria
burden.

Malaria is caused by an obligately sexual protozoan parasite of the
genus Plasmodium and is transmitted to human beings via bites from
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Anopheles mosquitoes. For most of its life cycle, the malaria parasite
exists as a haploid organism except during a brief diploid phase when
male and female gametocytes (sexual stages of the parasite) fuse to
form a zygote. Genetic recombination occurs only during the sexual
phase in the mosquito and generates new parasite haplotypes as genes
are reshuffled and re-assorted at this stage. For novel parasite diversity
to be generated, the mosquito must ingest a human blood meal con-
taining a mixture of genetically distinct male and female gametocytes.
If a mosquito takes a blood meal containing genetically identical ga-
metocytes, self-fertilization (selfing) will occur. This process will not
generate new parasite genetic diversity because the resultant progeny
will bear the same haplotype as their parents. The level of outbreeding
depends on the proportion of individuals harboring multiple parasite
genotypes and strongly correlates with P. falciparum prevalence
(Anderson et al., 2000; Fola et al., 2017) but poorly with P. vivax
prevalence (Fola et al., 2017). While ingestion of a human blood meal
containing genetically diverse parasites is required to generate new
parasite diversity in the mosquito vector, within-host parasite diversity
in humans can arise from two main processes. First, sequential bites
from multiple malaria-infected mosquitoes can introduce unrelated
parasites into a single human host. Second, mixtures of genetically re-
lated parasites previously generated by recombination in the mosquito
can be inoculated into individual human hosts through single mosquito
bites. These processes are referred to as “superinfection” and “parasite
co-transmission” respectively (Nkhoma et al., 2012; Alizon, 2013;
Wong et al., 2017). The process that predominates in generating within-
host parasite diversity can be inferred from patterns of kinship between
co-infecting parasite haplotypes.

Infection by malaria parasites does not always translate to a full-
blown clinical disease with classical malaria symptoms such as head-
ache and fever chills. Some residents of malaria-endemic areas do not
show any clinical symptoms of malaria despite being infected (Bousema
et al., 2014; Chen et al., 2016). These individuals may remain asymp-
tomatic for weeks or even months following infection depending on
several factors such as their level of premunition and the presence of
concomitant infections (Doolan et al., 2009; Chen et al., 2016). Adults
with asymptomatic malaria are a unique group of malaria research
participants because they can be left untreated for a few days to study
the natural course of malaria infections. This is the case because
asymptomatic adults have a reduced risk of developing severe anaemia
or other forms of complicated malaria requiring hospitalization.
Therefore, asymptomatic adults can provide a unique window into
within-host dynamics of naturally occurring and untreated malaria in-
fections.

The purpose of this study was to determine how accurately a single
peripheral blood sample taken from a malaria-infected individual cap-
tures within-host parasite diversity, and to characterize the within-host
population structure of malaria parasites in asymptomatic adults. While
some findings support the notion that a single blood sample contains
the full spectrum of parasite genotypes present in a malaria-infected
individual (Missinou et al., 2004; Dembo et al., 2006; Waltmann et al.,
2018), others suggest that it harbors only a subset of constituent
parasite genotypes (Daubersies et al., 1996; Farnert et al., 1997;
Kamwendo et al., 2002; Farnert, 2008; Farnert et al., 2008). These
discrepant findings may be due to the low resolution of msp-1 and msp-
2 genotyping used to fingerprint malaria infections in previous studies.
Limited discriminatory power of msp-1 and msp-2 genotyping may
result in failure to capture minority parasite variants and could lead to
the detection of only a subset of parasite genotypes present within the
individual. Apart from examining whether single snapshots of periph-
eral blood adequately capture within-host malaria parasite diversity,
this study focused on elucidating the within-host population structure
of malaria parasites. Such type of studies can aid modelling of im-
portant malaria traits by providing empirical data for testing, refining
and validating model assumptions. Methods for estimating inbreeding
coefficients and the mean number of parasite haplotypes within
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malaria-infected blood samples assume that multiple-haplotype infec-
tions (MHIs) predominantly arise from superinfection such that their
component parasite haplotypes are genetically unrelated and in-
dependent of each other (Hill and Babiker, 1995; Hill et al., 1995; Ross
et al., 2012). Similarly, models and studies of malaria transmission,
parasite virulence, drug resistance, and gametocyte sex ratio allocation
generally assume independence and non-relatedness of co-infecting
parasite haplotypes (Nowak and May, 1994; Reece et al., 2008; Antao
and Hastings, 2011; Alizon et al., 2013; Kada and Lion, 2015). How-
ever, genetic analysis of MHIs from Blantyre, Malawi, where in-
dividuals experience an average of 2.8 episodes of symptomatic malaria
per year (Sulo et al., 2002) revealed that MHIs predominantly contain
related and non-independent parasite haplotypes (Nkhoma et al.,
2012). In the neighboring Chikhwawa District, individuals encounter
~183 infectious bites per person per year (Mzilahowa et al., 2012).
Because of higher levels of malaria transmission in Chikhwawa com-
pared to Blantyre, we might expect patterns of within-host parasite
relatedness generated through superinfection to predominate over
those attributable to parasite co-transmission.

To determine whether a single blood sample accurately captures
within-host parasite diversity, we genotyped serial blood samples from
25 asymptomatic adults, and compared parasite DNA fingerprint pro-
files of serial blood samples from the same individual. If a single blood
sample accurately captures within-host parasite diversity, we would
expect consecutive blood samples from the same individual to have an
identical parasite DNA fingerprint profile. To examine relatedness
amongst co-infecting parasite genotypes, we isolated individual para-
site haplotypes from MHIs by dilution cloning (Rosario, 1981; Nkhoma
et al., 2012) and used allele-sharing patterns to infer kinship. The ex-
pectation is that parasite haplotypes introduced by superinfection
would be predominantly unrelated while those generated by parasite
co-transmission would be mostly related.

2. Materials and methods
2.1. Setting up the study and sampling asymptomatic malaria infections

Prior to setting up the study in communities that we sampled, we
held a series of community engagement meetings with key stakeholders
to explain the purpose of our study, how communities will be involved
and potential risks and benefits for participating in this study. These
fora also provided an opportunity for stakeholders to raise any ques-
tions or concerns they had about the study. The study commenced
following approval from chiefs in the catchment area, Chikhwawa
District Health Office, College of Medicine Research and Ethics
Committee (Protocol # P.02/13/1529) and Liverpool School of
Tropical Medicine Research Ethics Committee (Protocol # 14.45RS).
The catchment area of our study was ~ 64km? in size and encompassed
communities around Belo Health Centre. To identify eligible study
participants, 82 adults (18-45years old; 39 males and 43 females)
without symptoms of malaria or any other known disease were
screened for malaria parasites using the histidine rich protein II-based
rapid diagnostic tests (RDTs) following the initial consenting process.
Twenty-seven RDT-positive individuals were requested to provide ad-
ditional written informed consent to participate in the study of which
25 (93%) agreed. During participant enrollment, we avoided recruiting
members of the same or nearby households to preclude a within-host
population structure driven by focal malaria transmission (Smith et al.,
2017). Serial blood samples (5ml) were collected over seven con-
secutive days from 25 consenting adults with positive RDTs. Blood
samples were collected in Acid Citrate Dextrose tubes (BD, UK), and
transported in an ice-cold container to the laboratory in Blantyre where
sample processing and parasite genotyping were performed. Half of
each blood sample was washed with incomplete RPMI-1640 media
(Sigma-Aldrich, UK) and cryopreserved in Glycerolyte 57 Solution
(Fenwal, Lake Zurich, IL, USA). Malaria parasites used in dilution
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cloning experiments were grown and culture-adapted from this sample.
The second half of each sample was passed through a CF11 filtration
column to deplete human leucocytes (Venkatesan et al., 2012). High
quality parasite DNA was extracted from this sample and used in gen-
otyping experiments. Enrolled study participants were carefully mon-
itored by our clinical management team every day for any symptoms of
malaria or other known disease. If symptoms of malaria or any other
known disease did not appear, study participants were left untreated
until the last day of follow up (day 7) when standard malaria treatment
(Artemether-Lumefantrine) was administered to each study participant
upon exiting the study. We assumed no new infections occur during
follow up because newly inoculated sporozoites take at least a week to
undergo full development in the liver and breakthrough the blood-
stream to initiate a blood-stage infection (Soulard et al., 2015).

2.2. Parasite DNA extraction and genotyping

Parasite DNA was extracted from all serial blood samples from each
of the 25 participants using DNA Mini Kits (Qiagen, UK). Each parasite
DNA sample was genotyped using the 24-SNP Molecular Barcode Assay
(Daniels et al., 2008) to determine the DNA fingerprint of constituent
parasites. Parasite DNA samples from three of the 25 individuals were
also genotyped at mspl and msp-2 loci as described previously
(Snounou et al., 1999) to obtain comparable fingerprint profiles.
Parasite DNA samples from P. falciparum laboratory strains 3D7, K1,
W2, DD2, HB3 and R033 obtained from MR4 (Manassas, VA) were
included in genotyping runs as positive controls. Each genotyping run
also included a negative water control. Briefly, 2.95 ul of nuclease-free
water was mixed with 0.05 pl of the 40 X Tagman SNP assay and 5 pl of
the TagMan Universal PCR Master Mix (Applied Biosystems Catalogue
# 4364343) in each well of a 96-well real-time PCR plate pre-loaded
with 2 pl (10ng) of each parasite DNA sample. Details of the 24 SNPs
genotyped including their corresponding primer and probe sequences
were as in the original methodology paper (Daniels et al., 2008).
Samples were amplified on the StepOne real-time PCR instrument
(Applied Biosystems, USA) and results were analyzed using Applied
Biosystem's proprietary Allelic Discrimination Software. Where the Al-
lelic Discrimination Software failed to provide genotype calls directly,
we manually assigned allelic calls to the samples by examining both
their amplification and multi-component plots.

2.3. Resolving whether a single peripheral blood sample accurately captures
within-host malaria parasite diversity

We performed two analyses to determine whether a single periph-
eral blood sample contains all parasite genotypes/haplotypes present in
a malaria-infected individual. First, we compared parasite DNA fin-
gerprint profiles of serial blood samples from the same individual.
Second, we subjected serial blood samples from three participants to
limiting dilution cloning and genotyped clones isolated to determine
both the number and relatedness of parasite haplotypes in each blood
sample. We would expect serial blood samples from the same individual
to show identical parasite DNA fingerprints or bear the same array of
parasite haplotypes if a single blood sample accurately captures total
within-host parasite diversity.

2.4. Dilution cloning of a subset of asymptomatic infections

Serial blood samples from three asymptomatic individuals were
cloned by limiting dilution (Rosario, 1981; Nkhoma et al., 2012) to
isolate individual parasite clones. Because parasite densities in these
individuals were below detection by light microscopy, parasites in all
blood samples were cultured for ~ two weeks prior to cloning. To
isolate single erythrocytes each infected with exactly one parasite,
100 pl of the parasite culture containing approximately five parasitized
cells per ml of complete RPMI-1640 media was inoculated into each
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well of a sterile 96-well plate. The plate was incubated at 37 °C in a
sealed gas chamber flushed with a 93% N,, 4% O, and 3% CO, gas
mixture. On day 21 following cloning, parasite-positive wells were
identified by detecting parasite DNA in each well using a DNA-labelling
dye, Sybr Green 1 (Johnson et al., 2007). Briefly, 100 ul Lysis Buffer/
Sybr Green 1 solution prepared by mixing 0.2 pul of 1000 x Sybr Green 1
solution and 1000 pl of lysis buffer (20 mM Tris at a pH of 7.5, 5mM
EDTA, 0.008% w/v saponin and 0.08% v/v Triton X-100) was added to
100 pl of cells re-suspended from each well. The detection plate was
incubated at room temperature for ~45 min in the dark and read at
excitation and emission wavelengths of 485nm and 530 nm respec-
tively using the FLx800 Multi-Detection Microplate Reader (BioTek
Instruments Inc., USA). Parasite-positive wells were identified as those
with elevated fluorescence intensity relative to the background and
were confirmed by light microscopy of blood films prepared from re-
suspended cells. Parasite clones isolated from each serial blood sample
were genotyped using the 24-SNP Molecular Barcode Assay (Daniels
et al., 2008) to determine both the number and relatedness of con-
stituent parasite haplotypes.

2.5. Assessment of cloning efficiency

To assess how efficiently parasite diversity in the original infection
was sampled, the number of wells containing clonal parasite lineages
was compared with that expected assuming a Poisson distribution of
parasite-positive wells in the 96-well cloning plate. Its probability mass
function was generalized as:p(k =n) = [\e~*1/k! where p is the
probability that a single well is inoculated with exactly k parasitized
erythrocytes (k = 0), A is the number of parasite-infected cells in the
inoculum used to seed the wells (A > 0) and e is Euler's number. For
example, the probability that each well was seeded with exactly one
parasitized erythrocyte is given by p(k = 1). We used the incidence
ratio test implemented in STATA version 11.0 (College Station, TX) to
determine if there were significant differences between the numbers of
wells containing clonally derived parasites following dilution cloning of
any two blood samples.

2.6. Resolving the number and relatedness of parasite haplotypes within
patients

SNP data for parasite clones isolated from serial blood samples from
three participants were used to determine both the number and relat-
edness of parasite haplotypes within patients. Parasite clones with =2
heterozygous SNP calls were considered multiclonal (Sisya et al., 2015)
and were excluded from phylogenetic analyses because parasite hap-
lotypes cannot be accurately reconstructed. Those with less than two
heterozygous base calls were deemed monoclonal (single-haplotype
infections). We used a threshold of =2 heterozygous SNPs to distin-
guish between single-haplotype and multiple-haplotype infections be-
cause one random SNP out of the 24 SNPs genotyped is occasionally
incorrectly scored as mixed (heterozygous) even in well-characterized
single-haplotype infections (Sisya et al., 2015). SNP data for single-
haplotype infections were used to construct the UPGMA tree to describe
relationships between parasite haplotypes recovered from the same or
different infections. The tree was constructed with PHYLIP (http://
evolution.genetics.washington.edu/phylip.html), using the genetic
distance 1-ps, where ps is the proportion of alleles shared between
parasites. To define the degree of relatedness between parasite haplo-
types, we simulated allele-sharing expected for genetically unrelated
parasites, half-sib parasites, full-sib parasites and parasites derived from
inbreeding between full-sib parasites as described previously (Anderson
et al., 2010; Nkhoma et al., 2012). These simulations were performed
using SNP allele frequencies in single-haplotype infections only. We
then assigned relatedness classes to haplotype relationships observed by
fitting their observed pairwise allele-sharing into the simulated fre-
quency distribution of pairwise allele-sharing expected of parasites in
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different relatedness categories. Because allele-sharing distributions for
the different relatedness classes showed some overlap, the upper con-
fidence limit for pairwise allele-sharing expected for unrelated parasites
was used as a threshold for defining related and unrelated parasite
haplotypes. Similarly, the upper confidence limit for pairwise allele-
sharing expected for full-sib parasites was used as a cut-off for differ-
entiating full-sibs and parasites more related than full-sibs.

3. Results
3.1. Patient recruitment and follow up success rate

Out of 82 healthy adults screened for malaria using RDTs, 33%
(n = 27) were positive for Plasmodium falciparum parasites. Of the 27
parasite-positive individuals, 25 agreed to provide serial blood samples
for use by this study while two refused and were immediately with-
drawn from the study. Of the 25 fully consenting study participants, 24
completed all the study-related procedures including providing all the
requested serial blood samples. However, participant MW11 withdrew
from the study on day four of follow up citing concerns over repeated
blood draws.

3.2. Parasite DNA fingerprinting of serial blood samples from individual
participants

Serial blood samples from 25 asymptomatic adults were successfully
genotyped using the 24-SNP Molecular Barcode Assay (Fig. 1, Supple-
mentary Table S1). Nineteen of the 25 individuals sampled (76%)
carried multiple parasite genotypes at baseline. Identical parasite DNA
fingerprint profiles were observed in serial blood samples from each of
the participants MW3, MW4 and MW6 (Supplementary Table S1).
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Fig. 1. SNP genotyping. Shown here is a typical allelic discrimination plot with
genotype results for the A/G SNP on chromosome 7 and position 000277104 of
the P. falciparum genome (PlasmoDB version 5.0). Axes “A” and “G” represent
fluorescence intensities for the “A” and “G” alleles in the samples genotyped.
Each dot in the plot represents a normalized fluorescence intensity signal for
each sample and provides the genotype call for the sample. Red and blue
clusters contain samples that are homozygous for the “A” and “G” alleles re-
spectively while the green middle cluster contains samples that are hetero-
zygous for both alleles (i.e. multiclonal samples). The letter “X” in any area of
the plot represents a sample without a SNP genotype call (i.e. a genotyping
failure). (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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However, consecutive blood samples from 22 other participants had
different parasite DNA fingerprints (Supplementary Table S1). Of the
174 serial blood samples genotyped, 33 carried zero or one hetero-
zygous SNPs and were deemed monoclonal. Msp-1 and msp-2 geno-
typing of serial blood samples from three of the 25 participants (MW1,
MW2 and MW3) confirmed the presence of identical parasite genotypes
in consecutive blood samples obtained from participant MW3 but a
rapid turnover of co-infecting parasite genotypes in serial blood sam-
ples taken from participants MW1 and MW2 (Supplementary Fig. S1).

3.3. Dilution cloning of infections and SNP genotyping of parasite clones
isolated

Dilution cloning of serial blood samples from patients MW1, MW2
and MW3 yielded 23 to 29 parasite-positive wells each containing a
clonal population of parasites. The probability that each well was in-
oculated with a singly infected erythrocyte is given by p(k = 1) and
equals exp.(—0.50)*(0.50"1)/fact(1) = 0.30. Since 96 wells were
seeded, we expected that 29 random wells in each dilution cloning plate
would contain parasites derived from singly-infected erythrocytes. SNP
genotyping showed that 22 of 179, 8 of 171 and 3 of 185 parasite clones
from patients MW1, MW2 and MW3 had =2 heterozygous SNP calls
respectively (Supplementary Table S2) and were considered to harbor
multiple parasite haplotypes. Phylogenetic analysis demonstrated that
each of the three study participants MW1, MW2 and MW3 carried 17,
12 and 6 parasite haplotypes respectively (Fig. 2).

3.4. Within-host dynamics of parasite haplotypes

We observed rapid turnover of parasite haplotypes in patients MW1
and MW2 such that a single blood sample never captured the full array
of parasite genotypes present in these individuals (Figs. 2, 3A and
Supplementary Fig. S1). However, in patient MW3, a full array of
parasite haplotypes observed on the first day of blood sampling con-
tinued to be detected on all the subsequent days of follow up (Fig. 2 and
Supplementary Fig. S1). We plotted the cumulative percentage of
parasite haplotypes detected on each day of blood sampling to de-
termine sampling effort needed to capture all parasite haplotypes found
in patients MW1 and MW2. While only two days of blood sampling
were required to uncover the full spectrum of parasite haplotypes in
patient MW1, four consecutive days of blood sampling were required to
capture all parasite haplotypes detected in patient MW2 (Fig. 3B). Di-
rect genotyping of serial blood samples from participants MW1, MW2
and MW3 without cloning yielded lower values of complexity of in-
fection (multiplicity of infection or number of parasite haplotypes) than
a combination of limiting dilution cloning of blood samples and SNP
genotyping of parasite clones isolated (Supplementary Table S3).

3.5. Cloning efficiency

Within-host parasite diversity was efficiently captured in parasite
clones isolated from each blood sample. Numbers of wells seeded with
singly infected erythrocytes did not significantly differ (p > .05) from
the 29 that is expected assuming Poisson distribution of parasite-posi-
tive erythrocytes in the 96-well plate.

3.6. Relatedness between parasite haplotypes

Parasite haplotypes recovered from the same infection were more
related than those from different infections (Fig. 4A). On average,
parasite haplotypes within MHIs shared 70.8% of alleles (range:
33.3-95.8%) compared with 59.8% (range: 34.8-82.6%) between
MHIs. Permutation analysis demonstrated that parasite haplotypes
within MHIs are significantly more related than expected by chance
(p < .0001). Analysis of both simulated and observed frequency dis-
tributions of pairwise allele-sharing confirmed significant differences in
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Fig. 2. Within-host parasite relatedness and dynamics. Parasite haplotypes from the same patient are shown using the same colour scheme in red, blue or green while
laboratory controls are shown in black. MW1, MW2 and MW3 are patient identifiers, d1 to d7 represent the seven different days of blood sampling while hap01 to
hap17 are designations for parasite haplotypes recovered from each patient. For example, MW3-d1-hap01 [04] denotes parasite haplotype 1 recovered from patient
MWS3 on day 1 of blood sampling. The number, 04, in square brackets denotes the number of parasite clones bearing this haplotype. Some of the parasite haplotypes
from the same patient cluster together on the tree while others are diverged from such clusters. Up to 17 parasite haplotypes (shown in blue) were isolated from a
single patient. Data show a rapid temporal change in the genetic composition of parasites infecting patients MW1 and MW2 but not MW3. Data also show patterns of

parasite co-transmission superimposed on those generated by superinfection in the same patients. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

patterns of allele-sharing within and between patients (Fig. 4). All (Nkhoma et al., 2012). Thresholds used to define the degree of parasite
parasite haplotypes recovered from different patients showed pairwise relatedness between parasite haplotypes recovered from the same or

allele-sharing expected of unrelated parasites. In contrast, 73.3% and different infections are shown in Table 1.
26.7% of parasite haplotypes within patients exhibited pairwise allele-
sharing expected of unrelated and related parasites respectively. Of the 4. Discussion

26.7% haplotype pairs deemed related, 7.5% were related at the half-
sib level, 13.4% at the full-sib level while the rest (5.8%) were more

Several studies have focused on elucidating the population structure
related than full-sibs and are considered “extremely related parasites”

of malaria parasites in areas of variable endemicity as well as in
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Fig. 3. Temporal dynamics of co-infecting parasite haplotypes. Panel A shows the percentage of parasite haplotypes detected on each day of blood sampling
compared with total parasite diversity within the patient. A single day sample often poorly captures within-host diversity. Panel B shows the cumulative percentage of
parasite haplotypes detected on each day of sampling. Data show that repeat blood sampling is required to accurately capture within-host parasite ecology.

locations where malaria control and elimination efforts are being in-
tensified (Anderson et al., 2000; Manske et al., 2012; Mobegi et al.,
2012; Nkhoma et al., 2012; Nkhoma et al., 2013; Mobegi et al., 2014;
Delgado-Ratto et al., 2016; Friedrich et al., 2016; Hong et al., 2016;
Fola et al., 2017; Fola et al., 2018). While important insights have
emerged from such studies, our understanding of the within-host po-
pulation structure of malaria parasites remains rudimentary. The full
extent of within-host parasite diversity and the relative contribution of
a variety of biological processes in generating diversity is not known
especially in high transmission areas. This is primarily because we
previously lacked high-throughput and high-resolution approaches for
resolving infection complexity and relied on single snapshots of per-
ipheral blood to measure within-host malaria parasite diversity. How-
ever, our understanding of the within-host population structure of
malaria parasites has greatly advanced in recent years. This owes in
part to the publication of whole genome sequences for the major ma-
laria species that infect humans (Gardner et al., 2002; Carlton et al.,
2008; Pain et al., 2008; Rutledge et al., 2017), and the development of
next generation sequencing platforms and other high resolution
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Table 1
Simulated allele-sharing expected for parasites in different classes of related-
ness.

Relatedness class Mean Lower 95% CL Upper 95% CL
Unrelated 64.3 45.8 83.3
Half sibs 73.3 54.2 87.5
Full sibs 82.3 66.7 95.8
1st round inbred 91.0 79.2 100
2nd round inbred 95.6 87.5 100
3rd round inbred 97.7 91.7 100
4th round inbred 98.9 91.7 100
Fully inbred 100 100 100

approaches for assaying naturally occurring genetic variation (Su and
Ferdig, 2002; Daniels et al., 2008; Juliano et al., 2010; Tan et al., 2011;
Auburn et al., 2012; Manske et al., 2012; Mobegi et al., 2014). Our
understanding of within-host malaria population structure has also
greatly benefited from computational algorithms that make it feasible
to handle, analyze and interpret large sets of parasite genetic data
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Fig. 4. Relatedness of parasite haplotypes within asymptomatic infections. Panel A shows the observed frequency distribution of pairwise allele-sharing (ps) between
parasite haplotypes recovered from the same or different infections. Grey bars denote comparisons between infections while black bars show within-infection
comparisons. Panel B shows simulated allele-sharing (ps) distributions expected of parasites in the different classes of relatedness. We simulated ps expected of
haploid parasites derived from the same inbred oocyst (100% identity-by-descent; IBD), from the same outcrossed oocysts (50% IBD), from two related oocysts (25%
IBD) and from two unrelated oocysts (0% IBD). Upper and lower confidence limits for these ps distributions are shown in Table 1 and define thresholds for

categorizing parasite haplotypes into different classes of relatedness.
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(Auburn et al., 2012; Assefa et al., 2014; O'Brien et al., 2016; Chang
et al., 2017; Zhu et al., 2018). A better understanding of within-host
malaria population structure is important because interactions between
co-infecting parasite genotypes can profoundly influence the evolution
of antimalarial drug resistance (Wargo et al., 2007; Antao and Hastings,
2011; Huijben et al., 2011), parasite virulence (Nowak and May, 1994;
de Roode et al., 2005; Bell et al., 2006; Buckling and Brockhurst, 2008;
Alizon, 2013; Alizon et al., 2013; Kada and Lion, 2015), malaria
transmission (Taylor et al., 1997a; Read and Taylor, 2001), gametocyte
sex ratio allocation (West et al., 2001; Reece et al., 2008; Pollitt et al.,
2011), and malaria immunity (Cheesman et al., 2006). In this study,
serial blood samples from 25 asymptomatic adults were analyzed to
examine how accurately a single blood sample captures overall parasite
diversity. Serial blood samples from three of the individuals were fur-
ther analyzed to determine both the number and relatedness of co-in-
fecting parasite haplotypes.

4.1. Does a single blood sample accurately capture within-host parasite
diversity?

Our data show that a single peripheral blood sample taken from a
malaria-infected individual often captures only a subset of parasite
genotypes present within an individual. SNP genotyping demonstrated
rapid turnover of parasite genotypes in serial blood samples from 88%
(n = 22) of the asymptomatic infections studied with some parasite
genotypes appearing while others disappearing from the peripheral
blood within a matter of days (Fig. 2 and Supplementary Table S1).
Msp-1 and msp-2 genotyping of serial samples from three of the 25
participants confirmed rapid genotype turnover in two individuals
(MW1 and MW2) but no change in the parasite DNA fingerprint profile
of participant MW3 (Supplementary Fig. S1). Further analysis of serial
blood samples from the three participants provides further confirmation
that parasite genotypes/haplotypes found in a single peripheral blood
sample do not accurately reflect total parasite diversity within the host
(Fig. 2) and should be viewed as only snapshots in time (Farnert, 2008).
We provide several possible explanations for the rapid turnover of co-
infecting parasite genotypes. First, this may reflect intra-host dynamics
driven by host immunity. In previous longitudinal studies of asympto-
matic infections, parasites bearing particular sets of antigenic markers
were detectable for only short periods of time before being replaced by
parasites with different sets of antigenic markers (Daubersies et al.,
1996; Farnert et al., 1997; Farnert, 2008; Farnert et al., 2008). Second,
rapid genotype turnover may be a form of antigenic variation used by
co-infecting parasite genotypes to switch antigenic molecules expressed
on the surface of parasite-infected erythrocytes. Akin to var gene
switching (Recker et al., 2011), it could be an immune evasion me-
chanism to misdirect, confuse and evade the human immune system so
that it fails to mount an effective response. Third, the rapid turnover of
parasite genotypes could be due to sequestration of some co-infecting
parasite genotypes in the deep tissue microvasculature (Montgomery
et al., 2006). Co-infecting parasite genotypes with alternate 48-h re-
plication cycles may appear and disappear from the peripheral blood
depending on parasite stage and time the infected individual is sam-
pled. Consistent with this reasoning, peripheral blood samples from
malaria-infected individuals typically contain early asexual stages of
the parasite (rings) but are often devoid of mature stages (trophozoites
and schizonts). Sequestration of some co-infecting parasite genotypes
could preclude their detection in the peripheral blood. Nonetheless, due
to the 48-h periodicity of the Plasmodium falciparum asexual life cycle,
sequestered parasite genotypes should emerge from sequestration sites
after every 48 h and be detectable in the peripheral blood on alternate
days of patient follow up as was observed in Papua New Guinea (Bruce
et al.,, 2000) and in participant MW2 (Fig. 2 and Fig. 3B). The ap-
pearance of broods of parasites with alternating 48-h replication cycles
is consistent with the finding that sequestered parasites are either ge-
netically the same as those in the peripheral blood (Dembo et al., 2006;
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Waltmann et al., 2018) or constitute a subset of those circulating in the
peripheral blood (Montgomery et al., 2006; Milner Jr. et al., 2012).
Fourth, rapid genotype turnover could be due to the accumulation of
spontaneous point mutations during asexual replication of parasites in
the human host. It is also possible that different sets of co-infecting
parasite genotypes are recovered randomly in dilution cloning experi-
ments. However, dilution cloning of two independent cultures of the
first serial blood sample from participant MW1 yielded identical sets of
parasite haplotypes. This indicates that major parasite haplotypes
generally remain stable after culture adaptation. It also indicates that
rapid genotype turnover is not a mere stochastic process driven by
genotype survival in culture but a real biological phenomenon as de-
monstrated in previous studies (Daubersies et al., 1996; Farnert et al.,
1997; Farnert, 2008; Farnert et al., 2008). Another potential explana-
tion for rapid genotype turnover is that genotyping tools used to fin-
gerprint malaria infections failed to detect minor parasite variants
within complex mixtures of parasite haplotypes. To minimize potential
bias in resolving the genetic diversity of parasites within blood samples,
we used a high resolution 24-SNP Molecular Barcode Assay to finger-
print infections. In addition, we resolved the number and relatedness of
parasite haplotypes in serial blood samples from three participants by
cloning infections and genotyping parasite clones isolated using the 24-
SNP Molecular Barcode Assay. This detailed analysis provides an im-
portant glimpse into within-host dynamics of naturally occurring and
untreated Plasmodium falciparum infections. Our finding that parasite
genotypes recovered from a single peripheral blood sample may not
fully account for total in vivo parasite diversity has important im-
plications for understanding phenotype-genotype relationships. In most
cases, such relationships are inferred from analyzing a single peripheral
blood sample. If a single blood sample contains only a subset of parasite
genotypes conferring the phenotype, incorrect parasite genotypes could
be assigned to the observed phenotypes. For example, characterization
of parasites, which cause cerebral malaria (CM), is of longstanding in-
terest to the malaria research community (Montgomery et al., 2006;
Seydel et al., 2006; Milner Jr. et al., 2012). However, there is concern
that single snapshots of peripheral blood from CM patients may fail to
capture parasites, which are sequestered in the brain, and responsible
for CM pathology (Seydel et al., 2006; Milner Jr. et al., 2012). Repeat
sampling of peripheral blood from CM patients may allow capture of
previously undetected and sequestered parasite genotypes responsible
for CM pathology. In contrast, if a measured phenotype is the average of
each of the phenotypes of the different co-infecting parasite genotypes,
we might expect the most abundant parasite genotype to exert a pre-
dominant effect on the overall phenotype. In this case, a single snapshot
of peripheral blood may accurately resolve the relationship between
phenotype and genotype because parasites that are predominantly
sampled and phenotyped will be the same as those genotyped. For
example, it is standard practice in antimalarial drug trials to examine
associations between treatment outcome and parasite genotype
(Djimde et al., 2001; Ariey et al., 2014; Amato et al., 2017), and to
determine if episodes of parasitaemia persisting following therapy are
due to treatment failure or re-infections. Because a single blood sample
obtained at the time a patient fails treatment will contain parasites
responsible for treatment failure, this single sample will adequately
resolve the relationship between treatment outcome and parasite gen-
otype. In contrast, if a co-infecting parasite genotype not detected prior
to drug treatment is the only genotype sampled at the time the re-
current episode of parasitaemia occurs, persisting parasitaemia could
be construed as a re-infection instead of treatment failure.The finding
that a single blood sample may not accurately capture within-host
parasite diversity underscores the importance of repeat blood sampling
to resolve within-host parasite ecology. However, this may only be
possible in asymptomatic adults because they can be left untreated for a
short duration of time to study the natural course of infections. This is
because asymptomatic adults have a lower risk of developing severe
anaemia or other forms of life-threatening complicated malaria if left
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untreated. Repeat sampling of peripheral blood from drug-treated
symptomatic individuals will fail to accurately capture naturally oc-
curring patterns of diversity because drug treatment may clear some co-
infecting parasite genotypes. Nonetheless, repeat sampling of drug-
treated individuals could help identify minority drug-resistant or slow
clearing parasite haplotypes within mixtures of predominantly suscep-
tible or fast clearing parasite haplotypes (Mideo et al., 2016). This could
be particularly useful for detecting minority drug-resistant or slow
clearing parasites early on in resistance development. We therefore
recommend that a longitudinal set of blood samples be taken to accu-
rately capture within-host parasite ecology. However, for every study,
the benefits of repeat blood sampling must be weighed against the cost
of such blood draws and the risks including potential discomfort to
study participants.

4.2. Complexity of asymptomatic malaria infections in adults from a high
transmission area

Previous population surveys revealed important insights into
within-host ecology of genetically diverse symptomatic malaria infec-
tions from Malawi (Juliano et al., 2010; Bailey et al., 2012; Nkhoma
et al., 2012; Nair et al., 2014; Trevino et al., 2017). This study provides
an important glimpse into within-host parasite diversity in asympto-
matic malaria infections. We found that 19 of the 25 individuals sam-
pled (76%) carried multiple parasite genotypes at baseline (Supple-
mentary Table S1). Carriage of multiple parasite genotypes by a single
human host is a common feature of both P. falciparum and P. vivax
infections (Read and Taylor, 2001; Mobegi et al., 2012; Nkhoma et al.,
2012; Delgado-Ratto et al., 2016; Friedrich et al., 2016; Fola et al.,
2017; Fola et al., 2018). Plasmodium vivax is known to exhibit greater
complexity of infection and higher rates of polyclonality than P. falci-
parum in locations where both species are sympatric (Pacheco et al.,
2016; Fola et al., 2017). Therefore, interactions between co-infecting
parasite genotypes can drive the evolution of biomedically important
traits in both species. Detailed analysis of serial blood samples from
three asymptomatic individuals demonstrated that they carried an
average of 12 parasite haplotypes per person (Fig. 2). The number of
parasite haplotypes observed matches some recent empirical estimates
from Malawi (Nkhoma et al., 2012; Trevino et al., 2017). Direct gen-
otyping of crude infections without dilution cloning underestimated
within-host host parasite diversity (Supplementary Table S3) pre-
sumably because parasite haplotypes cannot be accurately re-
constructed. Single time-point sampling of peripheral blood also poorly
captured an infection and often under-sampled within-host parasite
ecology (Fig. 2 and Fig. 3). Repeat sampling of individual patients
uncovered much more diversity. However, a preponderance of sub-
microscopic parasitaemias in asymptomatic infections is the major
obstacle to obtaining a comprehensive and an unbiased assessment of
parasite ecology in these infections. Because all infections analyzed in
this study had sub-microscopic parasitaemias, they were culture-
adapted prior to cloning to enrich them for malaria parasites. While
culture adaptation combined with dilution cloning provided important
insights into within-host parasite ecology, this approach may select for
only parasite haplotypes that grow well in culture. Preferential selec-
tion of fast-growing parasite haplotypes would preclude characteriza-
tion of parasite variants that grow poorly in culture or those that are
outcompeted during culture. Parasite enrichment using culture-free
methods (Trang et al., 2004; Tangchaikeeree et al., 2013) may be re-
quired to minimize potential bias in resolving within-host parasite
ecology of low-density infections. Recent improvements in targeted
capture of parasite-infected erythrocytes from complex mixtures and
single cell sequencing (Trevino et al., 2017), coupled with repeat blood
sampling should aid the resolution of within-host ecology of asympto-
matic infections at unprecedented depth and scale.

Infection, Genetics and Evolution 65 (2018) 414-424

4.3. Patterns of relatedness between co-infecting parasite haplotypes

Our data reveal a complex within-host relatedness structure with
patterns of parasite co-transmission superimposed on those generated
by superinfection. Based on simulated allele-sharing distributions ex-
pected for parasites in different classes of relatedness (Fig. 4B), ~70%
of parasite haplotypes recovered within patients MW1, MW2 and MW3
were unrelated (proportion of shared alleles, ps < 83.3%; Table 1)
while the rest were related at the half-sib level or greater. While these
data provide important insights into within-host parasite relatedness
structure, we are underpowered to accurately estimate the rates of both
superinfection and parasite co-transmission in this setting. Akin to
previous findings (Nkhoma et al., 2012; Nair et al., 2014; Trevino et al.,
2017; Wong et al., 2017), our data demonstrate that a simple super-
infection model in which co-infecting parasite haplotypes are assumed
to be unrelated cannot fully explain patterns of parasite relatedness
within individual hosts. There is greater role for parasite co-transmis-
sion in generating within-host parasite diversity than previously as-
sumed in areas of intense malaria transmission. The inference made
from genotyping human malaria infections that there is considerable
parasite inbreeding even in high transmission areas is consistent with
previous observations made from genotyping malaria infections in
African mosquitoes (Annan et al., 2007). We found that approximately
30% of co-infecting parasite haplotypes are related, sharing 20 out of
the 24 SNPs genotyped (ps > 0.833) (Table 1). This finding violates
the key assumption of independence often made in studies and models
of antimalarial drug resistance (Antao and Hastings, 2011), malaria
transmission (Taylor et al., 1997b; Read and Taylor, 2001), parasite
virulence (Nowak and May, 1994; Buckling and Brockhurst, 2008;
Alizon et al., 2013; Kada and Lion, 2015) and sex ratio allocation
(Reece et al., 2008; Pollitt et al., 2011). The central assumption made in
these studies and models is that multiple-haplotype infections (MHIs)
exclusively contain unrelated and independent parasite haplotypes
randomly sampled from the local parasite population. Future studies
need to account for the fact that parasite haplotypes within MHIs are
not always unrelated and independent of each other. As in previous
findings (Nkhoma et al., 2012), some co-infecting parasite haplotypes
showed greater allele-sharing than full-sib parasites. These constituted
5.8% of related parasite haplotypes. Serial transmission, in which co-
infecting parasite haplotypes are transmitted between multiple human
hosts as intact units without being broken apart by recombination, can
generate such highly related parasites (Nkhoma et al., 2012). It does so
by progressively purging genetic variation similar to repeated in-
breeding of laboratory model organisms such as mice (Broman, 2005).

Is it possible that some of the unrelated parasite haplotypes re-
covered within individual patients were recombinants inoculated
through single mosquito bites but which subsequently diversified fol-
lowing a random mutation process in culture? To examine this possi-
bility, we estimated the likelihood of our mutational target accumu-
lating four point mutations over the 21 generations (42 days) it took to
derive and expand individual parasite clones. We made two critical
assumptions to achieve this. First, because the exact size of the target
region bearing four divergent SNPs that distinguish related and related
parasite haplotypes is unknown, we assumed that the 24 SNPs that we
genotyped span a 24-kb genome segment since P. falciparum has a SNP
density of ~ one SNP per kb (Mu et al., 2002). Second, we assumed that
in P. falciparum, the rate of acquiring spontaneous point mutations is
1.0 X 1079 to 4.6 x 10~ ? per base pair per generation (Paget-McNicol
and Saul, 2001; Bopp et al., 2013) and is the same for our mutational
target. Based on these assumptions, we determined that there is prob-
ability of 0.0001 to 0.0005 for a 24-kb genome segment to acquire four
point mutations over the timeframe observed. We therefore exclude the
notion that four SNPs, which are divergent between related and un-
related parasite haplotypes, arose from a spontaneous mutation process
during culture. However, because we do not know the age of these
asymptomatic infections, we cannot rule out the possibility that
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mutation-driven diversification of co-transmitted parasite haplotypes
occurred in individual hosts before infections were sampled. In addi-
tion, we cannot rule out the possibility that some of the unrelated
parasite haplotypes were co-transmitted to individual human hosts via
single mosquito bites. The observation that each of the three ex-
tensively studied individuals contained both related and unrelated
parasite haplotypes renders some support for this notion. If a mosquito
takes independent bloodmeals only a few days apart, it may be super-
infected with unrelated parasite haplotypes. Subsequent inoculation of
unrelated parasite haplotypes from a superinfected mosquito would
yield patterns of parasite relatedness reminiscent of classical super-
infection where unrelated parasites are inoculated into a single human
host from sequential mosquito bites.

4.4. Implications for malaria parasite biology
(i) Evolution of parasite virulence, drug resistance and malaria transmission

The observation that a majority (~70%) of co-infecting parasite
haplotypes were unrelated while the rest were related has important
implications for understanding parasite virulence, drug resistance and
malaria transmission. Within-host competition between unrelated
parasite haplotypes selects for higher virulence, which increases both
parasite virulence and transmission to the host (Taylor et al., 1997b;
Alizon, 2013; Alizon et al., 2013). Within-host competition between
drug-sensitive and drug-resistant parasite haplotypes also selects for
increased drug resistance due to competitive release of drug-resistant
parasites in the presence of drug treatment (Wargo et al., 2007; Huijben
et al., 2011). While some studies have demonstrated a clear positive
relationship between MHIs and parasite virulence to the host (de Roode
et al., 2005; Bell et al., 2006), others have not (Abkallo et al., 2015).
These discrepant findings could be explained by differences in the de-
gree of relatedness between co-infecting parasite haplotypes. Consistent
with this reasoning, a previous study in Colombia observed a strong
association between MHIs and the severity of P. vivax but not P. falci-
parum malaria infections (Pacheco et al., 2016). Contrasting patterns
between P. falciparum and P. vivax infections were attributed to the
presence of distantly related parasite haplotypes in the latter (Pacheco
et al., 2016). Similarly, increased parasite virulence in mice infected
with multiple parasite strains may be explained by the fact that rodent
malaria experimental systems are often constructed using mixtures of
genetically unrelated parasites. Inconsistent relationships between
MHIs and malaria severity could be reconciled by adjusting for parasite
relatedness within infections. We would expect the magnitude of
within-host competition between co-infecting parasite haplotypes to be
reduced in individuals infected with related parasite haplotypes com-
pared to those infected with distantly related parasite haplotypes. In-
creased within-host parasite relatedness would select for a lower level
of parasite virulence as predicted from modelling the impact of parasite
co-transmission on virulence evolution (Alizon, 2013). In addition, we
would expect increased relatedness between co-infecting parasite hap-
lotypes to reduce the level of competitive release (Wargo et al., 2007;
Huijben et al., 2010; Huijben et al., 2011) and retard the spread of
antimalarial drug resistance akin to the effect of less aggressive che-
motherapy in rodent malaria experimental systems (Huijben et al.,
2010).

(ii) Evolution of gametocyte sex ratios and parasite virulence

Plasmodium parasites are known to facultatively alter their game-
tocyte sex ratios in the presence of competing parasites and in response
to resource availability such that they trade off investment in sexual
transmissible stages relative to the asexual replicative stages to max-
imize their within-host competitive ability (Reece et al., 2008; Pollitt
et al., 2011). A parasite haplotype will therefore reduce its investment
in sexual stages in the presence of unrelated conspecifics because
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investment in sexual stages may jeopardize its within-host survival.
Consequently, a parasite haplotype that shifts away from investment in
gametocytes will become more virulent (Mideo and Day, 2008; Pollitt
et al., 2011). Because ~70% of parasite haplotypes in three extensively
sampled individuals were unrelated and subject to intense within-host
competition, we would expect reduced investment in gametocyte pro-
duction. This would result in gametocyte sex ratios that are less female-
biased (Reece et al., 2008). In contrast, increased relatedness between
co-infecting parasite haplotypes is expected to favour female-biased sex
ratios and a lower level of virulence (Nkhoma et al.,, 2012). Re-
productive restraint probably explains why in naturally infected human
hosts, densities of sexual transmissible stages of the parasite tend to be
orders of magnitude lower than those of asexual replicative stages
(Taylor and Read, 1997). It ensures within-host survival of a parasite
haplotype that could have been decimated by within-host competitive
suppression.

5. Conclusion

In summary, our results demonstrate that a single peripheral blood
sample taken from a malaria-infected individual often poorly captures
within-host parasite ecology. These data reinforce previous findings
showing that parasites in a single peripheral blood sample poorly track
overall parasite diversity and should be considered as only snapshots in
time. These findings underscore the importance of repeated blood
sampling to accurately capture within-host parasite ecology. Our find-
ings also demonstrate a critical role for both superinfection and parasite
co-transmission in generating within-host parasite diversity. Taken to-
gether, these findings have important implications for understanding
malaria transmission dynamics, the evolution of parasite virulence,
drug resistance and sex ratio allocation.

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.meegid.2018.08.018.
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