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Abstract

Background—Exposures to DNA-damaging drugs and ionizing radiations increase risks of 

acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS).

Methods—9,028 recipients of hematopoietic cell autotransplants (1995–2010) for Hodgkin 

lymphoma (HL; n=916), non-Hodgkin lymphoma (NHL; n=3546) and plasma cell myeloma 

(PCM; n=4566), reported to the CIBMTR, were analyzed for risk of subsequent AML or MDS.

Results—335 MDS/AML cases were diagnosed posttransplant (3.7%). Variables associated with 

an increased risk for AML or MDS in multivariate analyses were: (1) conditioning with total body 

radiation versus chemotherapy alone for HL (HR=4.0; 95% confidence interval [1.4, 11.6]) and 

NHL (HR=2.5 [1.1, 2.5]); (2) ≥3 versus 1 line of chemotherapy for NHL (HR=1.9 [1.3, 2.8]); and 

(3) subjects with NHL transplanted in 2005–2010 versus 1995–1999 

(HR=2.1[1.5,3.1]).UsingSurveillance, Epidemiology and End Results (SEER) data, we found risks 

for AML/MDS in HL, NHL and PCM to be 5–10 times the background rate. In contrast, relative 

risks were 10–50 for AML and approximately 100 for MDS in the autotransplant cohort.

Conclusions—There are substantial risks of AML and MDS after autotransplants for HL, NHL 

and PCM.
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1. Introduction

Acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS) developing in 

persons exposed to DNA-damaging agents for a prior cancer are often referred to as 

treatment- or therapy-related myeloid neoplasms (t-MN)[1, 2]. t-MN constitute 

approximately 10–20% of all cases of AML and MDS[3], a proportion that may increase in 
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the future with an increasing prevalence of cancer survivors[4, 5]. Hematopoietic cell 

transplants (HCT) use high doses of drugs and/or ionizing radiations and can also lead to t-

MN[6, 7]. More than 60,000 allo- and autotransplants are performed annually with 

increasing numbers of long-term survivors.

Our aim was to determine risks of developing AML and MDS in recipients of 

autotransplants for Hodgkin (HL), non-Hodgkin lymphomas (NHL) and plasma cell 

myeloma (PCM) reported to the Center for International Blood and Marrow Transplant 

Research (CIBMTR). We also interrogated variables for an association with an increased 

likelihood of t-MN. To assess the impact of risks attributable to the autotransplant versus the 

disease for which the transplant was done we compared risks of developing t-MN in 

autotransplant recipients to risks in persons with similar diagnoses in the Surveillance, 

Epidemiology and End Results (SEER) database in the United States (US).

2. Methods

2.1. Data Sources:

The CIBMTR is a research collaboration between the National Marrow Donor Program/Be 

The Match and the Medical College of Wisconsin which collects detailed allogeneic and 

autologous transplant data from around the world. Patients are followed longitudinally. 

Studies conducted by the CIBMTR are performed in compliance with all federal regulations 

pertaining to the protection of human research participants. All patients and donors signed 

informed consent forms.

The CIBMTR collects a standard set of key variables for each patient including 

demographic, disease-related and transplant-related data pre-transplant. Outcome data are 

collected at 100 days, 6 months, annually thereafter for 6 years, and biennially until death.

The SEER dataset includes ages, sexes, races, years of diagnoses, cancer type, and if 

ionizing radiation and/or chemotherapy were used in the initial therapy of the disease.

2.2 Subject Selection:

All recipients of first autotransplants for HL, NHL, and PCM between 1995 and 2010 

reported to the CIBMTR were included. Excluded were subjects transplanted outside the 

US, those missing key data fields or written informed consent, those <18 years of age at the 

time of transplant, those with prior ML or MDS, and those with <100 days of follow up after 

autotransplant.

2.3 Study Definitions:

All subjects with a new diagnosis of AML or MDS reported to the CIBMTR at any time 

after a first autotransplant for HL, NHL or PCM. MDS cases progressing to AML were 

scored as MDS. Survival was defined as the time to death from any cause with surviving 

subjects censored at time of last follow-up. For SEER data, cancer types were defined by 

International Classification of Disease Oncology 3 (ICD-O3) codes in Supplementary Table 

1[8]. To minimize the impact of SEER coding therapy-related MDS (t-MDS; ICD-O3 9987) 

as therapy-related AML (t-AML; ICD-O3 9920) since 2010, straight lines fitted to male and 
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female t-AML cases vs age over 2001–2009 were used to predict t-AML cases in 2010–

2014. Observed minus predicted t-AML cases, for each sex and year, were then randomly 

reassigned as MDS cases; see[9] for details.

2.4 Statistical Analyses:

Autotransplant data analyses used the following methods. Survival probability was estimated 

by the Kaplan-Meier method. The cumulative incidences of subsequent AML or MDS were 

calculated accounting for the competing risk of death. Cox regression models were used to 

identify factors significant in predicting development of subsequent t-MN posttransplant. 

Covariates of interest were age at transplant, sex, race, transplant year, Karnofsky 

performance score, interval from diagnosis to transplant, receipt of chemotherapy, 

conditioning regimen and receipt of total body irradiation (TBI). Multivariable models were 

built separately for HL, NHL and CM. A proportional hazard assumption was tested for each 

factor using a time-dependent covariate approach. Backward elimination procedures were 

used to identify significant variables to include in the final model. SAS 9.4 was used to 

implement the aforementioned analyses.

Risks relative to background/expected rates in SEER were computed using the R package 

SEERaBomb, which calculates background/expected cancer incidences assuming a null 

hypothesis that neoplasm incidences are not impacted by prior neoplasm diagnoses. 

Background/expected incidences were thus computed using all cases, regardless of being 1st, 

2nd, or later neoplasms. Incidences were sex-, age- and year specific. To compute risks 

relative to such background/expected rates, person years (PY) after lymphoma and PCM 

diagnoses (SEER) or autotransplants (CIBMTR) at risk of AML or MDS were aggregated 

across subjects into single-year-resolution (age)x(year) matrices. Such matrices were 

multiplied into background/expected incidence surfaces and results were summed to form 

expected AML and MDS cases (E). Relative risks (RR) were then observed cases (O) 

divided by E. For AML and MDS incidences (i.e. absolute risks) after HL, NHL or PCM, 

PY matrices described above were summed over calendar years but not age, and incidences 

were formed as O/PY. Throughout, 95% confidence intervals (CI) were formed assuming 

that the observed number of cases O was a sample of a Poisson distribution with mean O.

3. Results

3.1 Study Cohort

9,028 subjects met the study criteria including 916 HL, 3,546 NHL, and 4,566 PCM. 

Subject, disease and therapy-related variables are displayed in Table 1. Median follow-ups 

for HL, NHL and PCM were 90 months (mo) (range, 3–246), 110 mo (range, 3–243), and 97 

mo (range, 3–236).

3.2 AML and MDS

Numbers of t-MN posttransplant by diagnosisaredisplayedinTable 2.Cumulative incidences 

(CI) of developing t-MN are shown in Table 3a and vary between an upper CI limit of 7% 

for NHL and a lower limit of 2% for PCM. umbers of cases segregated by whether or not an 
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additional major posttransplant event (defined as relapse, subsequent transplant, new 

cancer), which likely results in increased exposures, occurred (Supplement Table 2).

3.3. Risk factors for developing AML or MDS

Hazard ratios (HR) for developing t-MN that were statistically significant in multivariable 

analyses are displayed in Tables 3b, 3c and 3d for HL, NHL and PCM. In subjects with HL, 

variables associated with an increased risk of t-MN included: (1) age ≥45 versus <45 years 

(HR = 5.6 [2.7, 11.7]); and (2) conditioning with TBI versus no TBI (HR = 4.0 [1.4, 11.6]). 

In subjects with NHL, increased risk of t-MN included: (1) age >55 years (HR = 4.5 [2.6–

7.7] versus 45–54 years (HR = 2.7 [1.5–4.9]) versus <45 years; (2) ≥3 versus 1 prior 

chemotherapy regimens (HR = 1.9 [1.3, 2.8]); (3) transplants in 2005–2010 versus 1995–

1999 (HR = 2.1 [1.5, 3.1]); and (4) conditioning by TBI (HR = 1.7 [1.1, 2.5]) or by busulfan 

and melphalan or cyclophosphamide (HR = 1.8 [1.0, 3.0]) versus BEAM 

(bischloroethylnitrosourea [BCNU], etoposide, cytarabine, and melphalan). Finally, in 

subjects with PCM, risk factors for t-MN included: (1) age ≥55 years versus ≤55 years (HR 

= 2.5 [1.5, 3.9]); (2) ≥3 versus 1 prior chemotherapy regimens (HR = 1.8 [1.0, 3.0]); and (3) 

male sex (HR = 2.3 [1.4, 3.5]). HR forest plots are given in Supplement Figure 1.

3.4 Relative risks of developing AML or MDS

The SEER database from 2001–2014 contained 32,059, 77,990 and 217,602 cases of HL, 

NHL and PCM, and 50,310 and 53,722 cases of AML and MDS. SEER RRs of AML and 

MDS were 5–10 compared to CIBMTR RRs after autotransplants of 10–50 for AML and 

approximately 100 for MDS (Figure 1A), i.e. CIBMTR MDS RRs are 3–5-fold higher than 

CIBMTR AML RRs but SEER MDS and AML RR are roughly similar (Figure 1B).

Comparing AML and MDS log incidences after HL, NHL or PCM diagnoses to background 

rates across ages in SEER data, gaps for AML and MDS behave similarly (Figure 2). 

Younger age of transplant recipients in CIBTMR versus SEER is thus unlikely to be the 

cause of increased MDS:AML ratios. Further supporting this notion, when we stratified 

SEER data by age-at-diagnosis, the MDS RR of even the youngest age group was well 

below that of CIBMTR autotransplant recipients (Figure 3).

4. Discussion

Our data show a markedly increased risk of t-MN in recipients of autotransplants for HL, 

NHL and PCM compared to persons with similar diagnoses reported in SEER, less then 

20% of whom received an autotransplants [10–13]. Several variables were identified in the 

autotransplant cohort to be associated with increased risks of developing t-MN, including 

exposures to more chemotherapy regimens and TBI and receiving a transplant recently. It 

was previously reported that the risks of developing t-MN as new cancers are higher in 

breast and lung cancer patients given radiation therapy versus not; in these cases AML RRs 

were approximately 2-fold higher than MDS RRs [9]. Also in that study, after HL, NHL and 

PCM as primary cancer diagnoses, AML and MDS relative risks were similar in magnitude. 

These data suggest a probable association between lymphoid and myeloid cancers which is 

stronger for MDS than for AML in the current study.
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The current study further confirms the role of TBI as a strong risk factor for developing t-

MNs. Metayer et al. conducted a case-control study in subjects receiving autotransplants for 

HL or NHL; they reported a statistically significant increased risk for t-MN with TBI in 

subjects >45 years (RR=4.9; 95% CI, 1.32, 24.78)[14]. Given current results and prior 

studies it may be prudent to avoid TBI-based pretransplant conditioning regimens.

It is unclear why autotransplants performed more recently associated with higher t-MN risks 

in NHL patients. This was not found in subjects with PCM. It is also unclear why in PCM, 

the use of TBI was not associatedwithasignificantincreaseint-MN. Perhaps drugs used 

preferentially in lymphoma conditioning interact preferentially with TBI[13].

An important finding of our study is that autotransplant recipients have high RR (up to 100) 

for developing subsequent t-MN compared to similar subjects most of whom did not receive 

an autotransplant (RRs = 5–10). These increases may be related to exposure to high doses of 

DNA-damaging drugs given for the autotransplant but this hypothesis can only be tested in a 

prospective study. Other limitations of our study include possible reporting bias inherent to 

all voluntary reporting registries. trengths of our study include its large sample size and its 

comparisons to risks in SEER data.

In an early study of 206 subjects receiving autotransplants, 8 developed MDS and 1 AML 

[7]. Given MDS and AML risks are approximately equal in SEER data [11], these data 

suggest autotransplants may cause more MDS than AML. Compared with a recent study in 

which cytogenetically-defined MDS was detected in approximately 3% of approximately 

3000 persons with PCM receiving autotransplants[6], our study differs in that it: 1) includes 

subjects with HL and NHL; 2) estimates effects of prior therapies and conditioning 

regimens; 3) estimates risks relative to background rates in SEER; and 4) compares MDS 

and AML risks.

The reason(s) for the high relative risks of AML and MDS after autotransplants (~10–50 for 

AML and ~100 for MDS) in our analysis is unknown. Approximately 2-fold higher ML than 

MDS risks after breast and lung cancer diagnoses[9], similar risks post thyroid cancer 

diagnoses[15, 16], and an MDS RR of ~13[17] versus an AML RR of ~11[18] for persons 

exposed to 3 Gy of atomic bomb radiation, suggest that radiation, and by extension, 

radiomimetic drugs (e.g. cyclophosphamide and melphalan), are unlikely causes of the 

higher MDS risks, relative to AML risks, observed here after transplants. One possible 

explanation is that many cases of MDS evolve to AML, and that earlier diagnosis from 

increased post-transplant surveillance resulted in a deficiency of AML. A second is based on 

steeper MDS versus AML incidences versus age (Figure 2A) and the possibility that 

transplantation recipient marrow ages (i.e. marrow biological ages) are perhaps decades 

older than calendar ages. In this scenario, the process of repopulating the bone marrow 

causes hematopoietic cell aging along a system state dimension associated with AML and 

MDS risks. In healthy elderly, clonally expanded mutations in TET2 have a stronger age-

dependence than mutations in DNMT3A and are found in MDS more than in AML[19–21]. 

This suggests that the transplantation process favors expansions of clones with TET2 

mutations over clones with DNMT3A mutations, i.e. clones that have a greater propensity to 

evolve to MDS than AML.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• TBI conditioning for autotransplantation is associated with higher risks of t-

MN

• Risks of t-MN after autotransplantation for NHL are increasing

• Autotransplantation increases risks of MDS more than AML
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Figure 1. 
Relative risks (RR) of AML and MDS after autotransplants (CIBMTR data) or diagnoses 

(SEER data). A) RR associate with autotransplants, more for MDS than AML. B) 

MDS/AML ratios of RR are 3–5 for CIBMTR data and 1–2 for SEER data. A-B) 95% CI 

assume observed cases are Poisson distributed. Dx = diagnosis, Tx = transplant.
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Figure 2. 
AML and MDS risks vs. age in SEER. A) Absolute AML and MDS risks (incidences) of 

those exposed to a prior HL, NHL, or PCM versus background rates expected under a null 

that prior cancers do not matter. [O/PY=observed cases / person years at risk] B) Exposed/

background ratios of incidences in . For MDS and AML, at younger ages risks after prior 

diagnoses of HL, NHL, or PCM, i.e. Op/PYp, are greater multiples (Op/PYp)/(O/PY) of 

background rates O/PY. C) MDS/AML ratios of ratios in B. These are (Omp/Om)/(Oap/Oa) 

where m stands for MDS, a for AML, and PY cancel out. A-C) 95% CI (bars) were formed 

via simulations that assumed O is Poisson distributed.
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Figure 3. 
Relative risk (RR) of AML and MDS with SEER data stratified by age-at-diagnosis groups.
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Table 1:

Characteristics of the autotransplant CIBMTR cohorts for Hodgkin (HL), non-Hodgkin (NHL) lymphoma and 

plasma cell myeloma (PCM)

Diagnosis

Characteristics HL NHL PCM

Subjects (n) 916 3546 4566

Centers (n) 103 118 118

Median age at transplant (y; range) 35(18-77) 56(18-82) 58(22-80)

   18 - 29 328(36) 147(4) 15(<1)

   30 - 39 255(28) 307(9) 152(3)

   40 - 49 166(18) 708(20) 756(17)

   50 - 59 93(10) 1094(31) 1719(38)

   60 - 69 65(7) 1098(31) 1653(36)

   ≥70 9(<1) 192(5) 271(6)

Male, n (%)

528(58) 2194(62) 2706(59)

Race/Ethnicity, n (%)

   Caucasian/White 727(79) 3140(89) 3494(77)

   Others 184(20) 384(11) 1043(23)

   Unknown/Declined 5(<1) 22(<1) 29(<1)

N prior lines of chemotherapy regimens, n (%)

   1 156(17) 847(24) 2472(54)

   2 488(53) 1425(40) 1254(27)

   3 172(19) 712(20) 451(10)

   ≥4 72(8) 416(12) 205(4)

   Missing 28(3) 146(4) 184(4)

Anthracyclines pre-conditioning, n (%)

   No 21(2) 54(2) 2409(53)

   Yes 849(93) 3180(90) 1954(43)

   Missing 46(5) 312(9) 203(4)

Alkylating drug pre-conditioning, n (%)

   No 2(<1) 22(<1) 1656(36)

   Yes 874(95) 3338(94) 2569(56)

   Missing 40(4) 186(5) 341(7)

Etoposide pre-conditioning, n (%)

   No 214(23) 1153(33) 3670(80)

   Yes 602(66) 1964(55) 592(13)

   Missing 100(11) 429(12) 304(7)

Cyclophosphamide/melphalan pre-conditioning

   No N/A 1798(39)

   Yes 2553(56)

   Missing 215(5)
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Diagnosis

Characteristics HL NHL PCM

Radiation therapy pre-conditioning, n (%)

   No 451(49) 2038(57) 3157(69)

   Yes 345(38) 782(22) 1259(28)

   Missing 120(13) 726(20) 150(3)

Total body radiation (TBI) conditioning, n (%)

   No 871(95) 3034(86) 4338(95)

   Yes 45(5) 512(14) 228(5)

TBI conditioning dose, n (%)

   None 871(95) 3034(86) 4338(95)

   ≤10 Gy 5(<1) 100(3) 60(1)

   >10 Gy 40(4) 408(12) 167(4)

   Missing 0 4(<1) 1(<1)

Lymphoma conditioning type, n (%)

   TBI-based 45(5) 512(14) N/A

   BEAM and similar 577(63) 2319(65)

   CBV and similar 124(14) 381(11)

   BuMel/BuCy 87(9) 197(6)

   Others 83(9) 137(4)

PCM conditioning type, n (%)

   Melphalan only N/A N/A 3844(84)

   Melphalan+TBI+/−other 182(4)

   Melphalan+other (no TBI) 285(6)

   Bu+ y+/−other 185(4)

   Others 70(2)

Melphalan conditioning dose (mg/m2), n (%)

   None N/A N/A 256(6)

   140 1430(31)

   200 2660(58)

   Missing 220(5)

Median interval diagnosis to transplant (mo; range) 21(<1−374) 16(<1−362) 8(<1−295)

   <12 156(17) 1323(37) 3304(72)

   ≥12 758(83) 2217(63) 1260(28)

   Missing 2(<1) 6(<1) 2(<1)

Tandem autotransplant, n (%)

   No 877(96) 3521(99) 3806(84)

   Yes 39(4) 25(<1) 760(17)

Year of transplant, n (%)

   1995-1999 338(37) 1352(38) 615(13)

   2000-2004 165(18) 737(21) 1244(27)

   2005-2010 413(45) 1457(41) 2707(59)
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Diagnosis

Characteristics HL NHL PCM

Median follow-up of survivors (mo; range) 90(3−246) 110(3−243) 97(3−236)

Kaplan-Meier 5-year survival rate estimates (95% CI) 67%(64, 57%(55, 57(55,

70% 58%) 58%)

TBI = total body irradiation; BCNU = Bis-chloroethylNitrosourea (i.e. carmustine); BEAM = BCNU, etoposide, cytarabine, and melphalan (Mel); 
CBV = yclophosphamide, BCNU and etoposide; Bu = Busulfan.
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Table 2:

Number of t-MN after autotransplant according to diagnosis groups and competitive eventsa (n=3335)

t-MN Subtotal Nb
Total(N)

HL NHL PCM

 AML 7 45 23 75

 MDS transformed to AMLc 5 26 8 39

 MDS 19 127 75 221

Total 31 198 106 335

a
Events = relapse, unplanned 2nd transplant, non-myeloid new malignancy

b
Two MN cases were excluded because they were diagnosed before day 100

c
In our analyses these are scored as MDS, so there are 39 + 221 = 260 MDS cases.
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Table 3a:

Cumulative incidence over time (and 95% CI) of AML or MDS after autotransplant according to diagnosis 

group (with death as the competing risk)

Diagnosis

Time
post transplant

HL
(n = 915)

NHL
(n = 3,540)

PCM
(n = 4,563)

1-year 0(0–1)% 1(0–1)% 0(0–0)%

3-year 1(1–2)% 2(2–3)% 1(0–1)%

5-year 3(2–4)% 4(3–5)% 1(1–2)%

10-year 4(3–6)% 6(5–7)% 3(2–3)%

Leuk Res. Author manuscript; available in PMC 2019 November 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Radivoyevitch et al. Page 19

Table 3b

Risks of developing t-MN after autotransplant for Hodgkin lymphoma (n=915)

Parameter n Hazard Ratio (95% CI) P-value

Age at transplant, years

  18–44 674 1.00

  45+ 241 5.59(2.68 – 11.70) <.01

Total body irradiation

  No 870 1.00

  Yes 45 4.02(1.40 – 11.55) <.01
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Table 3c:

Risks of developing t-MN after autotransplant for NHL (n=3540)

Parameter n Hazard Ratio (95% CI) P-value

Age at transplant, years <.01

  18-44 748 1.00

  45-54 938 2.77(1.55 - 4.93) <.01

  55+ 1854 4.52(2.63 - 7.77) <.01

No. of prior lines of chemotherapy <.01

  1 846 1.00

  2 1422 0.98(0.67 - 1.44) 0.91

  3+ 1128 1.93(1.34 - 2.78) <.01

  Missing 144 0.55(0.20 - 1.53) 0.25

Conditioning 0.04

  BEAM or similar 2316 1.00

  TBI based 510 1.69(1.14 - 2.49) 0.008

  CBV or similar 381 0.96(0.59 - 1.54) 0.86

  Bu+Mel/Bu+Cy 197 1.75(1.03 - 2.96) 0.04

  Others 136 1.30(0.60 - 2.82) 0.51

Year of transplant <.01

  1995-1999 1350 1.00

  2000-2004 735 1.36 (0.91 - 2.05) 0.14

  2005-2010 1455 2.12 (1.47 - 3.08) <.01
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Table 3d:

Risks of developing t-MN after autotransplants for plasma cell myeloma (n=4653)

Parameter n Hazard Ratio (95% CI) P-value

Age at transplant, years

  18-54 1661 1.00

  55+ 2902 2.47(1.55 - 3.93) <.01

Prior Lines of chemotherapy 0.08

  1 2472 1.00

  2 1252 1.21(0.78 - 1.88) 0.39

  3+ 655 1.77(1.06 - 2.96) 0.03

  Missing 184 0.28(0.04 - 2.06) 0.21

Sex

  Female 1859 1.00

  Male 2704 2.27(1.45-3.53) <.01
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