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Abstract

The Short Sensory Profile (SSP) is one of the most commonly used measures of sensory features 

in children with autism spectrum disorder (ASD), but psychometric studies in this population are 

limited. Using confirmatory factor analysis, we evaluated the structural validity of the SSP 

subscales in ASD children. Confirmatory factor models exhibited poor fit, and a follow-up 

exploratory factor analysis suggested a 9-factor structure that only replicated three of the seven 

original subscales. Secondary analyses suggest that while reliable, the SSP total score is 

substantially biased by individual differences on dimensions other than the general factor. Overall, 

our findings discourage the use of the SSP total score and most subscale scores in children with 

ASD. Implications for future research are discussed.
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Introduction

Atypical responses to sensory stimuli have long been observed in individuals with autism 

spectrum disorder (ASD) and are now considered a defining feature of the condition 

(American Psychiatric Association, 2013). Numerous studies have demonstrated ASD-

control differences in sensory processing across modalities and assessment instruments 

(Baum, Stevenson, & Wallace, 2015; Ben-Sasson et al., 2009; Boudjarane, Grandgeorge, 

Marianowski, Misery, & Lemonnier 2017; Hazen, Stornelli, O’Rourke, Koesterer, & 

McDougle, 2014; Marco, Hinkley, Hill, & Nagarajan, 2011; Mikkelsen, Wodka, Mostofsky, 

& Puts, 2018; Moore 2015; Robertson & Baron-Cohen, 2017; Schauder & Bennetto, 2016). 

However, findings across studies are extremely heterogeneous, frequently contradictory, and 

do not converge on a specific pattern of sensory features as a hallmark of ASD (Schaaf & 

Lane, 2015).

In light of the clinical heterogeneity of sensory features and of ASD itself, some researchers 

have advocated for taking an “individual differences” approach, whereby within-group 

variation is emphasized, and specific patterns of sensory processing are used to stratify ASD 

into clinically meaningful subgroups (Uljarević et al., 2017). This perspective has become 

increasingly popular in recent years, with a proliferation of studies that utilize cluster 

analysis or Gaussian mixture models to define subgroups of individuals with ASD based on 

reported sensory symptoms (Ausderau et al., 2014a, 2016; Ben-Sasson et al., 2008; Elwin, 

Schröder, Ek, Wallsten, & Kjellin 2017; Hand, Dennis, & Lane, 2017; Lane Young, Baker, 

& Angley, 2010; Lane, Dennis, & Geraghty, 2011; Lane, Molloy, & Bishop, 2014b; Liss, 

Saulnier, Fein, & Kinsbourne, 2006; Uljarević, Lane, Kelly, & Leekam, 2016). 

Unfortunately, these investigations have produced disparate classification schemes that seem 

to be largely dependent on the questionnaire used to assess sensory symptoms (for a review, 

see DeBoth & Reynolds, 2017). Although the fractionation of ASD into sensory subtypes is 

a laudable goal, it is hampered by the large number of instruments created to measure 

sensory features and the relative dearth of empirical studies supporting the reliability and 

validity of these instruments in the ASD population (Burns, Dixon, Novack, & Granpeesheh, 

2017). Thus, the current study aims to supplement the existing literature by evaluating the 

structure and psychometric properties of a commonly-used sensory measure, the Short 

Sensory Profile (SSP; McIntosh, Miller, Shyu, & Dunn, 1999) in a large sample of children 

with ASD.

The Short Sensory Profile: Development and Prior Studies

The SSP is a shortened form of Dunn’s Sensory Profile caregiver questionnaire (SP; Dunn, 

1999) originally developed as a screening tool to identify children with sensory processing 

difficulties (McIntosh et al., 1999). The SSP contains 38 items organized into seven 

subscales. The SSP total score and the score on each subscale can be used to classify 

children’s level of sensory abnormality (Typical, Probably Difference, or Definite 

Difference) based on score percentiles from a large normative sample of children without 

disabilities.

The 38-item SSP was derived from psychometric analyses of SP questionnaires completed 

by the caregivers of 117 children aged 3–17 years: 21 with clinically diagnosed Sensory 
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Modulation Disorder (SMD), 24 with Fragile X Syndrome, 35 with other developmental 

disabilities, including but not limited to ASD, and 37 with typical development (TD). From 

the 125-item SP, 27 items with content outside of the domain of sensory modulation were 

eliminated. Sixty additional items were removed based on: (a) lack of differentiation 

between SMD and TD groups, (b) low item-total correlations with conceptually similar 

sections of the long-form SP, (c) poor item loadings in a Principal Component Analysis 

(PCA) using the normative TD sample from the long-form SP validation, and (d) increases 

in Cronbach’s (1951) alpha upon removal of the item. The final 38 items were again 

subjected to PCA in the large normative sample, the results of which were reported by 

McIntosh and colleagues (1999).

Based on the above methodology, the authors of the SSP concluded that the questionnaire 

was made up of seven subscales (McIntosh et al., 1999): Tactile Sensitivity (TAC; 7 items), 

Taste/Smell Sensitivity (TSM; 4 items), Movement Sensitivity (MOV; 3 items), 

Underresponsive/Seeks Sensation (USS; 7 items), Auditory Filtering (AFL; 6 items), Low 

Energy/Weak (LEW; 6 items), and Visual/Auditory Sensitivity (VAS; 5 items). Reliability of 

each subscale was assessed by calculating Cronbach’s alpha for the 117-child sample (α = 

0.82– 0.89). Correlations between the unit-weighted subscale scores in the sample were 

large on average (mean reported r = 0.53, range 0.25–0.72; Cohen, 1992). Neither alpha 

values nor subscale correlations were reported for the larger normative TD sample. Lastly, 

construct validity was assessed in a small study evaluating skin conductance responses to 

sensory stimuli in children with SMD (n = 19) and TD children (n = 19). Results showed 

that children with abnormal skin conductance responses scored lower on the SSP than those 

with typical skin conductance (McIntosh et al., 1999).

Beyond the initial construction of the SSP, two other studies have investigated the factor 

structure of the SSP in non-ASD populations (Engel-Yeger, 2010; Ee, Loh, Chinna, & 

Marret, 2016). Engel-Yeger (2010) administered a Hebrew translation of the SSP to the 

parents of 395 TD Israeli children aged 3–10 years, reporting an 8-component solution with 

item 1 of the measure occupying its own factor and four of the AFL items loading on the 

USS factor. In the only confirmatory factor analysis of the SSP, Ee et al. (2016) fit a 7 

correlated-factor SSP model to data from a Malay translation of the measure using a sample 

of 419 TD children. Initial model fit indices were subpar (CFI = 0.87, TLI = 0.86, RMSEA 

= 0.06), and the post-hoc correlation of error terms was required before the authors 

determined the model to fit adequately (CFI = 0.92, TLI = 0.91, RMSEA = 0.05). Neither 

translation study was able to validate the original factor structure of the SSP, suggesting the 

possibility that the original SSP factor structure was misspecified.

Use of the SSP in Children with ASD

Despite the limited empirical support for the factor structure of the SSP, the questionnaire 

has become one of the most commonly used instruments to measure parent-reported sensory 

features in children with ASD. In a review of 93 studies assessing sensory processing in 

ASD, Burns and colleagues (2017) noted that the SSP was the second most utilized measure 

(28.0% of studies) after the full-length SP. Moreover, all SP measures (including the SP, 

SSP, as well as infant/toddler and adolescent/adult adaptations) together were employed in 
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the vast majority (79.6%) of published studies (Burns et al., 2017). The SSP has served as 

the sensory phenotyping measure of choice in large-scale ASD projects such as the Autism 

Speaks Autism Treatment Network (Lajonchere, Jones, Coury, & Perrin, 2012) and the EU-

AIMS Longitudinal European Autism Project (Charman et al., 2017), likely due to its 

reduced participant burden relative to lengthier surveys and its widespread use in the ASD 

literature. Given the wide-scale adoption of the measure, SSP total scores are also 

commonly utilized in convergent validity testing of newer sensory measures (Neil, Green, & 

Pellicano, 2017; Siper, Kolevzon, Wang, Buxbaum, & Tavassoli, 2017; Tavassoli et al., 

2016). Previous investigations have used item-and subscale-level SSP data to compare the 

sensory processing of children with ASD to both TD peers (e.g. Tomchek & Dunn, 2007) 

and children with other intellectual and developmental disabilities (O’Brien, Tsermentseli, & 

Cummins, 2009; Green, Chandler, Charman, Simonoff, & Baird, 2016a; Rogers, Hepburn, 

& Wehner, 2003). In addition, profiles of SSP subscale scores from children with ASD have 

been used in a number of studies to define phenotypic subgroups of children with ASD 

(Hand et al., 2017; Lane et al., 2010, 2011, 2014b; Tomchek, Little, Myers, & Dunn, 2018; 

Uljarević et al., 2016). Most frequently, the SSP total score is used as a dimensional measure 

of overall sensory atypicality in ASD (or in some cases, specifically as an index of sensory 

hyperresponsiveness), serving to explain individual differences in other phenotypic, 

neuroimaging, or physiological measures (Chen, Rodgers, & McConachie, 2009; Corbett, 

Muscatello, & Blain, 2016; Glod, Riby, Honey, & Rodgers, 2015; Hegarty et al., 2018; 

Johnson et al., 2014; Mazurek et al., 2013, 2014; Mazurek & Petroski, 2015; McCormick et 

al., 2014; Neil, Olsson, & Pellicano, 2016; Orekhova et al., 2012; Samson et al., 2014; 

Wigham, Rodgers, South, McConachie, & Freeston, 2015).

To date, only one factor analytic study of the SSP has been conducted in a sample of 

children with ASD (Tomchek, Huebner, & Dunn, 2014). Using data from 400 ASD children 

3 to 6 years of age, the investigators conducted a PCA with varimax rotation on the 38 items 

of the SSP. Amidst ambiguous evidence suggesting the extraction of between 6 and 11 

components, the 6-component structure was chosen due to its interpretability and the fact 

that the other solutions contained factors with only one or two salient loadings. The loading 

matrix from the ASD sample only partially resembled the structure in TD children 

(McIntosh et al., 1999), with only the LEW and TSM factors containing the same items. The 

other four reported factors were interpreted as: (a) tactile and movement sensitivity (TMV), 

containing all items from the TAC and MOV subscales, (b) auditory and visual sensitivity 

(AVS), containing the original VAS items plus three AFL items representing a reduced 

ability to concentrate in ambient noise, (c) sensory seeking/distractibility (SSD), containing 

items from the USS and AFL scales that largely tapped the constructs of inattention and 

hyperactivity, and (d) hypo-responsivity (HYP), containing two AFL items about the child 

seemingly ignoring speech, as well as the two USS items “Doesn’t seem to notice when face 

or hands are messy” and “Leaves clothing twisted on body” (Tomchek et al., 2014). Based 

on the above findings, the authors acknowledged the divergence of this factor structure from 

that proposed by McIntosh et al. (1999), speculating that the latent factors underlying SSP 

responses may be qualitatively different in ASD children. While preliminary and limited to 

preschool children, these findings call into question the validity of the original SSP factor 

structure in children with ASD. In the case that the SSP truly does measure different 
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constructs in ASD and TD children, ASD-TD group differences in SSP total and subscale 

scores may not actually reflect differences in the underlying latent constructs. Given the 

potential implications of the study by Tomchek et al., confirmatory analyses in an 

independent sample of ASD children across the SSP age range are required to specifically 

test the fit of the original 7-factor SSP model in children with ASD.

Present Investigation

The primary aim of the current study was to assess the fit of the 7-factor SSP model in a 

sample of children with ASD using confirmatory factor analysis (CFA). The fit of this model 

was also compared to that of the factor model proposed by Tomchek et al. (2014). 

Acceptable CFA model fit is necessary for valid inferences to be made from the SSP 

subscale scores in this population. In particular, the models used by Lane (2010, 2011, 

2014b) and others to derive SSP-based sensory subtypes utilized subscale scores as their 

inputs and thus relied on the assumption that these scores are valid in the ASD population. 

Furthermore, valid comparisons of SSP scores between children with ASD and other groups 

requires the establishment of measurement invariance, an assumption of which is that the 

items on the questionnaire tap the same latent constructs in both groups (i.e., “configural 

invariance”; Gregorich, 2006; Vandenberg & Lance, 2000). Although this study was not 

designed to test for measurement invariance between ASD and TD children on the SSP, an 

ill-fitting 7-factor model reduces the interpretability of differences in subscale scores 

between ASD children and TD children, as they could reflect something other than true 

differences in the latent constructs that those subscales purportedly measure.

Methods

Participants

This investigation was a secondary analysis of questionnaire data completed by the 

caregivers of 388 children with ASD, pooled from two independent datasets (Table 1). The 

first dataset consisted of children who participated in a number of behavioral and 

neuroimaging studies at Vanderbilt University Medical Center between the years 2007 and 

2017. All data collection procedures were approved by the university institutional review 

board. ASD diagnoses were confirmed using gold-standard measures, including the Autism 

Diagnostic Observation Schedule (ADOS; Lord et al., 2000, original algorithm) and the 

Autism Diagnostic Interview-Revised (ADI-R; Lord, Rutter, & Le Couteur, 1994). As a part 

of the assessment battery, the caregivers of these children filled out the long-form SP, from 

which the SSP items were extracted. Children were included in this study if: (a) they met 

ASD criteria per the study protocol, (b) they were between 2 and 12 years old at the time of 

assessment, and (c) they had complete data for all 38 SSP items on their SP caregiver 

questionnaires. In total, 127 children met these criteria and were included (106 males, mean 

age 8.55 years). The second dataset consisted of questionnaire data from the National 

Database for Autism Research (NDAR; Hall Huerta, McAuliffe, & Farber, 2012). Children 

were included in the investigation if: (a) they were classified as having an “Autism 

Spectrum” phenotype, according to NDAR convention, (b) they were between 2 and 12 

years old at the time of assessment, and (c) complete item-level data was available for the 
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SSP or corresponding long-form SP items. In total, 261 children met these criteria and were 

included in the study (204 male, mean age 6.74 years).

The combined sample was 80.0% male and had a mean age of 7.34 years (range 2.16– 12.83 

years). Though the SSP was originally designed to be used for children 3–10 years of age 

(Dunn, 1999), this age range was chosen to match that used in one of the most recent 

investigations of SSP-based ASD subtypes (Hand et al., 2017) and a CFA study of a 

comparable sensory questionnaire for children with ASD (Ausderau et al., 2014b). 

Moreover, the vast majority of children in our sample (86%) fell within the recommended 

age range for the SSP, and only 3% of the sample was younger than three years of age. To 

best represent the entire population of children with ASD seen in research settings, no 

children were excluded on the basis of IQ, functional status, or known genetic condition. 

Verbal and nonverbal IQ data were available for a subset of the children from each dataset 

and are presented in Table 1 categorized in the NDAR convention of Low (<85) Average 

(85–100) or Above Average (>100).

Measures

The SSP (McIntosh et al., 1999) is a 38-item caregiver questionnaire derived from the long-

form SP (Dunn, 1999). The SSP contains 38 items (Table 2) representing observable child 

behaviors that are scored on a 1–5 rating scale based on their frequency (1 being “Always” 

and 5 being “Never”). Notably, lower scores indicate higher frequency of the endorsed 

behaviors. The SSP total score and the score on each of the instrument’s seven subscales can 

be used to classify children into the categories of “Typical Performance,” “Probable 

Difference,” or “Definite Difference” based on scores from a large normative sample.

Reliabilities of the SSP subscales, as estimated by Cronbach’s (1951) coefficient alpha, have 

been reported to range from α = 0.82–0.89 in the sample of 117 children used to develop the 

questionnaire. Preliminary evidence of the SSP’s validity comes from a small study wherein 

children with aberrant electrodermal responses to sensory stimuli were found to have more 

atypical scores on the SSP than children with typical responses (McIntosh et al., 1999). 

However, a later study using the same psychophysiological protocol in a combined group of 

ASD, TD, and SMD children failed to find a relationship between the SSP and physiological 

measures (Schoen et al., 2009). Likewise, in a study of toddlers with ASD, no relationship 

was found between SSP scores and skin conductance magnitudes (McCormick et al., 2014). 

Though studies thus far question the relation between SSP scores and physiologic measures 

of sensory responsiveness in ASD children, these investigations are limited in their ability to 

detect weaker linear or nonlinear relationships that may still exist between parent-reported 

sensory symptoms and psychophysiological indicators.

Statistical Analysis

Descriptive statistics.—Item-level descriptive statistics were calculated, including item 

means and standard deviations, percent item endorsement (defined as a score of 1 “Always” 

or 2 “Frequently”), and (corrected) item-total correlations. Subscale-level descriptive 

statistics were also calculated, including coefficient alpha, the more appropriate reliability 

coefficient omega total (ωt; McDonald, 1999; McNeish, 2017) with bias-corrected 
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accelerated bootstrap confidence intervals (Kelley & Pornprasertmanit, 2016), internal 

consistency (as assessed by average inter-item correlation; Davenport et al., 2015), and the 

range of inter-item correlations within each subscale. Clark & Watson (1995) suggest that 

for an optimal balance of internal consistency and construct validity, the average inter-item 

correlation, as well as virtually all inter-item correlations within a scale, should lie in the 

range of 0.15–0.50. SSP subscales with mean inter-item correlations greater than 0.5 were 

examined further for redundant item content (Boyle, 1991).

Confirmatory factor analysis.—To address the primary aim of the study, the previously 

proposed 7-factor (McIntosh et al., 1999) and 6-factor (Tomchek et al., 2014) structures of 

the SSP were tested using CFA models. In these confirmatory models, latent variables (i.e., 

common factors) are postulated to be responsible for the covariance between manifest 

variables (i.e., SSP item scores), and each item’s variance is decomposed into common 

variance (variance shared with other items, presumably caused by underlying latent 

variables) and error variance (see Babyak & Green, 2010 for an accessible introduction to 

CFA methodology). The 7- and 6-factor models were constructed such that each item loaded 

onto only one common factor, corresponding to its subscale assignment in Table 2. Latent 

variables in these CFA models were allowed to correlate with one another. Correlated error 

terms were not allowed in the models, as no such relationships were hypothesized a priori 

(see also Hermida, 2015 for arguments against the practice of correlating error terms more 

generally).

Confirmatory factor models were estimated in R (R core team, 2017) using the lavaan 
package (Rosseel, 2012). Due to the ordered-categorical nature of the manifest variables, we 

utilized a diagonally-weighted least squares (DWLS) estimator with a robust mean and 

variance corrected test statistic (i.e., the “WLSMV” estimator; Asparouhov & Muthén, 

2010; see also Li, 2016). Model fit was evaluated using the chi-square test of exact fit, but 

given the test’s high likelihood of rejecting models that differ trivially from the population 

structure (e.g. Bentler, 1990), several additional fit indices were also calculated, including 

the comparative fit index (CFI; Bentler, 1990), Tucker-Lewis Index (TLI; Tucker & Lewis, 

1973), the root mean square error of approximation (RMSEA; Steiger, 1990), and the 

weighted root mean square residual (WRMR; Yu, 2002). Widely-accepted rules of thumb 

based on the fit index guidelines of Hu and Bentler (1999) suggest that CFI/TLI values of > 

0.95 and RMSEA values of < 0.06 indicate good model fit (though see also Marsh, Hau, & 

Wen, 2004; McNeish, An, & Hancock, 2018; Tomarken & Waller, 2003). The WRMR is a 

less well-studied fit index, but recent simulation work has supported the assertion by Yu 

(2002) that values below 1.0 generally suggest good model fit (DiStefano, Liu, Jiang, & Shi, 

2017). It is worth acknowledging that aside from the WRMR, these fit index guidelines were 

not derived using DWLS estimators, though a small amount of research has suggested 

similar cutoff values are appropriate for ordinal data (Yu, 2002). Moreover, the Hu and 

Bentler cutoff criteria are routinely used to evaluate WLSMV-estimated CFA models in the 

applied literature (e.g. Reeve et al., 2007; Yerys et al., 2017). In addition to the calculation of 

fit indices, the residual correlation matrix of each model was examined to determine areas of 

localized model misfit. Off-diagonal elements of the residual correlation matrix with 
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absolute values greater than 0.2 suggest additional unmodeled factors (Reeve et al., 2007) 

and contribute to the holistic judgment of whether a model is appropriate.

Exploratory factor analysis.—As we ultimately found both the 7-factor and 6-factor 

models unfit for the data, we followed our CFA with an exploratory factor analysis (EFA) to 

better understand the relationships between the SSP items in this sample (Gorsuch, 1997). 

This analysis was conducted in R (R core team, 2017) using the psych package (Revelle, 

2017). Because of the ordinal nature of the data, polychoric correlations were computed and 

used in the EFA (Holgado Tello, Chacón Moscoso, Barbero García, & Vila Abad, 2010). We 

also sought to improve upon the EFA methodology used in previous samples (McIntosh et 

al., 1999; Tomchek et al., 2014) by employing more theoretically-sound and accurate means 

of factor extraction, rotation, and determination of the number of factors (Norris & 

Lecavalier, 2010; Preacher & McCallum, 2003). One methodological improvement is factor 

extraction by principal axis factoring (PAF) rather than PCA, as the latter method assumes 

no measurement error and tends to estimate parameters less accurately than other extraction 

methods under a number of data conditions (see also Boorsboom, 2006; Fabrigar, Wegener, 

MacCallum, & Strahan, 1999; Floyd & Widaman, 1995 for a more extensive discussion of 

PCA as an extraction method).

Previous studies have also used the varimax criterion for factor rotation (Kaiser, 1959), 

which assumes factors to be orthogonal and thus completely uncorrelated. Preacher and 

McCallum (2003) argue that such orthogonality assumptions are difficult to justify, as an 

obliquely rotated solution will resemble an orthogonal one if the optimal simple structure 

solution truly is represented by uncorrelated factors. In fact, it is quite possible that the 

uninterpretable 7- and 8-factor solutions encountered by Tomchek et al. (2014) would have 

been more intelligible had the solution been rotated obliquely. Thus, for our investigation, 

we chose to use the oblique Geomin rotation (Yates, 1987; Browne, 2001) because of its 

minimization of item complexity and favorable performance under conditions of simple 

structure (Sass & Schmitt, 2010).

In order to determine the number of factors to extract, several methods were employed 

including the minimum average partial method (MAP; Velicer, 1976) and Horn’s (1965) 

parallel analysis, both of which are considered among the most accurate methods available 

(Velicer, Eaton, & Fava, 2000). These methods have been modified for application to ordinal 

data and remain effective in recovering the correct factor structure of a polychoric 

correlation matrix (Garrido, Abad, & Ponsoda, 2011, 2013; Yang & Xia, 2015). The 

modified parallel analysis procedure we used compared the eigenvalues of the reduced SSP 

item polychoric correlation matrix (based on PAF) to the median eigenvalues of 200 

similarly-obtained correlation matrices based on simulated data derived from uncorrelated 

variables with equal item thresholds to the SSP data. The number of factors was also 

calculated based on the Empirical Kaiser Criterion (EKC; Braeken & van Assen, 2017), a 

newer eigenvalue-based methodology that has shown promising results when compared to 

parallel analysis. As these methods often disagree on the number of factors to extract, all 

suggested factor solutions were explored, and the optimal solution was chosen based on 

factor interpretability and examination of the residual correlation matrix. These procedures 

were all conducted in R, with the MAP and parallel analysis procedures implemented in the 
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psych package (nfactors and fa.parallel functions; Revelle, 2017) and the EKC procedure 

implemented using a custom script written by the first author.

Calculation of reliability and general factor saturation.—In addition to determining 

the factor structure of the SSP, we also sought to assess the utility of the SSP total score as a 

measure of overall sensory responsiveness. Thus, as a secondary analysis, we used the best-

fitting SSP model to calculate model-based reliability coefficients that also assessed the 

general factor saturation (i.e., the degree to which variance in the SSP total score reflects one 

unified construct, ostensibly “sensory atypicality”). Tomchek and colleagues (2014) reported 

the alpha coefficient of the total score in their ASD sample (α = 0.89), but this estimate of 

scale reliability assumes that the scale in question is unidimensional (Gignac, 2014) and is 

not appropriate to determine the general factor saturation of a multidimensional composite 

score (Brunner, Nagy, & Wilhelm, 2012; Cho, 2016; Gignac, 2014; Revelle & Zinbarg, 

2009; Rodriguez, Reise, & Haviland, 2016a, 2016b; Zinbarg et al., 2005). Thus, in order to 

more accurately assess the general factor saturation of the SSP, we estimated an exploratory 

bifactor model (Reise, 2012) from the best-fitting EFA solution using the Schmid-Leiman 

orthogonalization (Schmid & Leiman, 1957). This procedure transforms the oblique EFA 

solution with m correlated factors into an orthogonal m + 1 factor solution represented by 

one “general factor” common to all items and p orthogonal “group” factors with salient 

loadings on only a subset of the items (Reise, 2012).

From this bifactor model, a number of useful psychometric indices can be calculated 

(Rodriguez et al., 2016a, 2016b), including: (a) coefficient omega total (ωt; Mcdonald, 1999; 

Revelle & Zinbarg, 2009; Zinbarg, Revelle, Yovel, & Li, 2005), a measure of composite 

scale reliability, (b) coefficient omega hierarchical (ωH; Mcdonald, 1999; Revelle & 

Zinbarg, 2009; Zinbarg et al., 2005), an estimate of the proportion of total scores that can be 

attributed to the general factor, and (c) the ratio of general factor variance to group factor 

variance (explained common variance [ECV]; Reise, Scheines, & Widaman, 2013; Sijtsma, 

2009), which determines the degree to which multidimensional data can be considered 

essentially unidimensional. The degree of general factor saturation (i.e., ωH) can be used as 

an index of total score interpretability when compared to bifactor ωt, the proportion of 

variance explained by all general and group factors (Rodriguez et al., 2016a). The difference 

between ωH and ωt reflects the proportion of variance in total scores due to variance in 

latent factors other than the general factor, indicating the level of non-random error (i.e., 

bias) inherent in considering total scale scores as indicators of the latent general factor. Such 

indices are readily calculated in R using the omega routine in the psych package (Revelle, 

2017).

Although guidelines on the values of ωH and ωt necessary for total score interpretability 

have not been firmly established, Rodriguez and colleagues (2016a) calculated these indices 

for a number of published studies and reported a mean ωt of 0.94 and a mean ωH of 0.80 

(mean difference = 0.14), which they deemed satisfactory to interpret total scale scores as 

unbiased indicators of general factors. However, some specific cases from their investigation 

(ωt = 0.90 and ωH = 0.52; ωt = 0.89 and ωH = 0.58; ωt = 0.88, ωH = 0.57) were highlighted 

as examples of total scale scores that were significantly biased by the presence of 
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multidimensionality. Using these examples to guide our interpretations, we sought to use the 

omega coefficients from our bifactor model to assess the bias inherent in SSP total scores.

Results

Descriptive Statistics

SSP item endorsement frequencies and are presented in Table 2. The percentage of the 

sample endorsing an item as “Always” or “Frequently” occurring varied widely, with 

endorsement values ranging from 7% (“Dislikes activities where head is upside-down”) to 

65% (“Doesn’t respond when name is called but you know the child’s hearing is OK”). Of 

the 38 items, all but four were endorsed in excess of 10%. Corrected item-total and item-

subscale correlations were deemed satisfactory for most items based on the common rule-of-

thumb of r > 0.4 (Ware & Gandek, 1998). However, the item-total correlations of several 

items, primarily those in the USS scale, suggest that they may be only weakly related to the 

general factor underlying the SSP total score.

Based on the SSP total score, 244 (62.9%) of the children were classified as having a 

“Definite Difference,” and an additional 72 (18.6%) were characterized as having a 

“Probable Difference” in overall sensory processing. Classifications based on subscale 

scores were more variable, with the percentage of the sample labeled as having a “Definite 

Difference” ranging from 16.0% (MOV) to 63.4% (USS). Although the percentage of 

children with elevated SSP scores was large in this sample, it was lower than that reported in 

a large sample of younger children with ASD (83.6% definite, 11.4% probable; Tomchek & 

Dunn, 2007). However, the rate of “Definite Difference” classification was similar to that 

reported in a sample of 9–14-year-old children with ASD (Green et al., 2016).

Subscale alpha and omega total values (Table 3) were all satisfactory (> 0.7) based on 

commonly-cited recommendations for internal consistency reliability (Nunnally & 

Bernstein, 1994). Average inter-item correlations for most scales conformed to the 

guidelines of Clark & Watson (1995), though the large mean inter-item correlations of TSM 

( = 0.77) and LEW ( = 0.67) indicated that these subscales may be composed of 

exceptionally homogenous items. It is worth clarifying that these scale-level reliability and 

internal consistency coefficients assume that the original dimensionality of the SSP is 

correct and are therefore not interpretable if an alternate factor model is deemed more 

appropriate for the data (Cortina, 1993; Crutzen & Peters, 2017; Davenport, Davison, & 

Liou, 2015). Moreover, the single-factor CFA models utilized to derive the values of omega 

total did not display goodness of fit for most subscales (Supplementary Table S1), thereby 

violating the unidimensionality assumptions of both alpha and omega coefficients (McNeish, 

2017). The Pearson correlations between unit-weighted subscale scores in our sample were 

smaller than those reported by McIntosh and colleagues (mean r = 0.32), with a range of r = 

0.14–0.50.

Confirmatory Factor Analysis

Model fit for both the 7-factor and 6-factor SSP models was inadequate based on 

conventional fit criteria (Table 4). For both models, the chi-square test was highly significant 
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(p 0.001), rejecting the null hypothesis of exact model fit. All other fit indices failed to reach 

the a priori cutoff values (i.e., CFI/TLI > 0.95, RMSEA < 0.06, WRMR < 1.0), further 

suggesting that neither factor model adequately fit the data in our sample. Fit indices were 

approximately equal between the 7-factor and 6-factor models, and given the poor fit of 

both, no further testing was done to evaluate the superiority of one factor model over the 

other. Furthermore, examination of residual correlation matrices revealed 19 and 18 residual 

correlations with absolute values greater than 0.2 in the 7- and 6-factor models, respectively, 

indicating many inter-item correlations that were not adequately explained by the proposed 

factor models. The pattern of residuals indicated numerous areas of local misfit in both 

models, with items 23, 26, 36, and 38 fitting particularly poorly into their assigned subscales 

across factor models (Supplementary Tables S3–S4). Model fit indices were similarly poor 

when the Vanderbilt and NDAR datasets were analyzed separately, and they did not change 

appreciably when the analyses were restricted to children in the 3–10 age range 

recommended by the SSP authors (Supplementary Table S2). Thus, all subsequent analyses 

focused exclusively on the combined dataset.

Exploratory Factor Analysis

Because the confirmatory factor models evidenced poor fit, we followed up by fitting 

exploratory factor models to the item-level SSP data. Parallel analysis with PAF estimation, 

the Velicer MAP, and the EKC were all used to estimate the number of factors to extract, 

arriving at slightly different conclusions. Parallel analysis indicated an 8-factor solution (first 

9 eigenvalues of the reduced polychoric correlation matrix: 9.52, 3.37, 2.09, 1.45, 1.07, 0.78, 

0.64, 0.48, 0.29; first 9 simulated median eigenvalues: 0.70, 0.59, 0.53, 0.48, 0.43, 0.39, 

0.35, 0.32, 0.28), as did the Velicer MAP (average partial correlation = 0.02 at 8 factors). 

The EKC, however, indicated that a 9-factor solution was most appropriate (first 10 

eigenvalues of the polychoric correlation matrix: 10.38, 4.11, 2.94, 2.18, 1.81, 1.56, 1.41, 

1.32, 1.07, 0.98; first 10 EKC eigenvalues: 1.72, 1.29, 1.13, 1.01, 1.00, 1.00, 1.00, 1.00, 

1.00, 1.00). Thus, both 8- and 9-factor EFA models were estimated and compared based on 

the residual correlation matrices and the interpretability of the rotated solutions.

The 8-factor model explained 60% of the total variance in SSP item scores (Supplementary 

Table S5). Item communalities were generally high (mean h2 = 0.60, range = 0.25–0.88), but 

eight of the items (1, 2, 3, 15, 18, 19, 21, 37) were found to have low communalities (h2 < 

0.4), indicating either poor relation to the other items or the necessity for additional factors 

(Costello & Osborne, 2005). Factor determinacy (FD) statistics for all factors (range 0.91–

0.98) were adequate to allow the interpretation of factor scores (ρ > 0.90; Grice, 2001; 

Rodriguez et al., 2016a, 2016b). Based on item loadings greater than 0.4, the eight rotated 

factors were interpreted (in order of variance explained) as: (1) Low energy/weakness, (2) 

Taste/smell sensitivity, (3) Hyperactivity/inattention, (4) Auditory sensitivity (encompassing 

both distraction by ambient noise and distress at loud noises), (5) Tactile sensitivity, (6) 

Movement Sensitivity, (7) Visual sensitivity, with significant cross-loadings from auditory 

items 34 and 35, (8) Hyporesponsiveness to speech, containing only items 23 and 26. Factor 

scores were modestly intercorrelated (mean r = 0.22, range −0.002–0.42). Of these factors, 

only Low energy/weak, Taste/smell sensitivity, and Movement sensitivity contained identical 

items to their original subscales. Though we chose to retain the name of the Taste/smell 
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sensitivity factor, our examination of the item content leads us to believe that the items more 

accurately represent food selectivity. Indeed, all four items mention food or eating, and two 

of the items specifically query about the child’s refusal of food due to non-chemosensory 

qualities (i.e., texture and temperature). Notably, seven of the 38 items (1, 2, 5, 15, 19, 21, 

37) failed to load onto any factor with a magnitude greater than 0.4, and one item (5: 

“Withdraws from splashing water”) had no loadings greater than 0.30. Examination of the 

residual correlation matrix revealed a single value greater than 0.2 (items 34 and 35, rresid = 

0.23), indicating that the two items loading onto both the auditory and visual sensitivity 

factors were poorly modeled by this solution.

The 9-factor model was structurally very similar to the 8-factor model, with the principal 

difference being that items 34 (“Responds negatively to unexpected or loud noises”) and 35 

(“Holds hands over ears to protect ears from sound”) loaded onto their own factor rather 

than cross-loading on the Auditory sensitivity and Visual sensitivity factors (Table 5). The 

nine factors explained 62% of the variance in SSP item scores, and item communalities were 

approximately the same (mean h2 = 0.62, range = 0.29–0.91). The communalities of items 1, 

2, 3, 15, 18, 19, 21, and 37 did not improve with the extraction of an additional factor, 

indicating those items are poorly related to the rest of the scale. Likewise, all seven items 

with primary loadings < 0.4 remained as such in the 9-factor model. FD statistics, including 

that of the ninth factor (ρ = 0.91) remained sufficient for interpretation (range: 0.91–0.98). 

The factors were thus interpreted as: (1) Low energy/weakness, (2) Taste/smell sensitivity, 

(3) Hyperactivity/inattention, (4) Tactile sensitivity, (5) Movement sensitivity, (6) Auditory 

distractibility, (7) Hyporesponsiveness to speech, (8) Visual sensitivity, and (9) Noise 

distress.

Notably, item 27 (“Has difficulty paying attention”), exhibited a cross-loading of λ = 0.35 

on the “Auditory distractibility” factor. In the residual correlation matrix, all off-diagonal 

values had an absolute value of less than 0.2. Because of the favorable residual values and 

interpretable factor structure, the 9-factor solution was chosen as the best representation of 

the latent constructs underlying SSP item responses in this sample.

An exploratory bifactor model was then estimated by subjecting the Geomin-rotated 9-factor 

model to a Schmid-Leiman orthogonalization (Supplementary Table S6). As this model is 

simply a transformation of the correlated-factors model, item communalities and total 

percentage of variance explained remained unchanged. Loadings onto the general factor 

were moderate on average (mean λ = 0.43, range = 0.19–0.58), though five items exhibited 

general factor loadings smaller than 0.3. Notably, the FD statistic for the general factor (ρ = 

0.86) was below the recommended value for interpretation of the corresponding factor score. 

Though this finding does provide some evidence against the interpretation of unit-weighted 

SSP total scores, no specific level of FD is required for the valid interpretation of model-

based statistics such as ωH, ωt, and ECV. Omega coefficients indicated high composite score 

reliability (ωt = 0.96) with significantly lower general factor saturation (ωH = 0.68). 

Furthermore, the large difference between omega coefficients (ωt - ωH = 0.28) was similar 

to the values presented by Rodriguez and colleagues (2016a) as indicative of a total score 

biased by multidimensionality. The ECV was calculated to be 0.31, indicating that the 

questionnaire would be poorly approximated with a unidimensional model, as over two 
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thirds of common variance is due to factors other than the general factor. To confirm that the 

omega statistics and ECV were not biased by the somewhat arbitrary choice of the 9-factor 

structure over the 8-factor structure, we calculated them again using a Schmid-Leiman 

transformation of the 8-factor solution and obtained very similar results (ωH = 0.67, ωt = 

0.96, ECV = 0.33).

Discussion

The present investigation represents a critical step forward in improving the measurement of 

sensory features associated with ASD. The SSP is one of the most widely used sensory 

phenotyping measures in autism research, and the scores derived from the questionnaire 

have been extensively used to explore the clinical and psychobiological correlates of sensory 

features (e.g., Glod et al., 2015), as well as the very nature of sensory abnormalities in ASD 

(Lane et al., 2010, 2011, 2014b; Tomchek & Dunn, 2007; Tomcheck et al., 2014; Uljarević 

et al., 2016). Despite the frequent use of the measure in children with ASD, no study to date 

has employed CFA to validate the factor structure of the SSP in this population. Employing 

a wide variety of psychometric methods, we sought to fill this gap in the literature by: (a) 

providing item- and subscale-level descriptive statistics specific to this population, (b) 

testing the factorial validity of prior PCA-derived SSP factor models (7 original subscales: 

McIntosh et al., 1999; 6-factor alternative model from ASD sample: Tomchek et al., 2014), 

(c) deriving a more accurate factor model for the SSP items, and (d) determining the validity 

and utility of the SSP total score as an overall measure of sensory processing abnormality in 

ASD. Overall, we found the SSP item data from our sample to be a poor fit to either of the 

previously proposed factor models, and our results greatly caution the interpretation of SSP 

subscale and total scores in children with ASD. These findings are also able to inform the 

broader autism research community of several important issues in psychological 

measurement, providing insight into the ways that newer measures of clinical phenomena 

may be evaluated and improved.

Using robust estimation techniques appropriate for ordinal data, we conducted a 

confirmatory factor analysis of the SSP item data in a large sample of children with ASD. 

According to standard fit indices, both the original 7-factor model and the 6-factor model of 

Tomchek and colleagues (2014) failed to adequately explain the data in this sample. This 

misfit was confirmed by examination of the residual correlation matrices, which revealed a 

number of unacceptably large residuals (|r| > 0.2) in both models. Follow-up exploratory 

factor models suggested that the internal structure of the SSP is best represented by nine 

correlated factors in this population, only three of which (TSM, MOV, LEW) correspond to 

original subscales of the SSP. These findings indicate that for all but the aforementioned 

three subscales, unit-weighted scores from the SSP do not measure the same latent 

constructs as in TD children and are thus unfit for group-level comparison or individual-

score interpretation in children with ASD. Furthermore, the lack of structural validity for 

most SSP subscales complicates the interpretation of proposed sensory subtypes that have 

been created on the basis of these subscale scores (e.g. Lane et al., 2010, 2011, 2014b; Hand 

et al., 2017; Tomchek et al., 2018). Of particular interest, the two subscales thought to 

explain the majority of variance in sensory subtype groupings (TSM and LEW; Hand et al., 

2017; Lane et al., 2014b) were both extremely homogeneous in content and well-replicated 
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across factor-analytic studies (Engel-Yeger, 2010; McIntosh et al., 1999; Tomchek et al., 

2014). It is thus possible that the dominant role played by these two scales in sensory 

subtype classification is more a statistical artifact than a true phenomenon. Were the sensory 

measure used for subtyping to contain more reliable scales assessing hyperresponsiveness in 

the visual and auditory domains, a very different set of subtypes may have emerged. Further 

research is certainly required to determine whether proposed sensory subtypes are robust to 

methodological factors and replicable across measurement tools.

As a secondary aim of our investigation, we employed a bifactor model to calculate several 

newly-established psychometric indices assessing the unidimensionality, composite 

reliability, and general factor saturation of the SSP. The ECV indicated that the SSP factor 

structure was not well approximated by a single general factor and that non-general group 

factors accounted for the majority of common variance. The composite reliability of the SSP 

total as estimated by ωt was 0.96, indicating that 96% of the variance in unit-weighted total 

scores can be explained by the general and group factors of the model. However, the value of 

coefficient ωH was 0.68, indicating that only 68% of unit-weighted total score variance 

could be accounted for by the general factor, with the remaining 28% of true-score variance 

due to the group factors.

It is clear from the omega coefficients that the SSP total score is reliable and does measure a 

general sensory factor to some degree in children with ASD, but several findings complicate 

the use of the SSP total as a measure of this general factor. Most troublingly, nearly a third 

of common variance is accounted for by the group factors (i.e., factors other than the general 

factor), causing the total score to be substantially biased by the multidimensionality of its 

constituent parts. As an example, a hypothetical test could exhibit a Pearson correlation of 

0.5 with the SSP total and still share no variance with the SSP general factor. Moreover, 

when fitting the bifactor model, a large number of SSP items, particularly those from the 

TSM and USS scales, loaded poorly onto the modeled general factor. Not only did these 

loadings result in a poor FD statistic for the general factor, they also cause us to question the 

degree to which several of the SSP factors (namely food selectivity, hyperactivity/

inattention, and hyporesponsiveness to speech) are truly related to the broader construct of 

atypical sensory reactivity in ASD. Due to the way that the SSP was constructed, the items 

represent a heterogeneous combination of sub-constructs (Miller, Anzalone, Lane, Cermak, 

& Osten, 2007; Schaaf & Lane, 2015) that are unequally distributed across both sensory 

modalities and subtypes of sensory processing dysfunction (e.g. the SSP taps constructs of 

visual hyperresponsiveness, auditory hyperresponsiveness, and auditory hyporesponsiveness, 

but not visual hyporesponsiveness). The SSP is thus likely too limited in content to 

comprehensively assess multiple sensory response patterns across modalities, while also 

being too broad in scope to reflect a single facet of sensory processing such as 

hyperresponsiveness, as has been noted by several authors before us (Ausderau et al., 2014b; 

Green et al., 2016; Schoen Miller, & Green, 2008). Given the atheoretical nature of the 

general construct produced by summing the SSP items and the large amount of bias in total 

score variance due to the measure’s multidimensionality, we recommend against the use of 

the SSP total score as a dimensional measure of sensory processing in ASD.
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Despite lacking factorial validity in this sample, the SSP subscales displayed reliability and 

internal consistency values that exceeded conventional cutoffs. This finding exemplifies the 

inadequacy of coefficient alpha or internal consistency metrics to correctly define the 

dimensionality of a measure in the absence of factor-analytic studies (Crutzen & Peters, 

2017). Because this study failed to support the validity of the SSP factor structure, these 

coefficients are interpretable for only those factors that were preserved in the best-fitting 

EFA model (i.e., TSM, MOV, and LEW). Of these three subscales, the TSM and LEW 

subscales have been reproduced in all factor-analytic studies of the SSP (Engel-Yeger, 2010; 

McIntosh et al., 1999; Tomchek et al., 2014; see also Hand et al., 2017), leading us to 

conclude that these two subscales likely do measure the same latent constructs in ASD and 

TD samples (though strict measurement invariance has not yet been established). Given the 

large mean inter-item correlations of these two subscales (TSM: = 0.77, LEW: = 0.67) they 

likely represent overly narrow constructs that sacrifice construct validity by not fully 

encompassing the domain of interest (Boyle, 1991; Clark & Watson, 1995). For instance, 

despite the LEW scale ostensibly measuring the construct termed “Sensory-Based Motor 

Disorder” in the taxonomy by Miller et al. (2007), scores on the LEW subscale were 

unrelated to both gross and fine motor skills in a large sample of preschool children with 

ASD (Tomchek et al., 2015). Thus, in the absence of convergent validity, it becomes unclear 

whether the score of a scale made of highly-redundant items is at all an accurate 

representation of the construct of interest.

Although the high mean inter-item correlation of the TSM calls into question the scale’s 

adequacy at measuring the broad construct of chemosensory hyperresponsiveness, our 

examination of the item content leads us to believe that the scale actually measures the much 

narrower construct of food selectivity. Food selectivity is prevalent in children with ASD and 

may be influenced by sensory sensitivity, but such behaviors are complex in nature and 

likely also influenced by a host of other non-sensory factors (Cermak, Curtin, & Bandini, 

2010, 2014; Kuschner et al., 2015; Lusier et al., 2015; see also Stafford, Tsang, López, 

Severini, & Iacomini, 2017). Due to its limited scope and overly homogenous item content, 

the TSM scale of the SSP is likely to be a poor measure of chemosensory 

hyperresponsiveness in general. Nevertheless, we believe that this 4-item subscale holds 

promise as a brief dimensional measure of food selectivity in children with ASD. The 

validity of the TSM score for this indication is supported by large correlations between TSM 

scores and other measures of food selectivity across samples of children with ASD (Chistol 

et al., 2018; Lane, Geraghty, & Young, 2014a; Nadon, Feldman, Dunn, & Gisel, 2011; 

Smith, 2016), other developmental disabilities (Engel-Yeger, Hardal-Nasser, & Gal, 2016), 

and TD (Coulthard & Blissett, 2009; Nederkoorn, Jansen, & Havermans, 2015).

Beyond replicating the TSM, MOV, and LEW factors, the EFA allowed us to explore the 

range of constructs underlying the SSP. Although a fair number of items failed to load 

strongly onto any factor, the remaining items could be grouped into factors representing 

Hyperactivity/inattention, Tactile sensitivity, Auditory distractibility, Hyporesponsiveness to 

speech, Visual sensitivity, and Noise distress. Three of the factors (Hyporesponsiveness to 

speech, Visual sensitivity, and Noise distress) were represented by only two items apiece, 

producing subscales that were too unreliable to adequately represent the underlying 

constructs. Nevertheless, this factor model allows us to better understand the specific 
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constructs being measured by the SSP in this population, which may inform future attempts 

to develop valid measures of sensory features in ASD.

In particular, the fractionation of the AFL and VAS subscales into four separate constructs 

provides some explanation beyond methodological differences for the divergence of our 

factor solution from that reported by Tomchek and colleagues (2014). In the aforementioned 

study, potential factor solutions were rejected based on the presence of two-item factors, 

causing the investigators to reduce the number of factors until all constructs represented by 

only two items were subsumed into larger subscales. In doing so, the “auditory and visual 

sensitivity” factor was created, consisting of the Auditory distractibility, Noise distress, and 

Visual sensitivity items combined into one heterogeneous scale. It is relatively 

uncontroversial that responsivity to visual and auditory stimuli represent different constructs, 

but conceptual distinctions also exist between hyperresponsiveness to soft and loud noises 

(Landon, Shepherd, & Lodhia, 2016; Levitin, Cole, Lincoln, & Bellugi, 2005; Phillips & 

Carr, 1998). Factor analysis of a larger number of auditory sensory behaviors in children 

with ASD has also found that “Difficulty in Background Noise” and “Aversive Reactions” 

represent separate dimensions of auditory reactivity (Egelhoff & Lane, 2013). The 

correlations between factor scores further support the distinctiveness of these constructs, 

with Auditory distractibility and Noise distress correlating at r = 0.43 and neither correlating 

more than r = 0.36 with Visual sensitivity scores. Thus, we conclude that the limited item 

coverage of the SSP led to inaccurate dimensionalization in the study by Tomchek et al. 

(2014) to preserve the reliability of the factor-analytically derived subscales.

We also want to emphasize that a number of behaviors suggestive of “sensory seeking” (e.g. 

USS items 16, 17, 20) are equally interpretable as representing hyperactivity, showing a 

strong covariance with an item specifically addressing inattention (AFL item 27). This 

interpretation is supported by the finding that children with ADHD have more typical scores 

on the SSP subscales than children with SMD on all but the USS and AFL subscales (Miller 

Nielsen, & Schoen, 2012). Disentangling parent-reported sensory features from ADHD 

symptoms in children with ASD may prove difficult (see Wodka et al., 2016), but the 

establishment of measures that discriminate sensory features from comorbid 

psychopathology will greatly advance the validity of sensory research moving forward.

This study had a number of strengths, most notably the methodologic rigor of its 

psychometric analyses and the use of more advanced model-based indices to determine the 

composite reliability and general factor saturation of the SSP questionnaire in this 

population. As factor-analytic studies in this field have not historically employed best-

practice EFA methods (Norris & Lecavalier, 2010), we believe that a greater adherence to 

published methodological guidelines will strengthen the psychometric properties of the 

resulting instruments and improve the replicability of results. Also, the sample of children 

with ASD employed was relatively large and geographically diverse, likely approximating 

the typical participants in ASD research. However, there were also several limitations to the 

current investigation. Due to the nature of experimental tasks in our lab, the majority of 

subjects taken from our in-house dataset were verbal, intellectually able, and behaviorally 

regulated enough to tolerate neuroimaging studies, potentially leading our current dataset to 

under-sample more severely impaired children. Moreover, as sociodemographic data varied 
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in scope and format between NDAR studies, we were unable to determine or report the 

racial/ethnic or socioeconomic breakdown of the subjects.

Methodologically, our decision to include only ASD children weakened the claims that SSP 

total or subscale scores are not comparable between ASD and TD children, as no tests of 

measurement invariance were performed. Though it is still the case that a different factor 

solution in ASD and TD samples invalidates cross-group score comparisons, there remains 

the possibility that the SSP factor structure in TD children is also better explained by the 9-

factor model derived in this study. However, even in the case of factorial equivalence, as has 

been tentatively established for the TSM, MOV, and LEW scales, there is still the possibility 

of ASD-TD differences in factor loadings or intercepts that invalidate the comparison of 

scores across groups (cf. Frazier et al., 2014; Murray, Booth, McKenzie, Kuenssberg, & 

O’Donnell, 2014; Wicherts & Dolan, 2010). In addition, while a large portion of the sample 

possessed data for the long-form SP, this study did not attempt to evaluate the factor 

structure or psychometric utility of subscales and broad “sensory quadrant” scores derived 

from the SP in ASD children. It remains possible that scales from the long-form measure 

possess factorial invariance in ASD and TD populations, though additional factor-analytic 

studies are required to test this hypothesis.

As a final limitation, our best-fitting factor structure contained a number of subscales that 

were too short to be psychometrically useful. It is thus noted that we have discouraged the 

use of both the SSP total score and subscale scores without providing a suitable alternative 

for analyzing SSP data that has already been collected. Researchers hoping to add a sensory 

measure to their study protocol are instead encouraged to consider newer measures such as 

the Sensory Experiences Questionnaire 3.0 (SEQ; Ausderau et al., 2014b), Sensory 

Processing Scales-Inventory (Schoen, Miller, & Sullivan, 2017), or Sensory Profile 2 (Dunn, 

2014), all of which attempt to address the shortcomings of the SSP and original SP. These 

instruments all assess three core sensory domains (i.e., hyperresponsiveness, 

hyporesponsiveness, and sensory seeking) with items that cover a wider range of sensory 

modalities and additional theoretical constructs unique to some of the measures. However, 

while all three newer-generation instruments have been used in samples of children with 

ASD (Ausderau et al., 2016; Little, Ausderau, Sideris, & Baranek, 2015, Little, Dean, 

Tomchek, & Dunn, 2018, Tavassoli et al., 2018), there are no published reports specifically 

examining the psychometric properties of these measures in an ASD population. Of the 

three, we tentatively recommend the SEQ due to a single published CFA study confirming 

its proposed factor structure in children with ASD and establishing measurement invariance 

between several important sub-populations (Ausderau et al., 2014b). The SEQ also includes 

a number of items measuring enhanced perceptual ability, a construct that is lacking from 

the other aforementioned measures and may be positively correlated with functional 

outcomes (Little et al., 2015). Researchers interested in assessing specific sub-constructs of 

sensory processing may potentially employ the four cross-modal SEQ subscales 

(Hyperresponsiveness: 31 items, Hyporesponsiveness: 18 items, Sensory Seeking, 31 items, 

Enhanced Perception: 12 items) individually. However, SEQ score profiles incorporating all 

four subscale scores are valuable in predicting clinical outcomes (Ausderau et al., 2016), 

leading us to suggest that clinicians and researchers employ the full-length questionnaire 

when possible. Despite our preliminary recommendation, additional research is needed to 
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directly compare the reliability and validity of these measures in the ASD population and 

establish the invariance of their measurement models between diagnostic groups. Future 

psychometric analyses of these and other sensory questionnaires would also benefit from the 

estimation of bifactor models and the calculation of indices such as the omega coefficients.

Conclusion

The SSP has long served as one of the primary measures of sensory features among children 

with ASD, despite the relative absence of psychometric evidence supporting its use. 

Employing rigorous psychometric methods in a large sample of children with ASD, we 

sought to evaluate whether the SSP total score and subscale scores were appropriate for use 

in this population. Our analyses failed to support the validity of the proposed SSP structures 

in children with ASD and cause us to recommend against the interpretation of SSP subscale 

scores in children diagnosed with ASD. Furthermore, while the SSP total score is measured 

reliably and does seem to measure a general sensory factor of sorts, its interpretation is 

complicated by limited content validity and substantial bias due to multidimensionality. For 

these reasons, we also recommend against the use of the SSP total score as a measure of 

general sensory features in ASD. Follow-up exploratory analyses demonstrated that a 9 

correlated-factor solution best explains responses to the SSP items, but several of the 

constructs are represented by too few items to be psychometrically or clinically useful. Only 

the TSM, MOV, and LEW subscales were replicated in our analysis, and this study provides 

preliminary evidence of factorial invariance for those subscales. The TSM subscale in 

particular holds promise as a dimensional measure of food selectivity, but its content is 

likely too narrow for it to provide an accurate measure of generalized chemosensory 

hyperresponsiveness. Researchers hoping to collect a phenotypic measure of sensory 

features would be better served by one of several newer-generation questionnaires (Ausderau 

et al., 2014; Dunn, 2014; Schoen et al., 2017). We believe that future research into the 

sensory manifestations of ASD would benefit greatly from the psychometric interrogation of 

existing sensory measures and the wider use of newer model-based indices to evaluate scale 

quality (Rodriguez et al., 2016a, 2016b).
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Table 1.

Participant Demographics

Vanderbilt NDAR Total Sample

Sample Size 127 261 388

Sex

    Male 106 204 310

    Female 21 57 78

Chronological Age

    Years [M (SD)] 8.55 (2.07) 6.74 (3.15) 7.34 (2.97)

    Min–Max 3.58–12.83 2.17–12.75 2.17–12.83

Verbal IQ

    High 16 13 29

    Average 73 46 119

    Low 21 78 99

    Unavailable 17 124 141

Performance IQ
a

    High 22 6 28

    Average 69 30 99

    Low 19 63 82

    Unavailable 17 162 179

SSP Total [M (SD)] 128.24 (23.11) 136.67 (21.01) 133.91 (22.04)

Sensory Classification
b

    Definite difference 87 157 244

    Probable difference 19 53 72

    Typical 21 51 72

Note. NDAR = National Database for Autism Research; SSP = Short Sensory Profile

a
High: IQ > 234100; Average: 85 ≤ IQ ≤ 100; Low: IQ < 85; Per NDAR convention

b
Based on the SSP total score
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Table 2.

Items of the SSP, Subscale Assignments, and Descriptive Statistics

Item Content

SSP

Factor
a

ASD

Factor
b Endorsed

c

N (%) rcorr
d

1. Expresses distress during grooming TAC TMV 167(43%) 0.45

2. Prefers long-sleeved clothing when it is warm or short sleeves when it is cold TAC TMV 43 (11%) 0.42

3. Avoids going barefoot, especially in sand or grass TAC TMV 52 (13%) 0.34

4. Reacts emotionally or aggressively to touch TAC TMV 28 (7%) 0.46

5. Withdraws from splashing water TAC TMV 36 (9%) 0.45

6. Has difficulty standing in line or close to other people TAC TMV 84 (22%) 0.52

7. Rubs or scratches out a spot that has been touched TAC TMV 30 (8%) 0.44

8. Avoids certain tastes or food smells that are typically part of children’s diets TSM TSM 145 (37%) 0.44

9. Will only eat certain tastes TSM TSM 147 (38%) 0.39

10. Limits self to particular food textures/temperatures TSM TSM 146 (38%) 0.43

11. Picky eater, especially regarding food textures TSM TSM 179 (46%) 0.42

12. Becomes anxious or distressed when feet leave the ground MOV TMV 28 (7%) 0.46

13. Fears falling or heights MOV TMV 44 (11%) 0.40

14. Dislikes activities where head is upside down MOV TMV 27 (7%) 0.33

15. Enjoys strange noises/seeks to make noise for noise’s sake USS SSD 130 (34%) 0.37

16. Seeks all kinds of movement and this interferes with daily routines USS SSD 200 (52%) 0.50

17. Becomes overly excitable during movement activity USS SSD 171 (44%) 0.45

18. Touches people and objects USS SSD 166 (43%) 0.33

19. Doesn’t seem to notice when face or hands are messy USS HYP 122 (31%) 0.32

20. Jumps from one activity to another so that it interferes with play USS SSD 114 (29%) 0.22

21. Leaves clothing twisted on body USS HYP 65 (17%) 0.35

22. Is distracted or has trouble functioning if there is a lot of noise around AFL AVS 193 (50%) 0.53

23. Appears to not hear what you say AFL HYP 217 (56%) 0.38

24. Can’t work with background noise AFL AVS 48 (12%) 0.47

25. Has trouble completing tasks when the radio is on AFL AVS 85 (22%) 0.49

26. Doesn’t respond when name is called but you know the child’s hearing is OK AFL HYP 189 (49%) 0.37

27. Has difficulty paying attention AFL SSD 251 (65%) 0.46

28. Seems to have weak muscles LEW LEW 88 (23%) 0.49

29. Tires easily, especially when standing or holding particular body position LEW LEW 83 (21%) 0.59

30. Has a weak grasp LEW LEW 87 (22%) 0.45

31. Can’t lift heavy objects LEW LEW 71 (18%) 0.53

32. Props to support self LEW LEW 61 (16%) 0.54

33. Poor endurance/tires easily LEW LEW 89 (23%) 0.52

34. Responds negatively to unexpected or loud noises VAS AVS 108 (28%) 0.42

35. Holds hands over ears to protect ears from sound VAS AVS 116 (30%) 0.40

36. Is bothered by bright lights after others have adapted to the light VAS AVS 41 (11%) 0.47

37. Watches everyone when they move around the room VAS AVS 53 (14%) 0.35

38. Covers eyes or squints to protect eyes from light VAS AVS 65 (17%) 0.41
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Note. ASD = autism spectrum disorder; rcorr = Corrected item-total correlation; SSP = Short Sensory Profile; TAC = Tactile sensitivity; TSM = 

Taste/smell sensitivity; MOV = Movement sensitivity; USS = Underresponsive/seeks sensation; AFL = Auditory filtering; LEW = Low energy/
weak; VAS = Visual/auditory sensitivity; TMV = Tactile and movement sensitivity; SSD = Sensory seeking/distractibility; HYP = Hypo-
responsivity; AVS = Auditory and visual sensitivity

a
Based on the original factor analysis by McIntosh et al. (1999)

b
Based on the factor analysis in an ASD population by Tomchek et al. (2014)

c
Response of 1 “Always” or 2 “Frequently”

d
Correlations less than 0.4 appear in bold
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Table 3.

Subscale Descriptive Statistics

Scale M (SD) Min–Max α (95% CI) ωt (95% CI) Average IIC IIC Range

TAC 27.73 (5.18) 9–35 0.74 (0.70–0.74) 0.76 (0.71–0.80) 0.30 0.21–0.51

TSM 12.65 (5.48) 4–20 0.93 (0.92–0.94) 0.94 (0.92–0.95) 0.77 0.70–0.80

MOV 12.92 (2.56) 3–15 0.74 (0.70–0.77) 0.76 (0.70–0.81) 0.49 0.37–0.62

USS 21.93 (5.44) 7–35 0.74 (0.70–0.77) 0.76 (0.71–0.80) 0.29 0.16–0.52

AFL 17.83 (4.49) 6–30 0.78 (0.75–0.81) 0.95 (0.89–1.0) 0.38 0.19–0.76

LEW 22.81 (6.81) 6–30 0.93 (0.91–0.94) 0.97 (0.95–0.99) 0.67 0.55–0.83

VAS 18.04 (3.96) 6–25 0.72 (0.68–0.76) 0.91 (0.84–0.98) 0.34 0.17–0.71

Note. α = Cronbach’s coefficient alpha; ωt = Coefficient omega total; IIC = Inter-item correlation; TAC = Tactile sensitivity; TSM = Taste/smell 

sensitivity; MOV = Movement sensitivity; USS = Underresponsive/seeks sensation; AFL = Auditory filtering; LEW = Low energy/weak; VAS = 
Visual/auditory sensitivity

J Autism Dev Disord. Author manuscript; available in PMC 2019 December 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Williams et al. Page 31

Table 4.

Fit Indices for Confirmatory Factor Models

SSP Model χ2 df CFI TLI RMSEA (90% CI) WRMR

7F 1900.07** 644 0.922 0.915 0.071 (0.067–0.075) 1.603

6F 1868.75** 650 0.924 0.918 0.070 (0.066–0.073) 1.623

Note. SSP = Short Sensory Profile; 7F = Original 7-factor model from McIntosh et al. (1999); 6F 6-factor model from Tomchek et al. (2014); df = 
degrees of freedom; CFI = Confirmatory Fit Index; TLI = Tucker-Lewis Index; RMSEA = root mean square error of approximation; WRMR 
weighted root mean square residual; CI = confidence interval

**
p < 0.001
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Table 5.

Factor Loadings and Communalities for the Best-fitting 9-factor EFA Solution

Item F1 F2 F3 F4 F5 F6 F7 F8 F9 h2

TAC

    1 −0.01 0.23 0.02 0.34 0.12 −0.10 0.18 0.07 0.07 0.35

    2 0.12 −0.03 −0.06 0.32 0.17 0.17 0.16 −0.02 0.00 0.33

    3 0.10 0.08 −0.18 0.47 0.07 0.11 −0.02 0.03 −0.06 0.36

    4 0.05 0.06 0.03 0.73 0.02 −0.04 0.04 −0.03 0.01 0.58

    5 0.17 −0.03 −0.06 0.25 0.24 0.11 −0.02 0.25 −0.04 0.45

    6 −0.02 0.10 0.20 0.65 0.08 −0.01 0.03 −0.04 0.01 0.58

    7 0.04 −0.08 0.25 0.57 −0.03 0.09 −0.13 0.06 0.06 0.53

TSS

    8 0.08 0.87 0.00 −0.02 −0.05 0.09 0.04 0.02 −0.03 0.80

    9 −0.05 0.91 0.04 0.01 0.06 −0.04 0.01 −0.04 0.02 0.85

    10 0.04 0.92 0.02 −0.01 0.02 −0.02 −0.02 −0.02 0.05 0.87

    11 −0.02 0.93 −0.06 0.05 −0.04 0.07 −0.02 0.04 0.00 0.88

MOV

    12 −0.07 0.02 0.09 0.06 0.93 0.01 0.00 0.05 −0.05 0.92

    13 0.19 0.01 −0.08 −0.05 0.51 0.10 −0.04 0.17 0.00 0.48

    14 0.02 −0.02 −0.01 0.06 0.72 −0.01 −0.06 0.00 0.07 0.57

USS

    15 0.01 −0.05 0.36 0.24 −0.05 −0.05 0.22 0.13 0.00 0.38

    16 0.02 0.00 0.60 0.23 0.01 0.16 0.06 −0.01 −0.05 0.60

    17 −0.07 0.04 0.66 0.30 −0.06 0.03 −0.12 0.08 0.02 0.59

    18 0.00 0.04 0.43 −0.01 −0.02 −0.05 0.14 0.26 −0.02 0.35

    19 0.21 0.00 0.31 −0.19 0.27 −0.02 0.17 −0.01 0.01 0.29

    20 −0.14 −0.04 0.70 0.01 0.02 0.07 −0.01 −0.03 −0.02 0.49

    21 0.19 0.02 0.36 −0.02 0.26 −0.14 0.04 −0.11 0.18 0.30

AFL

    22 −0.01 0.00 0.13 0.02 −0.03 0.82 0.02 0.03 0.06 0.80

    23 0.03 −0.01 0.05 −0.01 −0.03 0.13 0.84 0.02 0.06 0.82

    24 −0.06 0.04 −0.01 0.08 0.17 0.61 0.05 −0.01 0.11 0.57

    25 0.06 0.07 0.05 0.03 0.01 0.71 −0.02 −0.01 0.05 0.62

    26 −0.07 0.07 0.01 0.11 0.00 0.06 0.84 0.03 −0.01 0.81

    27 0.08 0.02 0.43 −0.14 0.10 0.35 0.22 −0.01 −0.01 0.52

LEW

    28 0.95 0.04 0.06 0.00 −0.04 0.01 −0.01 0.01 −0.14 0.88

    29 0.79 −0.04 −0.04 0.15 0.05 0.04 0.01 −0.02 0.12 0.82

    30 0.84 0.07 0.10 −0.01 0.00 −0.12 −0.02 −0.02 −0.02 0.69

    31 0.88 0.09 −0.01 −0.01 0.03 0.03 −0.03 0.01 −0.04 0.82

    32 0.76 −0.06 0.03 0.16 −0.01 −0.05 0.11 0.04 0.05 0.69

    33 0.84 −0.04 −0.08 0.02 0.00 0.10 −0.02 0.05 0.06 0.81
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Item F1 F2 F3 F4 F5 F6 F7 F8 F9 h2

VAS

    34 0.01 0.05 0.00 0.09 −0.01 0.02 −0.01 0.05 0.73 0.64

    35 0.00 0.01 0.01 −0.04 0.00 0.08 0.00 0.02 0.82 0.74

    36 0.00 −0.04 0.04 0.08 0.01 0.05 0.07 0.73 0.10 0.73

    37 0.05 0.01 0.33 0.10 0.10 0.06 −0.32 0.23 0.04 0.32

    38 0.01 0.06 0.00 −0.04 0.03 −0.08 0.00 0.95 0.01 0.87

Note. Factor loadings greater than 0.4 and communalities (h2) less than 0.4 are presented in bold.

TAC = Tactile sensitivity; TSM = Taste/smell sensitivity; MOV = Movement sensitivity; USS = Underresponsive/seeks sensation; AFL = Auditory 
filtering; LEW = Low energy/weak; VAS = Visual/auditory sensitivity; F1–9 = Factors 1–9
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