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Genetics and educational attainment

David Cesarini' and Peter M. Visscher®*

We explore how advances in our understanding of the genetics of complex traits such as educational attainment could
constructively be leveraged to advance research on education and learning. We discuss concepts and misconceptions about
genetic findings with regard to causes, consequences, and policy. Our main thesis is that educational attainment as a measure that
varies between individuals in a population can be subject to exactly the same experimental biological designs as other outcomes,
for example, those studied in epidemiology and medical sciences, and the same caveats about interpretation and implication apply.
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INTRODUCTION

Human geneticists interested in traits that vary between people in
a population employ a number of experimental designs to ask
specific questions. Broadly, the questions that are addressed are as
follows:

i. Does empirical evidence exists for genetic factors that
underlie variation in the population?

ii. What are the relative contributions of genetic and environ-
mental factors to the observed variability?

iii. How many genes in the genome are involved in accounting
for a variation attributed to a genetic variation, and what are
the effect sizes at those genes?

iv. Are the genetic effects also associated with other traits?

v. Why is a genetic variation present in the current population
(which is the same as asking how the variation in
maintained by evolution)?

Many other disciplines wish to address questions that stem
from genetic findings. Those questions can be summarized as
“What can we do with this information?” A biologist may wish to
understand the function of a particular genetic mutation, a
medical researcher may wish to create therapeutics to cure a
disease, and an epidemiologist may wish to identify a modifiable
risk factor and influence health policy. In this review/perspective,
we address recent findings about biology and education, and how
these findings could be useful for researchers and practitioners
working in education, science, and learning.

Behavior-genetic studies of twins and adoptees consistently
find genetic factors accounting for at least a modest share (up to
40%) of differences in educational outcomes across individuals in
developed, Western countries,"? but it only recently became
feasible to start identifying some of the DNA variants responsible
for this genetic variation.? In this review article, we discuss how, if
at all, such advances could constructively be leveraged to advance
research on education and learning.

To set the stage, we begin by reviewing evidence from
behavior-genetic studies on the heritabilities of various traits
related to learning, memory, and education. A heritability is a
statistical parameter describing the proportion of variation in a

population that is accounted for by genetic factors.* We review
the methodology of these studies and their findings, and we
discuss what can and cannot be concluded from heritability
estimates of educational phenotypes, such as years of schooling,
measures of scholastic achievement, psychological characteristics,
learning disabilities, or neurodevelopmental disorders.

Our ability to reliably detect specific genetic polymorphisms
associated with various behavioral traits has increased dramati-
cally in recent years.> An important lesson emerging from studies
to date is that single polymorphisms almost always have small
effects—and for this reason, their detection requires very large
samples®> As larger and larger discovery samples become
available, the number of credibly established associations with a
wide range of outcomes will continue to grow. The larger samples
will also allow researchers to construct increasingly powerful
predictors, called polygenic scores (PGSs), from genetic
information.

Finally, we also discuss how these and future findings from this
literature may be put to productive use in research on education
and learning. We organize our discussion around three broad
classes of potential contributions.

First, controlling of genetic factors in empirical research will
become increasingly possible, thus strengthening the credibility of
many research designs (for example, by improving the statistical
power a randomized controlled trial to estimate a treatment
effect). Currently, a PGS for educational outcomes has a modest
predictive power (R®°=7%, implying a correlation between
predictor and outcome of ~0.26), but this number is likely to
increase substantially in the years ahead.

Second, and more speculatively, insights into the genetics of
educational outcomes—and their many precursors in the form of
intelligence, personality dimension, dyslexia or attention problems
—may yield biological insights that provide guidance for drug-
discovery efforts or new directions for our theoretical under-
standing of genetic mechanisms of learning and memory. The
discovery of genes associated with educational outcomes may
also provide insights into genetically correlated outcomes, such as
the risk of dementia.

Third, and most speculatively, the identification of genetic
factors that influence educational outcomes may point to
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modifiable channels through which genes influence scholastic
outcomes. In some cases, such information may allow parents to
take preemptive actions tailored to the child’s specific needs that
would not have been possible absent the genetic information.

HERITABILITY

Heritability is a population parameter that can be estimated using
different experimental designs. Until technological advances
facilitated the direct measurement of DNA variants, the herit-
abilities of various humans were mostly estimated by comparing
the resemblance of twins, adoptees, and other pairs of relatives.

To explain heritability, a simple and highly stylized causal model
is useful; our treatment follows Benjamin et al® We assume the
genetic variants influencing the outcome of questions are located
at J separate locations (“loci”) in the genome. At each locus,
individuals are endowed with two alleles, one inherited from the
mother and one from the father. We can arbitrarily designate one
of these to be the reference allele, and define person i's genotype
at locus j, x;, by the number of reference alleles person i is
endowed with (because we make the simplifying assumption of
only two alleles, this number is always equal to 0,1 or 2).

We assume the following causal model for person i's outcome:

J
Yi= Zj:1 XiB; +Ui,
———

=G;

(M

where j indexes the loci, §; is the causal impact of an additional
copy of the reference allele at locus j (this impact need not be the
same across time and space), and U; is an environmental variable.
If Y; is normalized so its standard deviation is 1, and G; and U; are
uncorrelated, the total variance in Y; is the sum of two
components: a genetic factor (h’=var(G)) and a non-genetic
factor (u’=var(Uy)). The parameter h>—known as (narrow sense)
heritability—is simply the R? from the population regression of the
outcome on the J genotypes.

One can make inferences about the h? of a trait without
knowing the specific genes responsible for the heritable variation.
Prior to the widespread availability of molecular data, most such
efforts have relied on comparisons of the resemblance in the
observable characteristics (“phenotypes”) of various pairings of
relatives who vary in their degree of environmental and genetic
resemblance. In these studies, a commonly made assumption is
that the distributions of G; and U; are the same across all types of
siblings. Randomly ordering the two members of a sibling pair and
denoting the second member of a pair by a prime, most
heritability estimates are based on identifying conditions that
have the general form:

Py = E(Y)Y]) = pégh® + ptiyu’. ()

On the left-hand side of Eq. 2 is the phenotypic correlation,
whose sample analog is easily estimated by drawing a random
sample of sibling pairs of type k and calculating the pairwise
correlation between their outcomes. The methodology of studies
in “behavior genetics” is fundamentally about using estimated
phenotypic correlations pyy for various types of siblings to infer
population parameters such as h> and u?. In general, assumptions
about pce are often based on population genetic theory,’
whereas inferences about py, are based on whether the siblings
of a given type were raised in the same household.

For example, most twin studies compare the resemblance of
monozygotic twins reared apart (k= MZT) with the resemblance of
dizygotic twins reared together (k= DZT). In studies attempting to
estimate heritability from twin data, a commonly made assump-

tion is that Eq. 2 holds for both types of twins, with pMZT =1,
pRZl = 0.5 and pS3T = plYT = pl,. If these conditions hold, it is

straightforward to verify that 2(oMZ" — pDZT) = h2. An estimator of
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heritability is the sample analog of this moment condition, also

known as Falconer’s estimator: h? = 2(pMZT — pbZTy,
YY VY

To illustrate some canonical findings from the literature, Fig. 1
displays phenotypic correlations for three education phenotypes
—years of schooling, cognitive skills, and socioemotional skills for
—and two anthropometric phenotypes—height and body mass
index - in seven types of Swedish sibling pairs who differ in their
genetic and environmental relatedness. The correlations are
computed using administrative data covering all Swedish brother
pairs born between 1951 and 1970, and have been previously
reported.2'° With the exception of years of schooling, all data are
from Swedish conscription data, and measured around age 18
(the year of enlistment).

Our measure of cognitive skills is derived from the conscript’s
score on four cognitive tests (synonyms, spatial skills, inductions
and technical comprehension) and is highly correlated with what
is sometimes referred to as general intelligence."’ Our measure of
socioemotional skills is based on a professional military psychol-
ogist’s assessments of the conscript’s ability to function in the
military, with higher scores assigned to recruits, which the
psychologist perceives as independent, emotionally stable, able
to function in a group and willing to take on responsibility.'
Lindqvist and Vestman'? document that the variable (which they
call noncognitive ability) is a much stronger predictor of labor
market outcomes than the personality dimensions measured by
standard personality scales.

In these analyses, two brothers are classified as “reared apart” if
they lived in separate households during every census undertaken
before the age of 18, and “reared together” otherwise. We use
information about biological parents to classify siblings reared in
the same household as full brothers (same biological parents),
half-brothers (share one biological parent), and adoptees (share
no biological parents but reared in the same household). Two
broad patterns are evident from Fig. 1 First, for all five traits, the
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Fig. 1 Sibling Correlations for Behavioral Traits. This figure displays
sibling correlations for five traits measured in a large sample of
Swedish brother pairs born 1951-1970. All outcomes except years of
schooling are measured at conscription, around the age of 18. For
details on sample construction and variable definitions, see chapter
3 in Cesarini.'® The sample sizes vary by outcome, but the minimum
number of pairs per sibling type is MZT = 1,154; DZT =1,601; FST =
151,789; FSA=1,033; HST=4,880; HSA=11,566; ADO =643.
Because the sample sizes are large, all correlation coefficients are
precisely estimated. The standard error of a correlation coefficient
estimated with N pairs of siblings is approximately (1 — f)z)/\/N. For
example, the approximate standard error of the 72% estimate
reported in the full text (full siblings reared apart) is

2x (1 — i)/ VN = 2x (1 — 0.359?) //1033 ~ 0.054.
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phenotypic resemblance of pairs of siblings reared together
increases with genetic relatedness. Second, holding constant
genetic relatedness, siblings reared in the same household are
usually more similar than siblings reared in separate households.

Until recently, data such as those in Fig. 1 were the primary
source of information about the heritability of various traits. To
illustrate how sibling correlations can be used to decompose
phenotypic variation, applying Falconer’s formula to the correla-
tions gives h? = 2(oMZT — pRZT) = 2(0.822 — 0.534) = 58% for
cognitive skills and h? = 2(pM2T — pPZT) = 2(0.928 — 0.521) =
81% for height. With seven sibling types, many other estimators
are available. For example, if we assume that in full siblings reared
apart, ph = 0.5 and pf =0, then 2p3A = h2. The analogy

uw’ T
r A .o 72
principle then suggests the estimator h? = 2p5 , giving us h™ =

2x0.359 = 72% for cognitive skills and A’ = 2% 0.468 = 94% for
height. In practice, if feasible, it is almost always advisable to use
an estimate that incorporates information from as many different
sibling types as possible (not just twins). Most importantly,
information about additional sibling types provides identifying
variation that can be used to estimate richer models that relax (or
test) some of the potentially problematic assumptions underlying
Falconer's formula.

Though the data in Fig. 1 are quite representative of findings in
the behavior-genetic literature, it bears emphasizing that
heritabilities are population-specific parameters (not universal
constants). Heritabilities can (and do) vary across time and space
and for some traits, they can also vary in interesting ways over the
lifecycle. For example, one of the most robustly replicated findings
from the behavior-genetic literature is that the heritability of
cognitive  skills rises gradually through childhood and
adolescence.?

(MIS)INTERPRETING HERITABILITY ESTIMATES

What should we infer from data such as those plotted in Fig. 1?
One common albeit mistaken inference is that since all the four
traits studied appear to have substantial heritabilities, efforts to
modify them through environmental interventions are doomed to
failure.

It does not follow logically from the observation that when u? is
low, the environmental interventions can be effective (nor does it
follow from an observation that u? is large for some trait that it is
straightforward to modify the trait through environmental
channels; see Sacerdote'®). For example, the provision of eye-
glasses could yield large returns in a population where very few
children have eyeglasses and the heritability of eye sight is near
100%."

Jumping to policy conclusions from high heritabilities is
problematic for a second, distinct reason. Genes may sometimes
—perhaps often—influence complex outcomes through channels
that are modifiable (channels that would be labeled “environ-
mental” in common parlance but are part of the heritable variation
in the standard decomposition). The fact that genes influence an
outcome does not imply they must do so through some narrowly
physiological process.'® Factors that may be important inputs to a
person’s learning process—such as motivation, ability to concen-
trate, or time spent reading books—are all under some genetic
influence. But the extent to which genetic risk factors for, say,
concentration difficulties actually translate into worse scholastic
performance is likely to depend in subtle ways on the design of
the education system. To take an even starker example, the
education system’s treatment of boys and girls has changed
dramatically over the course of the 20th century, along with
changes in norms and attitudes.

What then, should one conclude from data such as those in
Fig. 17 A first conclusion is that most of the observed resemblance
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between genetically related siblings can ultimately be traced to
their genes. This observation suggests to us that trying to
understand the mechanisms through which genes influences
complex outcome such as BMI or performance on a cognitive test
may be a worthwhile enterprise. A second conclusion is that it
should be possible, at least in principle, to predict a range of
scholastic outcomes from genetic data, with sufficient information.
As we argue below, such a possibility may prove valuable to many
researchers in the coming years.

Data such as those in Fig. 1 are sometimes used to justify much
stronger conclusions than those we consider appropriate.
Canonical findings from the literature on the heritability of
cognitive ability have historically been used to argue for earlier
ability tracking and, more recently, calls for “genetically sensitive”
schools.'”” Most schooling systems eventually separate children
into different tracks (e.g., vocational or academic), often using past
scholastic performance as a major screening device, and we
suspect the proposition that some sort of screening at some point
is desirable, which has broad agreement. But for the reasons
articulated by Goldberger and Jencks, we do not believe any
obvious relationship exists between the data pictured in Fig. 1 and
issues such as the optimal timing of ability tracking.

Calls for “genetically sensitive” school are sometimes met by
concerns that advances in genomics will be used to justify
denying children educational opportunities as opposed to help
children better realize their potential. All schooling systems
already have at least some features that can be characterized as
“genetically sensitive” in the sense that heritable child character-
istics (such as school grades) are used to assign children to the
environments. Children with poor eyesight are (hopefully!)
supplied with glasses; children with low grades are more likely
to be required to retake a grade level; children with learning
disabilities are sometimes educated by specially trained teachers
who rely on different pedagogies and teaching materials;
eyesight, test scores, and virtually all learning disabilities have
some degree of heritability.

Ultimately, what matters is whether these interventions
generate benefits that can justify their costs, not whether the
bad eyesight or learning disabilities are ultimately caused by
genes. In our opinion, it is only to the extent that genetic
information makes it possible to tailor more effective interventions
that genetic data may be a useful supplement to systems already
in place.

THE MODERN GWAS ERA

In the last decade, data on molecular-level genetic markers that
differ across individuals, called single-nucleotide polymorphisms
(SNPs), have become much more widely available as costs of
measuring SNPs have plummeted. As a result, research has begun
to identify specific SNPs that account for some of the heritable
variation in anthropometric traits, common diseases, and, in a
handful of cases, behavioral outcomes such as educational
attainment or smoking.>® Today, most of these studies are
hypothesis-free scans for associations between some outcome
and millions of genetic variants (each of which is separately tested
for association with the outcome). The large number of
hypotheses tested means a variant is considered associated if
the p-value for association is below the genome-wide significance
threshold, 5x 1078,

In the early years of genome-wide association studies (GWASs),
the fact that most of the studies published at that time had
identified only a small number of SNPs was commonly (mis)
interpreted as evidence that GWAS is a flawed approach. Within
medical genetics, today it is increasingly understood that an ever-
increasing number of SNPs associated with complex outcomes are
being identified as the sample sizes have grown. This empirical
regularity is illustrated in Table 1, which shows how the number of
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identified associations with education, height, and BMI has
increased with large discovery samples.

Consider the example of height. Early studies of height
identified 10-20 SNPs at genome-wide significance,'®° whereas
more recent research,?’ based on a sample of 253,000 individuals,
identifies 697. The first genome-wide association study of
educational attainment was conducted in a discovery sample of
101,069 individuals, and identified one significant association with
years of schooling.® The authors conducted the follow-up study in
a discovery sample size of 293,723 individuals, and identified 74
loci associated with years of schooling completed. In a combined
analysis of the discovery and replication samples (N = 405,072), the
number of independent loci further increases to 162. Thus,
educational attainment appears to follow a pattern that is
qualitatively similar to medical and anthropometric traits.

Medical geneticists have developed methods to construct PGSs
that can be used to exploit the joint effects of many genetic
variants. Most commonly, such PGSs are constructed using some
version of Eq. 1, albeit replacing the individual B;s (which are
unobserved) with estimates obtained from an independent
sample.?® For most complex traits, the combined explanatory
power of the genome-wide significant associations uncovered so
far is very modest, even if combined into a polygenic score. For
example, the 162 loci, found to be associated with years of
schooling jointly, explains less than 1% of variance across
individuals; the analogous figures for BMI and height are 12.5
and 3%, respectively.

Following the publication of some of the earliest GWASs, the
gap between the explanatory power of the variants identified and
estimates from twin studies prompted a spirited debate on the
causes of the “missing heritability”.>?32

Though the missing heritability seems unlikely to have a single
explanation, researchers now broadly agree a substantial fraction
of the heritability was not “missing,” but was rather hiding in the
form of SNPs whose effects were so small they evaded detection
even in discovery samples of hundreds of thousands of
individuals. This consensus is based on several convergent lines
of evidence, of which the qualitative patterns described in Table 1
is only one.

Most studies to date have found the predictive power of PGSs is
maximized if the markers included to generate the scores are
selected using a more liberal p-value threshold than genome-wide
significance. The fact that prediction accuracy improves when
variants that failed to reach genome-wide significance are added
suggests many of these marginal associations represent true
associations of genetic variants that will reach genome-wide
significance in sufficiently large samples.

Table 1. Sample size and number of genome-wide significant
associations

Years of education Height Body-mass index

Ref. N #Hits Ref. N #Hits Ref. N #Hits
! 8352 o * 15821 12 ° 11,536 0

2 101,069 1 ° 16482 20 ' 123,865 19

2 126,559 4 ¢ 30968 27 " 339,224 97

3 293,723 74 7 183,727 180

3 405,072 162 8 253,288 697

Note. Relationship between the size of the discovery sample and the
number of approximately independent loci identified at the genome-wide
significance level (“hits”) for three outcomes. 1. Benjamin et alet al.*? 2.
Rietveld et alet al’ 3. Okbay et alet al.>> 4. Lettre et alet al>* 5. Weedon
et alet al.'® 6. Gubjartsson et alet al.'® 7. Lango Allen et alet al.*® 8. Wood
et alet al?' 9. Liu et al.>® 10. Speliotes et al.>® 11. Locke et al.”’
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Also consistent with the hypothesis of “hidden” heritability, the
predictive power of PGSs has increased as larger and larger
discovery samples have become available. Intuitively, larger
samples enable constructing PGSs with greater predictive power,
because the expected deviation between f; and ; falls as larger
and larger samples reduce estimation error. Figure 2 illustrates this
point for three phenotypes using data on genotyped respondents
of European ancestry in the Health and Retirement Study (HRS).
The left panel shows the results for body mass index BMI and years
of schooling. An important interpretational caveat is that our
analyses and projections are for samples of European ancestry.
Because the original GWASs were conducted in samples of
European ancestry, a PGS derived from the GWAS results would
have substantially lower predictive power in non-European
populations.>

For BMI and EduYears, PGSs with weights derived from the first
large-scale GWASs (N = 100,000) explain around 3% of variation in
independent samples. As sample sizes have increased to N=
300,000 (BMI) and N = 400,000 (EduYears), the predictive power of
PGSs has increased to about R’ = 7%. For height, the qualitative
patterns are similar, but the level of predictive power is higher at
all sample sizes (unsurprisingly, given that height is a more
heritable trait).

To be clear, for all three traits, a substantial gulf remains
between the predictive power of the PGSs and the estimates of
twin and family studies. The currently attainable degree of
predictive power is roughly 15-20% of the behavior-genetic
estimates implied by the correlations in Fig. 3. One important
source of the gap is that the estimand in behavior-genetic studies
is the proportion of variance explained by all genetic factors,
including those not captured (“tagged”) by standard genotyping
arrays currently used in GWASs. PGSs constructed from common
variants therefore have a lower theoretical upper bound than the
twin and family estimates. This bound, known as the SNP
heritability, can be estimated given suitable SNP data.?®3%3>
Published estimates suggest common variants account for about
50% of variation in human height,?' and around 25% of variation
in traits such as BMI and educational attainment.”?’

TAKING STOCK

Our discussion so far has sought to describe and interpret the
results from studies of educational attainment, BMI, and height.

©
Locke (2015)
" °
Okbay (2016) Combined
© 4
L4
Okbay (2016) Discovery
S
Nt Speliotes (2010)
o <4 .
[}
o
o
.
Rietveld (2013)
o~ 4
o4 .Bemamm (2012)
T T T T T
0 100,000 200,000 300,000 400,000
N
= BMI e Edu

Fig. 2 Predictive power of PGSs derived from weights estimated in
discovery samples of various sizes. All dependent variables have
been residualized on sex, age, and 10 principal components of the
variance-covariance matrix of the genotype data. To avoid over-
fitting, all scores are based on meta-analyses that omit the HRS from
the discovery sample.
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Fig. 3 Predictive power of future PGSs. Currently attainable
predictive power of PGSs (“Largest GWAS") and projected explana-
tory power of future PGSs derived from discovery samples of 1M
and 2M individuals (“~1TM" and “~2M"). For each trait, we calculate
h2\p directly from Eq. 3. We assume M = 70,000, and using values of
R* and N from the largest published GWAS of the trait (e.g., 6.9% and
405,000 for education). Implied SNP-based heritabilities are 15, 16
and 30%, respectively. Parameterizations based on estimates of SNP-
based heritabilities (25, 25 and 50%) yield higher projections.

We focused on these phenotypes because very large GWASs have
been conducted for all three, and because we believe many of the
lessons from these studies are likely to apply generally to many
other complex traits. As genotyping costs continue to plummet,
researchers will likely be able to conduct GWASs of a wide range
of behavioral and scholastic outcomes in discovery samples larger
than a million individuals. For example, a dataset with detailed
health information on around 500,000 genotyped British indivi-
duals is scheduled to be available to researchers in 2017; similar
initiatives are underway in many other countries.

How might such data sets contribute to research on science on
learning? We organize our discussion below around three broad
classes of potential contributions.

CONTROLLING FOR CONFOUNDING FACTORS
Predicting the predictive power of future PGSs
Figure 2 shows the prediction accuracy of PGSs has increased
steadily as larger samples have become available. But how much
predictive power can we realistically expect from future PGSs
generated from discovery samples comprising millions of
individuals? The expected R* of a polygenic score and the sample
size used to generate the B;'s used as weights can be
characterized analytically®® as
M -1

R ~ h2p[1 +——] 3

snel Nthp] 3)
where h2y, is the total proportion of variation explained by the
measured genetic variants, N is the sample size used to estimate
the weights, and M is a population-genetic parameter roughly
equal to 70,000 in modern European populations. Because thp
can be estimated using the method of Yang et al. (2010), this
formula can be calculated quantitatively. Figure 3 shows the
predictive power currently attainable from the largest published
GWAS for each of our three traits: education, BMI, and height,
followed by conservative (for reasons described below) projec-
tions of the predictive power of future PGSs generated from
discovery samples of 1M and 2M individuals. The projection
suggests the predictive power of a polygenic score constructed
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using weights from a discovery sample of 2M individuals comes
very close to the theoretical upper bound given by the SNP
heritability.

Much of the uncertainty about the ultimately attainable
predictive power stems from uncertainty about the SNP herit-
abilities. The projections in Fig. 3 are based on values of h,
calculated from Eq. 3 using actual values of R and N from the
largest meta-analysis of the trait available to date (e.g., R* = 6.9%
and N=405,000 in the case of education). These meta-analyses
were performed by combining summary statistics from dozens of
cohorts that vary across important dimensions, including the birth
cohort of the genotyped respondents, the phenotype measures
used, country, and exact genetic ancestry.

The resulting heritabilities (15/16/30% for education, BMI and
height, respectively) are approximately one-third lower than the
estimates based on the method of Yang et al.*® This discrepancy is
likely at least in part due to: (i) phenotypic heterogeneity across
cohorts included in the meta-analyses, (ii) genetic heterogeneity
across cohorts, (iii) gene-by-environment interactions across
cohorts, and (iv) undetected errors in the meta-analysis. Most of
these sources of downward bias can be mitigated (and in some
cases, eliminated altogether) if the discovery sample is restricted
to a single, genetically and environmentally homogenous cohort.
Therefore, with the advent of resources such as the UK Biobank,
the numbers in Fig. 3 likely paint a picture of future prediction
accuracy that errs on the side of pessimism.

PGSs as control variables

PGSs for educational attainment might first prove valuable as
control variables in randomized-control trials on the impact of an
intervention on some scholastic outcome. Controlling for a score
could improve the statistical precision of the study by reducing
the amount of residual variance.

Education researchers frequently use randomized controlled
trials to study the effectiveness of various interventions.?’
Substantial uncertainty remains about the causal effects of many
of these interventions, partly because many of the studies were
conducted in small samples. As a result, credibly ruling out that
any observed difference between the outcomes of treated and
untreated subjects is due to chance fluctuations (as opposed to an
effect of the intervention) is often difficult. The concern about
small sample size applies especially to some of the most influential
studies on the effectiveness of early childhood interventions, such
as the HighScope Perry Preschool Study and the Abecedarian
Project.

Rietveld et al.’ consider the decision problem of a hypothetical
researcher whose objective is to maximize the statistical power to
detect a treatment effect and who must choose between the
following two options:

1. Conduct a randomized controlled study in a sample of Ny
experimental participants, a proportion p of whom are
randomly assigned the treatment. For all study participants,
a set of baseline characteristics explaining 10% of outcome
variance is available.

2. Conduct a randomized controlled study in a sample of gNy
experimental participants, a proportion p of whom are
randomly assigned the treatment. For all study participants,
a set of baseline characteristics explaining 10% of outcome
variance is available. Additionally, a PGS whose incremental
predictive power is X% is available.

For a range of values of X, the authors ask for what value of g,
the investigator is indifferent between the two options. Clearly,
the answer to this question is most interesting for a realistic choice
of X. According to Fig. 3, a PGS constructed using summary
statistics from a GWAS of 2,000,000 individuals has a prediction
accuracy of around 12%. Rietveld et al.’ show (SOM Table $27)
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that under the assumption that the PGS and baseline character-
istics are uncorrelated, the investigator should be indifferent
between the two options at g = 0.87. Thus, the PGS in this example
allows a cost-saving equivalent to reducing the sample by 13%.
The cost savings are smaller if the baseline characteristics are
correlated with the PGS, because in that case, the incremental
explanatory power of the PGS will be smaller than 12%.

Yet, as Rietveld et al’ note, for very expensive interventions,
even a modest reduction in sample size may yield substantial cost
savings. By contrast, in studies where the outcome of interest is a
variable that can be measured accurately and inexpensively
through a single survey question, it is unlikely that PGSs will prove
valuable as control variables. In some cases, it may also be
desirable to gather data on participants’ DNA after the interven-
tion has already occurred. Such data could be used to obtain a
more precise estimate of the treatment effect by controlling for
the PGS. Normally, controlling for variables gathered after an
intervention risks biasing the estimated treatment effect, but this
concern does not apply to a variable derived from time-invariant
characteristics (a participant’s DNA sequence).

Moving beyond randomized controls, confounding is always a
lingering concern in observational studies. Even researchers who
are fundamentally uninterested in how genes influence educa-
tional outcomes may benefit from genetic data. For example,
imagine a researcher who observes that students who live in
districts with better-funded schools have higher test scores than
students in regions with poorly funded schools and wonders to
what extent the differences are due to the causal impact of
schools. Advances in genetic knowledge might eventually lead to
the investigation of a set of genetic markers that can plausibly be
argued to capture some of the unobserved differences in ability.
Clearly, our researcher would have a much stronger case for
assigning the difference in test scores to a causal impact of
schools if she could show that genetic markers believed to proxy
for abilities were balanced across the two school regions.

BIOLOGICAL INSIGHTS

To many, the primary justification for investing resources in gene-
mapping efforts is that gene discoveries may implicate biological
systems, thus accelerating efforts to develop effective drugs. Many
medical conditions that impair learning—including dyslexia,
autism spectrum disorders, epilepsg, or neurodevelopmental
disorders—are substantially heritable.*®

The GWASs of neurodevelopmental disorders conducted to
date have identified only a modest number (in some cases, zero)
common variants at genome-wide significance.>*™*' But com-
pared to height or education, these studies have been conducted
in relatively small samples. The explosion in data availability in the
coming years is exceedingly likely to result in a steady
accumulation of associations that replicate reliably, with a
qualitative pattern resembling that shown in Table 1. Studies
based on exome sequencing data have shown that de novo (not
inherited) rare mutations can be important causes of many
neurodevelopmental disorders.*?

The discovery of genetic associations with neurodevelopmental
disorders may prove valuable for a number of reasons.

For example, they could help researchers come up with disease
classifications that better reflect the underlying genetic aetiologies
as opposed to shared symptoms.** Imperfect understanding of
such differences could conceivably sometimes cause doctors and
scientists to use a single label for a diverse set of conditions that
are observationally difficult to distinguish but genetically hetero-
geneous. In such cases, distinction between the subtypes of the
disease may yield therapeutic benefits.*?

Conversely, in some cases, there may also be cases in which
substantial genetic overlap is identified between traits previously
believed to have distinct genetic aetiologies.** For example, the
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variants identified in the largest GWAS of educational attainment
show evidence of enriched association with a range of neurocog-
nitive disorders and brain function. Strikingly, genes found in
previous work to harbor rare de novo (and hence rare) mutations
for neurodevelopmental disorders are also statistically more likely
to harbor common variants that influence normal-range variation
in educational attainment.*?

IDENTIFICATION OF AT-RISK INDIVIDUALS

Progress in genetic research will undoubtedly make possible, in
principle, improvements in our ability to predict a range of
behavioral outcomes from genetic data. For complex traits, being
realistic about the amount of predictive power, we can expect
with discovery samples comprising millions of individuals is
important. For example, even for a highly heritable phenotype
such as height, the results in Fig. 3 suggest the amount of
predictive power of a PGS may soon be on par with, say, the
predictive power from the average height of an individual's
biological parents. We expect genomic predictions will be possible
for a range of learning outcomes and neurodevelopmental
disorders.

PGSs may similarly prove valuable in research on the lifecycle
development of skills, as illustrated by a recent study with
extraordinarily rich phenotypic data measured in individuals
tracked up to four decades.*® The study reported that PGSs were
positively associated with reading and speaking skills in early
childhood, subsequent scholastic achievement, and an index of
economic security in adulthood. A mediaton analysis revealed that
about half the effect of the PGS on the adult outcomes was
mediated by measured cognitive and noncognitive skills. Children
with higher PGSs were more likely to be raised in households with
higher socioeconomic status and perhaps most intriguingly: the
PGS predicted the likelihood that a child raised in a household
with lower socioeconomic status would be upwardly mobile.

In some cases, knowledge of genetic risk may help parents
more effectively to choose environments for their children
(though mere knowledge is of limited use if no environmental
intervention is available to mitigate or compensate for the risk). To
borrow an example from Benjamin et al.®, if genetic screening can
eventually sufficiently predict dyslexia, parents with children with
substantially elevated risk for dyslexia could be given the option of
enrolling their children in supplementary reading programs, years
before a formal diagnosis of dyslexia.

CONCLUSION

In conclusion, this perspective summarizes the current state of
knowledge on the genetics of education and reviews how
empirical findings should be interpreted.

Strong evidence shows genetic factors account for a substantial
proportion of variation in educational attainment and its many
precursors. A number of individual genes and biological pathways
have been identified that underlie this variation. This biology
clearly implicates the brain, often pointing to pathways shared
with neurological and psychiatric disorders. Empirical results from
GWASs can be used to construct genetic predictors that may have
uses in experimental education studies, intervention studies, and
studies of causality.

Though we believe advances in genetic knowledge in the years
ahead will likely prove to have increasing utility for researchers
across multiple fields, it bears repeating that the heritability of
educational attainment per se is not relevant for evaluating the
likely consequences of some change to education systems or
policy. After all, the heritability of human height is robustly and
consistently estimated to be around 80%, and yet huge secular
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changes in the population’s average height have occurred since
industrialization.
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