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The stability of educational achievement across school years is
largely explained by genetic factors

Kaili Rimfeld @', Margherita Malanchini'?, Eva Krapohl1, Laurie J. Hannigan

!, Philip S. Dale 3 and Robert Plomin’

Little is known about the etiology of developmental change and continuity in educational achievement. Here, we study
achievement from primary school to the end of compulsory education for 6000 twin pairs in the UK-representative Twins Early
Development Study sample. Results showed that educational achievement is highly heritable across school years and across
subjects studied at school (twin heritability ~60%; SNP heritability ~30%); achievement is highly stable (phenotypic correlations
~0.70 from ages 7 to 16). Twin analyses, applying simplex and common pathway models, showed that genetic factors accounted
for most of this stability (70%), even after controlling for intelligence (60%). Shared environmental factors also contributed to the
stability, while change was mostly accounted for by individual-specific environmental factors. Polygenic scores, derived from a
genome-wide association analysis of adult years of education, also showed stable effects on school achievement. We conclude that
the remarkable stability of achievement is largely driven genetically even after accounting for intelligence.
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INTRODUCTION

Educational achievement is important to society and to children as
individuals. In fact, educational achievement has been shown to
be a good predictor of many life outcomes, such as occupational
status, happiness, health, and even life expectancy.™ Influences
on educational achievement, including genetic and environmental
etiologies, can best be studied during the period of compulsory
education when the full range of family characteristics is
represented. Compulsory education in the UK culminates with
standardized nation-wide exams, the General Certificate of
Secondary Education (GCSE). GCSE grades are a gateway to
further education, university acceptance, and even later employ-
ment, shaping individuals’ life-long educational and professional
trajectories. Previous twin research has shown that GCSE
performance is highly heritable, and to a lesser extent explained
by environmental factors.® However, little is known about whether
the same or different genetic and environmental effects
contribute to individual differences in achievement over the
course of compulsory education. In the present paper, quantitative
(twin) and molecular genetic (DNA) methods are used to examine
the etiology and developmental course of educational achieve-
ment during the primary and secondary education period,
culminating in GCSE grades.

There is now converging evidence for the heritability of
educational achievement across school years using family designs,
such as twin and adoption studies, and DNA-based methods. Twin
studies have shown that around 60% of individual differences in
school achievement are explained by inherited differences in
children’s DNA sequence.®™'® This holds when considering overall
achievement scores as well as separate school subjects, from
Sciences to Humanities."'? It is also possible to estimate
heritability using DNA of unrelated individuals, where small DNA

differences between individuals (single-nucleotide polymorphisms
(SNPs)) are associated with the individuals’ scores in a trait of
interest. Rather than estimating the association between each SNP
and the trait, this method estimates the association between the
trait and all the SNPs combined.'”'® This so-called SNP heritability
for educational achievement has been shown to be around
20-30%.'%'9"2! The SNP heritability is less than that estimated by
twin studies partly because SNP heritability is limited to additive
effects of common SNPs that are included in current arrays used
to genotype SNPs. Because genome-wide association (GWA)
studies have the same limitations as SNP heritability, SNP
heritability is the current ceiling for the phenotypic variance that
GWA studies can explain.

These univariate genetic analyses have shown that the
heritability of educational achievement is substantial and con-
sistent across school years, from primary to secondary education
and culminating in the GCSEs.®° However, that conclusion is
agnostic about the extent to which the same or different genetic
factors contribute to individual differences in educational
achievement longitudinally from age to age, that is, to stability
and change. Understanding the developmental etiology of
educational achievement in this way has considerable potential
for illuminating the mechanisms that trigger differences in GCSE
performance and, consequently, in educational and professional
outcomes.

Multivariate genetic methods can be used to address this
question of the etiology of age-to-age stability and change. Using
a multivariate twin design we have previously demonstrated that,
during the primary school years, genetic and shared environ-
mental factors show substantial stability in English, Mathematics,
and Science, while non-shared environmental factors contribute
to change.” However, the genetic and environmental etiology of
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stability and change of educational achievement across the longer
span of school years, from primary school to secondary education
and beyond, remains unexplored. Only a few longitudinal studies
of reading ability have been reported. In one study, the stability of
reading, measured as word recognition, was explained largely by
genetic factors (around 70%) from primary through secondary
school.?? Another study found that the etiology of reading fluency
across the first five years of schooling, an important develop-
mental time when students transition from ‘learning to read’ to
‘reading to learn’, was characterized by stable genetic and shared
environmental influences.”®> Two additional longitudinal analyses
of reading comprehension in two different samples from the UK**
and US®® also showed substantial genetic stability. However,
school achievement involves much more than reading.

To our knowledge, no longitudinal analysis has been conducted
to assess the genetic and environmental etiology of continuity
and change of educational achievement throughout compulsory
education, for specific subjects as well as for general educational
achievement. This is the purpose of the current study, which uses
longitudinal data from age 7 to 16 on educational achievement
from a UK-representative sample of 6000 twin pairs participating
in the Twins Early Development Study (TEDS).?

We also addressed the issue of stability and change in school
achievement, for the first time using DNA-based analyses. In
addition to SNP heritability, which was described earlier, another
recently developed method predicts academic achievement
directly from DNA using specific SNPs that have been shown to
be associated with the trait in GWA analyses. This method
aggregates thousands of SNP associations, which individually have
very small effects, into a genome-wide polygenic score (GPS)?’
with effects weighted by results from the GWA discovery sample.
A GPS can be used to predict variance in a trait for unrelated
individuals in a sample independent of the GWA discovery
sample. We will refer to this estimate as GPS heritability. It explains
less variance than SNP heritability or twin study heritability
because GPS heritability predicts educational achievement from
specific SNPs.

Our EduYears GPS was derived from a GWA study of years of
education for 300,000 individuals.”® We used the GWA summary
data to create an EduYears GPS for each of 6000 unrelated
individuals (one member of a twin pair) in our TEDS sample 2° in
the UK. We correlated EduYears GPS with achievement measures
at ages 7, 9, 12, and 16. We have previously shown that EduYears
GPS predicts up to 9% of the variance in GCSE scores;?® here we
extend this analysis and investigate results for specific subjects in
addition to general achievement. The focus of our present
analyses is the extent to which the EduYears GPS contributes to
stability of educational achievement.

Genetic stability of school achievement might be explained fully
or in part by general cognitive ability (g), which has also been
shown to be substantially heritable'®*°3" and developmentally
stable®? and is one of the strongest predictors of school
achievement.**3° Moreover, the links between achievement and
g have shown to be explained by genetic factors.”>*3’ Because g
is a likely candidate to explain stability of school achievement
across compulsory education, we also investigate the role of g in
the stability of educational achievement, using both the twin
design and DNA-based methods.

In summary, in this study we use twin analyses and GPS
analyses of longitudinal data from TEDS from age 7 to age 16,
including GCSE scores, to investigate three issues—the stability of
general educational achievement, the stability of achievement in
specific subjects, and the contribution of g to the stability of
educational achievement.
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RESULTS
Phenotypic analyses

Means and standard deviations were calculated for school
achievement across compulsory education for the whole sample,
males and females separately, and for all five sex and zygosity
groups: monozygotic (MZ) males, dizygotic (DZ) males, MZ
females, DZ females, and DZ opposite-sex twin pairs. One twin
per pair was randomly selected for phenotypic analyses to
maintain independence of data. Analyses of variance (ANOVA)
were used to test the significance of these group differences.
ANOVA results showed some significant sex differences, however,
sex and zygosity together explain only 1% of variance in
achievement on average (Supplementary Table 1). For subsequent
analyses, the data were corrected for mean sex differences, as
described in the Methods section.

Genetic analyses

Univariate genetic analyses. Figure 1a presents the twin ACE
estimates for achievement across development. All achievement
measures show substantial heritability (A ~60%). Shared (C) and
non-shared (E) environmental factors both explained about 20%
of the variance. Estimates did not vary systematically across
subjects or school years. Twin intra-class correlations and
parameter estimates with confidence intervals are presented in
Supplementary Table 2, which shows that parameter estimates
were also similar for teacher ratings, exam performance, and
achievement scores that combined teacher ratings and exam
performance.

SNP heritabilities were calculated for the same achievement
measures using the GCTA package (see Methods). Figure 1b shows
that SNP heritabilities were substantial (~30%) but, as expected,
only about half as large as the twin estimates, although there was
a trend towards increasing SNP heritability with age. For example,
the SNP heritability of Mathematics achievement (composite of
test scores and teacher ratings) was 19% (SE =0.06) in KS1 and
38% (SE=0.08) in KS3 and 42% (SE=0.07) for GCSE. Twin
heritabilities and SNP heritabilities did not differ much across age
after the variance accounted for by general congitive ability (g)
was controlled for by means of linear regression (Supplementary
Figure 1). The trend towards increasing SNP heritability with age
seen in Fig. 1 disappeared when controlling for g (Supplementary
Figure 1(b)), which shows increasing heritability with age.38

Multivariate genetic analyses of age-to-age stability. Academic
achievement (measured as the mean of English and Mathematics)
was highly stable, with age-to-age correlations ranging from 0.66
to 0.85 (Fig. 2a). In bivariate twin analyses comparing each pair of
ages, genetic factors accounted for a substantial proportion of the
covariance between ages, explaining from 63 to 79% of the
phenotypic correlations (Fig. 2a). Controlling for g only slightly
reduced the phenotypic stability (range = 0.50-0.78) and genetic
stability (range =0.53-0.82) of the correlations (Fig. 2b). The
phenotypic stability from age to age was still mostly accounted for
by genetic factors, even after controlling for g (52-72%; Fig. 2b).
Supplementary Table 3 presents the phenotypic and genetic
correlations with 95% confidence intervals for the overall
achievement and for separate subjects.

Etiological contributions to stability and change were assessed
using multivariate models encompassing all ages of assessment.
The first was a simplex longitudinal model*® (see Methods and
Supplementary Figure 2 for details). The results, presented in Fig.
3, indicate that the stability of core academic achievement was
largely explained by additive genetic (A) factors—the genetic
paths from age to age are 0.86, 0.84, and 0.86. C was also stable
from age to age, accounting for a smaller proportion of variance in
academic achievement, amounting to around one-third of the
proportion of variance explained by A. E contributed variance that
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Fig. 1 a Twin model-fitting results for univariate analyses of educational achievement. A = additive genetic, C = shared environmental, E=
non-shared environmental proportions of the variance. b SNP heritability estimates of the proportion of variance explained by the additive
effects of common SNPs (standard errors as error bars) for the same measures of educational achievement. SNP heritabilities were calculated
following adjustment for sex and population stratification. Note: KS1 age 7; KS2 age 11; KS3 age 14; GCSE age 16; Note: Achievement is a
composite score of English and Mathematics
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Fig. 2 a Proportion of the phenotypic correlation (rPh) across ages accounted for by genetic factors. b Proportion of the phenotypic
correlation across ages accounted for by genetic factors after controlling for g. Note: KS1 age 7; KS2 age 11; KS3 age 14; GCSE age 16; Note:

Achievement is a composite score of English and Mathematics

was unique to the measurement occasion, and did not influence
subsequent academic achievement across school vyears, as
indicated by the residuals (age-specific effects; E,,, Ess, and Eiy).
(See Supplementary Figure 3 for the results of simplex model for
English, Mathematics and Science separately.)

The proportion of heritability at each age that is accounted for
by genetic effects different from those operating at the previous
age can be calculated by dividing the sum of the innovation path
squared (A;) and the age-specific genetic path squared (A;) by the
overall heritability. For example, for GCSE in Fig. 3a, 17% (i.e,
0.31%/0.58) of the heritability of core GCSE performance is
innovation (there is no age-specific genetic path); the rest of the
heritability (83%) is transmitted from previous achievement ages.
For KS3 core achievement, 78% (i.e, 0.70 (heritability of KS2)
x0.84° (genetic transmission)/0.63 (heritability of KS3)) of the
genetic variance was transmitted from KS2, and for KS2 77%
(0.73 x 0.86%/0.70) of the genetic variance was transmitted from
KS1. There was substantial innovative genetic influence at each
age (A)—24%, 15%, and 17% at ages 12, 14, and 16, respectively.
To investigate whether the new genetic influence was due to
increasing use of test assessments and decreasing use of teacher
assessments across the four ages, we repeated the analyses using
only standardized test scores across the school years (Supple-
mentary Figure S4), but the results were highly similar. The
remaining genetic variance (0% at age 12 and 3% at age 14) was

npj Science of Learning (2018) 16

age specific (path A;), in other words, not operating at the
previous age and not transmitted to the next age. These paths
were not significant as indicated by their 95% confidence
intervals.

We also repeated the simplex models statistically controlling for
g (Fig. 3b). The heritability of core school achievement was
somewhat lower after controlling for g, comparable to the
bivariate genetic results shown in Fig. 2. Nonetheless, educational
achievement continued to be highly stable and its stability was
still largely accounted for by genetic factors; genetic paths from
age to age are 0.75, 0.76, and 0.79.

In order to assess how much variance in the stability of core
educational achievement is explained by a single genetic
factor, a genetic common pathway model was used (See
Methods and Supplementary Figure 5). The results of the
common pathway model are presented in Fig. 4. Seventy
percent of the overall stability of core educational achievement
across compulsory education (heritability of the latent factor)
was explained by genetic factors; 24% of the stability of
educational achievement was explained by shared environ-
mental factors (Fig. 4a). The results were similar when we
controlled for g—genetic factors explained 59% of the stability
in core educational achievement after controlling for intelli-
gence, 21% of the stability was explained by shared environ-
mental factors (Fig. 4b).

Published in partnership with The University of Queensland



The stability of educational achievement across school...

np)j

K Rimfeld et al.

(28 33]

31
(.28-34)

(o- 14)

.26
(.24-27)

(83-88)

G,
(62-77) \\ﬁ
\

(.97-1.32)

116 113

(1.03-1.22)

\C[y

38 36
(.33-43) (:32-.40)

\L

KS1 (h2=.73)

.36
(.36-.37)

KS2 (h2=.70)

/T‘\

21
(.19-.23)

(64 85) (85 105)

KS3 (h2= .63)

>

.08
(0-.14)

(™
13
(:0-.18)

GCSE (h?=.58)

29
(.28-30)

39
(.34-.44)

(33 41]

(71 163)

(1.03-1.42)

\ T

28 .
(.22-34)
32
| (31».34)
75
(.70-.79)
C,
.81
(.78-.84) ‘23 79’
\
35
(.:28-41) (49 57;
48
J (.46-.49)
KS1_g KS2_g
(h?=.65) (h2=.60)

° @
(0-.18)

.94

(79 95) (.89-1.01)

KS3_g GCSE_g
(h?=.52) (h2=.47)
37
(.35-39)

13
(0-.20)

v @
(.0-.18)

Fig. 3 a Simplex model-fitting results for stability and change of overall achievement across compulsory education. b Simplex model-fitting
results for stability and change of overall achievement across compulsory education after controlling for g. Note: KS1 age 7; KS2 age 11; KS3
age 14; GCSE age 16; Note: Achievement is a composite score of English and Mathematics, Note: The path estimates are reported rather than

standardized variance components

GPS analyses. As a complement to our twin results, we
investigated genetic stability for core educational achievement
using a different methodological approach: EduYears GPS. Edu-
Years GPS increasingly predicted core educational achievement—
about 4% for KS1, 6% for KS2, 8% for KS3, and 10% for GCSE. In
order to address the question of genetic stability and innovation,
we explored the age-specificity of the EduYears GPS prediction,
after accounting for the variance explained at all preceding ages.
In line with the multivariate twin analyses, EduYears GPS'
prediction of educational achievement was largely stable from
age to age (Fig. 5). That is, our regression analyses indicated little

Published in partnership with The University of Queensland

(<1%) age-specific genetic prediction once the stable prediction of
EduYears GPS from all previous ages was taken into account.
Details of these analyses for core achievement, for subjects
separately, and controlling for g and previous achievement are
presented in Supplementary Table 4. In summary, results were
similar for separate subjects and after controlling for g and
previous achievement. However, EduYears GPS still predicts
educational achievement when only controlling for g, explaining
around 4% in GCSE performance, as illustrated in Supplementary
Figure 6.
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DISCUSSION

The present study shows that individual differences in educational
achievement are highly stable across the years of compulsory
schooling from primary through secondary school. Children who
do well at the beginning of primary school also tend to do well at
the end of compulsory education for much the same reasons. The
very high stability of academic achievement across compulsory
school years is an interesting finding, particularly when consider-
ing that children go through major cognitive and emotional
changes from childhood to adolescence, as well as experiencing
changes in teachers, friends, and schools.

In addition, the nature of educational achievement also changes
during the school years as children are exposed to more subjects
and more complex subjects. For reading, children move from
learning to read to using reading to learn. The present twin
analyses address, for the first time, the etiology of the stability of

npj Science of Learning (2018) 16

academic outcomes over compulsory education, showing that
genetic factors are largely responsible for this stability. In other
words, the same genetic factors largely shape individual
differences in achievement from primary through secondary
school. Shared environmental factors were also largely stable,
although they explained a smaller proportion of overall variance in
achievement. However, it has been suggested that shared
environmental effects might actually be driven genetically.***'
We show that age-to-age change in achievement scores was to a
large extent explained by non-shared environmental factors. This
is another example of the general rubric of behavioral genetics,
“genetic stability, environmental change”.?%3°*>~** We also noted
some genetic innovation (change) at each stage of assessment,
but, consistent with an overall pattern of stability, all of these new
genetic influences were transmitted to the next achievement
stage.

Published in partnership with The University of Queensland
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A reasonable assumption is that the substantial genetic stability
observed here is explained by general cognitive ability (g,
intelligence). Importantly, however, we showed that the herit-
ability of educational achievement over school years and its
stability is not explained by g alone. The results of our twin
analyses showed that when g was controlled for, educational
achievement remained highly heritable and stable and the
stability of educational achievement independent of g was still
explained by genetic factors. Although there was evidence for
some specific (new) genetic influence at each age, again these
new genetic influences were not age specific but were transmitted
to the next assessment stage. This is in line with our earlier reports
in which we showed that educational achievement at age 16 is
not explained by intelligence alone.'®'? The EduYears GPS
regression analysis yielded similar results showing genetic
stability, even after controlling for g. This GPS result is not exactly
analogous to the twin study results, as we tested the effect of the
same genetic variants over time. Nevertheless, our multi-method
approach yielded similar results indicating that the substantial
stability of educational achievement is to a large extent explained
by genetic factors.

As new, more powerful GWA studies are conducted, the
predictive power of the EduYears GPS prediction is likely to
increase. The GPS calculated using the 2013 EduYears GWA
summary statistics with a sample size of 126,000* predicted
around 3% of variance in educational achievement in TEDS,*
compared to 10% of variance explained in the current study based
on the 2016 EduYears GWAS with a sample size of 330,000.
Another more powerful GWA of educational attainment was
recently published, involving over one million participants, this is
likely to be a game changer in terms of predictive power.*®

It should be noted that EduYears GPS predicts only about 4% of
the variance in adult years of education (educational attainment)?®
in independent samples, but it predicts more than twice as much
variance in GCSE scores at age 16. We are not aware of any other
example in which a GPS predicts less variance in the GWA target
trait (educational attainment) than in another trait (GCSE scores).
We suggest that the reason for this unusual finding is that
educational attainment is a much coarser measure than GCSE
scores, which are the result of hours of standardized assessment.
In support of this hypothesis, we find that EduYears GPS also
predicts 4% of the variance when we analyzed a similarly coarse

Published in partnership with The University of Queensland
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dichotomous item about whether or not TEDS participants
planned to go to university. Furthermore, EduYears GPS also
predicts 4% of the variance in a cruder measure of GCSE
achievement—5 passes at grades A* to C, which is often used
in government statistics, and used for selection purposes by many
employers and educational institutions (Supplementary Table 4).

The limitations of this study include the usual assumptions of
the twin design, which are described in detail elsewhere.***” One
of these limitations involves assortative mating, in which mate
selection is not at random but is instead based on trait similarity.
Assortative mating on cognitive abilities and educational achieve-
ment has been shown to be substantial (~0.40).34***8 |n the twin
design, assortative mating increases DZ correlations relative to MZ
correlations and could therefore lead to underestimating herit-
ability and overestimating shared environmental influence; in
effect this makes the present findings concerning heritability
conservative. GCTA and GPS methods also have their limitations.
Notably, both of these DNA-based methods rely on the additive
effects of common SNPs genotyped on SNP arrays, and do not
capture gene-gene or gene-environment interplay or the effects
of less common SNPs.** However, since the main limitations are
different for each method used in the current study, the fact that
our multi-method approach yielded similar results is a strength.

Our multi-method analyses corroborated previous findings
showing that individual differences in educational achievement
are largely explained by inherited differences in DNA sequence.
The novel contribution of our study is to show that the substantial
stability of educational achievement across compulsory education
is to a large extent explained by genetic factors, even after
controlling for g.

Our finding of genetically driven stability of educational
achievement should provide additional motivation to identify
children in need of interventions as early as possible, as the
problems are likely to remain throughout the school years. GPS
prediction, specifically, might in the future provide a tool to
identify children with educational problems very early in life and
aid in providing both individualized prevention and individualized
learning programs. We hope that with GPS, we can move towards
precision education, just as medicine is moving towards precision
medicine.>®*! For example, GPS could be used to identify children
at birth at genetic risk for developing reading problems, thus
enabling early intervention. As preventive interventions have
greater chances of succeeding early in life, a great strength of GPS
is that they can predict at birth just as well as later in life, which
enables early intervention, particularly for those children who are
likely to struggle the most.

METHODS
Participants
The present study used the TEDS sample. TEDS is a large twin study that
recruited over 16,000 twin pairs born between 1994 and 1996 in England
and Wales. More than 10,000 twin pairs are still actively involved in the
study. Rich cognitive and behavioral data, including educational achieve-
ment, have been collected from the twins, their parents and teachers, over
compulsory education and beyond. Importantly, TEDS was a representative
sample of the UK population at first contact, and remains representative in
terms of family socioeconomic status and ethinicity.”®>? Ethical approval
for this study was received from King's College London Ethics Committee.
The sample for the present study included all twins with available
academic achievement measures over the school years. Participants who
had major medical or psychiatric conditions, or those with severe perinatal
complications, were removed from the analyses. Zygosity was assessed by
the parent-reported questionnaire of physical similarity. This measure has
been shown to be highly reliable”® Nevertheless, DNA testing was
conducted when zygosity was unclear from the questionnaire. The sample
size per academic achievement measure is shown in Supplementary Table
S1.
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DNA has been genotyped for a subsample of unrelated individuals from
TEDS (one twin per pair). We processed genotypes for 6710 individuals
using the standard quality control procedure followed by imputation of
genetic variants to the Haplotype Reference Consortium®® (see Supple-
mentary Methods). We then matched the individuals with genotyped data
to those participants with available academic achievement data.

Measures

Measures of educational achievement obtained by TEDS. TEDS has
obtained assessments of academic achievement directly from the twins’
teachers who reported grades following the UK National Curriculum
guidelines, a standardized core academic curriculum formulated by the
National Foundation for Educational Research (NFER) and the Qualifica-
tions and Curriculum Authority (QCA) (NFER: http://www.nfer.ac.uk/index.
cfm; QCA: http://www.qca.org.uk). Data were obtained directly from
teachers. At age 7 data are available for English and Mathematics; at ages
12 and 14 data are available for English, Mathematics, and Science. The
teacher rating of English used a combined rating of students’ reading,
writing, and speaking and listening; Mathematics used a combined score
of knowledge in numbers, shapes, space, using and applying mathematics,
and measures; and Science used a score combining life process, scientific
enquiry, and physical process. These teacher ratings were found to be
highly reliable when compared to the achievement measures collected by
the UK National Pupil Database (NPD), as described later.

GCSE exam results were obtained from twins themselves or from their
parents via questionnaires sent over mail or via telephone. GCSEs are UK-
wide standardized examinations taken at age of 16 at the end of
compulsory education. Children choose from a variety of different subjects,
while English, Mathematics, and Science are compulsory. We used exam
grades from English, Mathematics, and Science for the current analyses.
Composite measures were created for English (mean of English language
and English literature grades), Science (mean of single or double-weighted
Science or, when taken separately Chemistry, Physics, and Biology grade),
and Mathematics.

Measures of educational achievement obtained from the NPD. The TEDS
dataset was linked to the NPD for every participant for whom we received
written informed consent from either the twin or the parent. NPD is a rich
UK database collecting data about students’ academic achievement across
the school years (https://www.gov.uk/government/collections/national-
pupil-database). Data are available for each Key Stage (KS) completed in
the UK following the National Curriculum (NC). Teachers provide NC ratings
for every student at the end of each KS (similarly to data collected at TEDS
for the NC ratings in English, Mathematics, and Science). Exam scores as
well as teacher ratings are available from KS1-KS3; and exam scores only
are available for KS4 and KS5. Children’s ages for KS1, KS2, and KS3 are
about 7, 11, and 14 years. KS4 marks the end of compulsory education with
GCSE testing at about age 16. Sample size and descriptive characteristics
for each measure are provided in Supplementary Table S1.

Composite scores of educational achievement. Composite scores were
calculated at each KS combining the teacher ratings (both TEDS and NPD)
with the exam scores for English, Mathematics, and Science separately by
taking a mean of the three scores. The average correlation between NPD
and TEDS teacher ratings was 0.70 (see Supplementary Table S5), and the
average correlation between teacher ratings and exam scores was 0.80
(see Supplementary Table S6). For GCSE performance at the end of
compulsory education, GCSE grades collected by TEDS and by NPD
correlated 0.98 for English, 0.99 for Mathematics, and >0.95 for all Sciences.
A mean score for NPD and TEDS was created to increase the sample size;
when fewer measures were available we used any available data to
calculate the composite score of educational achievement.

The overall achievement measure (core achievement) was calculated at
each KS by taking a mean of English NC teacher ratings, Mathematics NC
teacher rating (for both NPD and TEDS), English exam score, and
Mathematics exam score. We did not include Science grades in overall
achievement scores to make a more direct comparison across age because
Science is not part of the National Curriculum at KS1.

Measures of general cognitive ability (g). General cognitive ability (g;
intelligence) was assessed in TEDS at ages 7, 9, 10, 12, 14, and 16. For the
present analyses we created a longitudinal composite measure of g as a
mean of these six assessments. See Supplementary Methods for a more
detailed description of g measures.
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Analyses

Phenotypic analyses. The measures were described in terms of means and
variance, comparing males and females and identical and non-identical
twins; mean differences for age and sex and their interaction were tested
using univariate ANOVA. Phenotypic correlations were calculated between
academic achievement measures across development. The academic
achievement measures were corrected for the small mean effects of age
and sex (Supplementary Table S1) by rescoring the variable as a
standardized residual correcting for age and sex, because in the analysis
of twin data members of a twin pair are identical in age and MZ twins are
identical for sex, and this would otherwise inflate twin estimates of shared
environment.>> Full sex limitation genetic modeling has previously been
reported for academic achievement and found only very minor sex
differences in genetic and environmental estimates.%'? For these reasons,
and to increase power in the present analyses, the full sample was used,
combining males and females and including opposite-sex pairs.

Finally, before conducting twin analyses, the achievement measures
were corrected for skew because they were slightly negatively skewed. The
achievement measures were corrected for skew by mapping it on to a
standard normal distribution using the rank-based van der Waerden's
transformation.>®

Twin design. The twin design was used for univariate and multivariate
genetic analyses. The twin method offers a natural experiment capitalizing
on the known genetic relatedness of MZ and DZ twin pairs. MZ twins are
genetically identical and share 100% of their genes, while DZ twins share
on average 50% of their segregating genes. Both MZ and DZ twins are
assumed to share 100% of their shared environmental influences growing
up in the same family. Non-shared environmental influences are unique to
individuals, not contributing to similarity between twins. Using these
known family relatedness coefficients, it is possible to estimate the relative
contribution of additive genetic (A), shared environmental (C), and non-
shared environmental (E) effects on the variance and covariance of the
phenotypes, by comparing MZ correlations to DZ correlations. Heritability
can be roughly calculated by doubling the difference between MZ and DZ
correlations, C can be calculated by deducting heritability from MZ
correlation and E can be estimated by deducting MZ correlation from unity
(following Falconer’s formula).*’ These parameters can be estimated more
accurately using structural equation modeling, which also provides 95%
confidence intervals and estimates of model fit. The structural equation
modeling program OpenMx was used for all model-fitting analyses.>’
These univariate analyses can be extended to multivariate analyses to
study the etiology of covariance between multiple traits. Multivariate
genetic method decomposes the covariance between traits into additive
genetic (A), shared environmental (C), and non-shared environmental (E)
components by comparing the cross-trait cross-twin correlations between
MZ and DZ twin pairs. This method also enables estimation of the genetic
correlation (rG), which is an index of pleiotropy, indicating the extent to
which the same genetic variants influence two traits or measures of the
same trait at two times. The shared environmental correlation (rC) and
non-shared environmental correlation (rE) are estimated in a similar

We used two longitudinal models to study the issue of age-to-age
stability of educational achievement.

The simplex model is a multivariate genetic model that estimates the
extent to which the genetic and environmental influences on a trait are
transmitted from age to age, and the extent to which innovative and age-
specific influences emerge.”® The covariance or correlation matrix for such
data is called simplex because the strength of the associations tends to
correspond to differences between ages, that is, they are often highest
along the diagonal and fall systematically as the difference between ages
increases.”® The simplex model is illustrated in Supplementary Figure S2.

The common pathway model is a multivariate genetic model in which
the variance common to all measures included in the analysis can be
reduced to a common latent factor, for which the A, C, and E components
are estimated. As well as estimating the etiology of the common latent
factor, the model allows for the estimation of the A, C, and E components
of the residual variance in each measure that is not captured by the latent
construct.>® The common pathway model estimates the extent to which
the stable variance in educational achievement across compulsory
education (the latent factor of achievement) is explained by A, C, and E.
The common pathway model is illustrated in Supplementary Figure Sé6.

SNP heritability. The genome-wide complex trait analysis (GCTA) software
package enables estimates of the proportion of phenotypic variance or
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covariance that is explained by all SNPs that are available on genotype
arrays, without testing the association of any single SNP individually.'”#95°
This estimate is often called SNP heritability. This method does not use
known genetic relatedness coefficients but estimates heritability from DNA
using only unrelated individuals. SNP heritability is calculated using
restricted maximum likelihood and the variance and covariance is
decomposed using mixed linear models.

First, the genetic relatedness matrix is calculated by weighting genetic
similarities between all possible pairs of individuals with the allele
frequencies across all SNPs on the DNA array. Individuals who are found
to be even remotely related (greater than fifth cousins) are removed from
the analyses as they would otherwise bias the results, which rely on chance
genetic similarity between pairs of individuals.'""®%" The matrix of pair-by-
pair genetic similarity is compared to the matrix of pair-by-pair phenotypic
similarity using the residual maximum likelihood estimation. SNP
heritabilities were calculated for overall achievement across compulsory
education, as well as for specific subjects.

Genome-wide polygenic scores. GPSs aggregate the effects of individual
SNPs shown to be associated with the trait in a GWA study.5> GPSs were
calculated for 6710 participants using summary statistics from Okbay
et al.?® GWA analysis of years of education (EduYears).?® Of the 293,723
participants in the EduYears GWA discovery sample, the summary statistics
excluded 23andMe participants, for legal reasons. Polygenic scores were
constructed as the weighted sums of each individual’s genotype across all
SNPs using the LDpred method®® (see Supplementary Methods for details).
Delta R? is reported as the estimate of variance explained by the GPS.
These delta R? estimates were obtained by comparing the incremental
increase in the model R after adding the GPS to the regression model, and
comparing this to the model that included 10 principal components in
order to control for population stratification. See Supplementary Methods
for genetic quality control and further information about GPS calculation.

We correlated EduYears with general educational achievement compo-
sites, as well as with performance in specific subjects at each age to
estimate EduYears GPS heritability. Delta R? are reported as the estimates
of variance explained by adding the GPS to the regression model that
included the academic achievement from all earlier ages to assess the
extent to which EduYears contributes to age-to-age stability.
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