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Purpose. In this study, we proposed an automated deep learning (DL) method for head and neck cancer (HNC) gross tumor
volume (GTV) contouring on positron emission tomography-computed tomography (PET-CT) images. Materials and
Methods. PET-CT images were collected from 22 newly diagnosed HNC patients, of whom 17 (Database 1) and 5 (Database 2)
were from two centers, respectively. An oncologist and a radiologist decided the gold standard of GTVmanually by consensus.
We developed a deep convolutional neural network (DCNN) and trained the network based on the two-dimensional PET-CT
images and the gold standard of GTV in the training dataset. We did two experiments: Experiment 1, with Database 1 only, and
Experiment 2, with both Databases 1 and 2. In both Experiment 1 and Experiment 2, we evaluated the proposed method using
a leave-one-out cross-validation strategy. We compared the median results in Experiment 2 (GTVa) with the performance of
other methods in the literature and with the gold standard (GTVm). Results. A tumor segmentation task for a patient on
coregistered PET-CT images took less than one minute. -e dice similarity coefficient (DSC) of the proposed method in
Experiment 1 and Experiment 2 was 0.481∼0.872 and 0.482∼0.868, respectively. -e DSC of GTVa was better than that in
previous studies. A high correlation was found between GTVa and GTVm (R � 0.99, P< 0.001). -e median volume difference
(%) between GTVm and GTVa was 10.9%.-emedian values of DSC, sensitivity, and precision of GTVa were 0.785, 0.764, and
0.789, respectively. Conclusion. A fully automatic GTV contouring method for HNC based on DCNN and PET-CT from dual
centers has been successfully proposed with high accuracy and efficiency. Our proposed method is of help to the clinicians in
HNC management.

1. Introduction

Head and neck cancer (HNC) is a type of cancer originating
from the tissues and organs of the head and neck with high
incidence in Southern China [1]. Radiation therapy (RT) is

one of the most effective therapies, which relies heavily on
the contouring of tumor volumes on medical images.
However, it is time-consuming to delineate the tumor
volumes manually. Besides, the manual delineation is sub-
jective, and the accuracy depends on the experience of the
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treatment planner. Compared to manual delineation, au-
tomatic segmentation can be relatively objective. Nowadays,
there have been studies reporting the automatic segmen-
tation of tumor lesions on magnetic resonance images of
HNC using different methods [2–10].

Positron emission tomography-computed tomography
(PET-CT) has played an important role in the diagnosis and
treatment of HNC, providing both anatomical and meta-
bolic information about the tumor. -e automatic or
semiautomatic segmentation of tumor lesions on PET-CTor
PET images of HNC has been reported, using machine-
learning (ML) methods such as k-nearest neighbor (KNN)
[11, 12], Markov random fields (EM-MRFs) [13], adaptive
random walker with k-means (AK-RW) [14], decision tree
algorithm [15], and active surface modeling [16]. -e seg-
mentation of tumor lesions on the coregistered PET and CT
images has shown better results than those on solely PETor
CT images [17, 18]. However, the application of PET-CT has
increased the amount and the complexity (multimodality) of
the image data. Also, to propose a robust and practical ML-
based automatic segmentation method, it is often necessary
to train and test the method with heterogeneous image data
from multicenter [19], which makes the training and testing
of ML systems more challenging.

Compared to the traditional ML methods, deep learning
(DL) allows extracting the features automatically instead of
subjective feature extraction and selection in conventional
ML techniques, which may be more appropriate for auto-
matic segmentation in multimodality data and multicenter
data. DL can easily recognize the intrinsic features of the data
[20]. DL techniques, such as stacked denoising autoencoder
(SDAE) [21] and convolutional neural network (CNN)
[22–24], have been used in tumor segmentation successfully
with improved accuracy.

No studies have been reported to apply the deep con-
volutional neural network (DCNN) in the automatic GTV
delineation for HNC patients on PET-CT images. In our
study, we proposed an automatic method of GTV delineation
for RT planning of HNC based on DL and dual-center PET-
CT images, aiming to improve the efficiency and accuracy.

2. Materials and Methods

In brief, our methodology included the contouring of the
gold standard, training and testing of the DL model, and
evaluating the performance of our trained model. After
reviewing the MRI, CT, and PET images, an oncologist and
a radiologist decided the contouring of GTV by consensus
which was treated as the gold standard in the following
training and testing of our method. We developed a deep
convolutional neural network (DCNN) for HNC tumor
lesion segmentation, and then we trained the network
based on the PET-CT images and the gold standard of GTV
in the training dataset. In the testing step, we input the
testing dataset to the network, and it automatically con-
toured the GTV. To test the accuracy of this automated
method, we compared the results of our method with those
of other methods in the literature and with the gold
standard.

2.1. Structure of Our DCNN Model. Inspired by the fully
convolutional network [25] and U-net [26], we designed
a DCNN model for GTV delineation. -e structure of our
proposed DCNN model is shown in Figure 1. -is network
consisted of two stages: feature representation phase and
scores map reconstruction phase.

2.1.1. Feature Representation Phase. -e main purpose of
the feature representation phase was to extract the feature
information of PET images and CT images, by combining
the low-level features to represent the high-level features
with semantic information.-e feature representation phase
contained 5 downsampling blocks, 4 convolution (conv)
layers, and 4 rectifier linear unit (ReLU) layers (Figure 1). A
downsampling block included a convolution layer, an ReLU
layer, and a pooling (pool) layer. -e first convolution layer
was to extract the low-level features of PET images and CT
images, respectively, by filters of 5 × 5 voxels and to fuse
them together. We were able to fuse the features because the
PETand CTimages were input simultaneously with the same
gold standard. We in the next 4 convolution layers applied
the convolutions for the permutation and combination of
the low-level features to obtain more high-level features with
semantic information. In all the 5 downsampling blocks, the
convolution layers were followed by a pooling layer. We
applied pooling with 2 × 2 filters and 2 strides which de-
creased the length and width of the feature map by 50%.
-us, it could reduce the number of connection parameters
and the computational time and provided the position in-
variance and more global information. -e use of unaltered
filters on a smaller image may contribute to the larger local
receptive fields, and these enlarged local receptive fields
could extract more global features. After each convolution
layer, we used an ReLU layer as an activation layer to in-
crease the nonlinearity of our network and to accelerate the
convergence.

-e length and width of the feature maps were reduced
by 50% after a downsampling block. After the feature map
size was reduced to 16 × 16, it was then connected with
a convolution layer with 16 × 16 filters. It means that every
neuron in the following layer was connected with all the
neurons in the previous layer to imitate the fully connected
layer in the traditional classification network. -e size of the
feature maps was 1 × 1 pixel after this convolution layer.
-en, we used 2 convolution layers with 1 × 1 filters for the
permutation and combination of these features to obtain
more abstract information. -e finally acquired 1 × 1 scores
maps were used as the input in the scores map re-
construction phase.

2.1.2. Scores Map Reconstruction Phase. -e main purpose
of the scores map reconstruction phase was to reconstruct
the scores map into the same size of input images by
upsampling. -is reconstruction phase consisted of 5
upsampling blocks, a convolution layer, and an ReLU layer.
An upsampling block was composed of a deconvolution
(deconv) layer, a concatenation (concat) layer, a convolu-
tion layer, and an ReLU layer. -e deconvolution layer was
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designed for upsampling. -e first deconvolution layer
reconstructed the 1 × 1 scores map to 32 × 32 by 32 × 32
filters. However, we found that deconvolution would cause
the loss of the high-resolution information in images. To
overcome this problem, we utilized the concatenation layer
to fuse the feature maps in the previous pooling layers or
convolution layers with the current feature maps in the
deconvolution layer. We believed that these skip-layer de-
signs could capture more multiscale contextual information
and improve the accuracy of segmentation. To fuse the low-
and high-resolution information pixel by pixel, we set the
filters of all the following convolution layers at 1 × 1.

With all the upsampling blocks, we finally reconstructed
the scores maps to an output image with a size of 512 × 512,
the same as in the input PET or CT images. In order to
optimize the network, we estimated the loss by calculating
the Euclidean distance between the gold standard and the

reconstructed tumor lesions [27, 28]. -en, the parameters
of the network were iterated and renewed by back-
propagation from the loss. In our experiment, we decided to
use the Euclidean distance to estimate the loss because it had
shown better performance than the cross entropy loss that
was used in some other studies of Ronneberger et al. [26].

2.2. Training of Our DCNN Model

2.2.1. Data Preprocessing. Newly diagnosed HNC patients
were retrospectively recruited from two centers: 17 (13
males, 4 females; 31∼68 years old) from the First Affiliated
Hospital, Sun Yat-sen University (center 1); and 5 (all males;
44∼63 years old) from Sun Yat-sen University Cancer
Center (center 2). -e ethics committee waived the necessity
to obtain informed written consent from the patients. -e
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Figure 1: Architecture of the proposed CNN model. -e proposed network includes two phases: feature representation phase and scores
map reconstruction phase. -e feature representation phase is composed of 5 downsampling blocks (conv-ReLU-pool layer), 4 convolution
layers, and 4 ReLU layers. -e scores map reconstruction phase consists of 5 upsampling blocks (deconv-concat-conv-ReLU layer),
a convolution layer, and an ReLU layer. K, filter size; P, zero padding; S, stride.
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PET-CT scans in both centers were from the top of the skull
to the shoulder. Acquisition time of PET for each bed po-
sition was 2.5 minutes. -e patients from center 1 were
scanned with Discovery STE (GE Healthcare, Milwaukee,
USA); the spatial resolution and image matrix of most CT
images were 0.49 × 0.49 × 2.5mm3 and 512 × 512 × 63,
respectively, while the spatial resolution and image matrix of
the PET images were 1.56 × 1.56 × 3.27mm3 and 256 × 256 ×

47, respectively. -e PETscan in center 1 was acquired in 3-
dimensional mode and reconstructed using the ordered-
subset expectation maximization iterative algorithm. -e
patients from center 2 were scanned with Discovery 690
PET-CT scanners (GE Healthcare, Milwaukee, USA); the
spatial resolution and image matrix of the CT images were
0.59 × 0.59 × 3.27mm3 and 512 × 512 × 47, respectively,
while the spatial resolution and image matrix of PET images
were 1.17 ×1.17 × 3.27mm3 and 256 × 256 × 47, respectively.
In center 2, the PETscanning was acquired in 3-dimensional
mode and reconstructed using the VPFXS reconstruction
method.

To make use of the information of both the PET image
and the CT image, we performed coregistration of PETto CT
images by sampling the PET images using linear in-
terpolation in SPM8 (Wellcome Department of Imaging
Neuroscience, London, United Kingdom). Finally, we had
934 samples (one sample includes one slice of the CT image
and one coregistered slice of the PET image, both with
amatrix size of 512 × 512) for the 17 patients from center 1 as
Database 1 and 200 samples for the 5 patients from center 2
as Database 2.

-e primary GTVs were manually outlined by an ex-
perienced radiologist and double-checked by an experienced
oncologist on the registered PET/CTwith reference to MRI,
PET, and CT images using the ITK-SNAP software (http://
www.itksnap.org) [29]. -e resultant GTV contouring was
used as the gold standard in training and testing of our
proposed model and for the comparisons with automatic
segmentation in terms of their volume and geometrical
overlap. Specifically, we discarded the images in which the
tumor size was smaller than 0.5 cm2 (in the 2-dimensional
images) by considering the partial-volume effect (PVE) in the
PET image, suggested by the radiologist. PVE could affect the
imaging accuracy of small tumor lesions whenever the tumor
size is less than 3 times the full width at half maximum
(FWHM) of the reconstructed image resolution [30].

We performed two experiments with our data. In Ex-
periment 1, we evaluated the proposed method using only
the data in Database 1. We evaluated the proposed method
using a leave-one-out cross-validation (LOOCV) strategy,
leaving the images of one patient for testing and the images
of all other patients for training. To balance the positive and
negative samples in the training dataset, we selected all the
slices with tumor lesions as positive samples and randomly
selected the same number of slices without tumor lesions as
positive samples. To satisfy the need of huge training data in
DL, we augmented the training dataset to nearly 15,000
samples by rotating the images, horizontal mirroring,
changing the contrast, and image scaling. In Experiment 2,
we used the two databases (1134 samples) and augmented

the training dataset to nearly 18,000 samples and also
evaluated the method by using the LOOCV strategy simi-
larly. Before training and testing in both Experiments 1 and
2, all data were normalized by performing min-max
normalization.

2.2.2. Network Training. -e training of the whole network
was composed of three stages. At the first stage, we obtained
an output image after the third upsampling block (Figure 1),
and the size of the output image was 128 × 128. In the second
stage, which was initialized by the network parameters in the
first stage, a 256 × 256 scores map was obtained. Finally, we
based on the network parameters in the second stage trained
the whole network, and the scores maps were used to re-
construct an output image with a size of 512 × 512 (the same
as the size of the input PET or CT images).

-e model was trained by using an Adam optimizer for
200,000 iterations with a fixed learning rate of 0.00001. We
used a GPU NVIDIA GeForce GTX 1080 Ti equipped on an
Intel Xeon E5-2650 2.30GHz × 16 machine and the DL
framework Keras for training [31]. -e whole training
procedure took about 24 hours.

2.3. Performance Evaluation of Our DCNN Method

2.3.1. Evaluation of Automatic GTV Delineation Performance.
After the successful training of the DCNN model, we used
the testing dataset to evaluate the segmentation performance
of our method by calculating the dice similarity coefficient
(DSC) as follows:

DSC �
2TP

FP + 2TP + FN
, (1)

where true positive (TP) denotes the correctly identified
tumor area, false positive (FP) denotes the normal tissue that
is incorrectly identified as tumor, and false negative (FN)
denotes the tumor area that is incorrectly predicted as
normal tissue. DSC describes the overlap between the gold
standard and the automatic segmentation result.

2.3.2. Comparison with Other Methods in the Literature.
To instigate the improvement of our method, we also
compared our results with the previous studies. We tried to
apply these previous methods on our database; however, the
performance was all lower than the published results. Hence,
we directly compared our results with those in these pub-
lications, in terms of DSC. Although they may not be
reasonably comparable, these comparisons to some extent
provide insights about how our method outperformed the
similar studies. Note that for a fair comparison, we used the
results of median performance in Experiment 2 for the
comparison.

2.3.3. Comparison with the Gold Standard of GTV.
Although we repeated our experiments for several times,
for a fair comparison, we used the results of median per-
formance in Experiment 2 with dual-center data for the
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comparison, and the results were recorded as GTVa. -e
gold standard by manual contouring was recorded as
GTVm. Pearson’s correlation was performed between GTVa
and GTVm. To further evaluate the accuracy of GTVa
against GTVm, we calculated mean surface distance (MSD),
sensitivity, and precision as follows:
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whereX andY denote the boundary of autosegmentation and
the gold standard, respectively (y1

i , i � 1, . . . , N ∈ X is the
boundary points of X; y2

j , j � 1, . . . , M ∈ Y is the boundary
points of Y, respectively). MSD describes the mean Euclidean
distance between GTVa and GTVm along their boundaries.
Sensitivity describes how much the overlap of GTVa and
GTVm was included in GTVm. Precision describes how
much the overlap of GTVa and GTVm was included in
GTVa. -e absolute difference between GTVa and GTVm
was also estimated by calculating GTVa − GTVm [32].

3. Results

3.1. Automatic GTV Delineation Performance. With our
trained model, a tumor segmentation task for a sample (a
coregistered PET image and a CT image, two-dimensional)
took about 0.28 seconds; thus, for an HNC patient with
around 50 slices of coregistered PET/CT images, our method
took about 14 seconds for GTV segmentation. An example
of segmentation with high accuracy is shown in Figure 2, in
which the DSC was 0.943. Two typical examples of the poor
results and their corresponding PET images are shown in
Figures 3 and 4, in which the DSC was 0.610 and 0.408,
respectively. As shown in Figure 5, the region marked by
the blue circle with high metabolism was actually an in-
flammation region, which looks very similar to the tumor
lesions. Our trained model was able to learn the difference
between the inflammation regions and the tumor lesions and
correctly recognized this as a nontumor region.

-emedianDSC in Experiment 1 of 17 patients (Database
1) was 0.762 (range, 0.481∼0.872). -e median DSC in Ex-
periment 2 of 22 patients (Database 1 + Database 2) was 0.785
(range, 0.482∼0.868), 0.783 (range, 0.482∼0.868) for Database
1 alone, and 0.793 (range, 0.528∼0.863) for Database 2 alone.
-e segmentation results in Experiment 2 were recorded as
GTVa and used for the following comparisons.

3.2. Comparison with Other Methods in the Literature.
-e results of previous studies about HNC segmentation
based on PET-CT are shown in Table 1. -e mean DSC of

our method in Experiment 2 for 22 patients was 0.736.
Stefano et al. [14] achieved a high DSC of 0.848; how-
ever, their method was on PET images only and was
semiautomatic.

3.3. Comparison with the Gold Standard of GTV.
Pearson’s correlation showed a high correlation between
GTVa and GTVm (R � 0.99, P< 0.001) for these 22 patients.
-e detailed comparison between GTVa and GTVm is
shown in Table 2 and Figure 6. -e mean volume difference
(%) between GTVa and GTVmwas 12.4% ± 9.8%with a 95%
confidence interval (CI) of −6.7%∼31.6%. -e average DSC,
sensitivity, precision, and MSD of all patients were 0.736 ±
0.110 (95% CI, 0.521∼0.951), 0.720 ± 0.128 (95% CI,
0.468∼0.973), 0.761 ± 0.111 (95% CI, 0.543∼0.978), and 4.7 ±
3.4mm (95% CI, −1.8∼11.2mm), respectively.

4. Discussion

We proposed an HNC automated GTV contouring method
based on DL and PET-CT images, with encouraging seg-
mentation results. Most of the studies on HNC delineation
were based on PET images only [14–17], in which the an-
atomical information was insufficient due to the low spatial
resolution compared to CT or MRI [13]. Yang et al. [13]
achieved similar segmentation accuracy (DSC � 0.740);
however, their method was based on three modalities (PET,
CT, and MRI). -e methods of Stefano et al. [14] and Song
et al. [17] were all semiautomatic. Berthon et al. [15] reported
a higher accuracy of 0.77; however, their gold standard for
performance evaluation incorporated the information of
automatic segmentation results. Compared to these studies
[13–17] with the data from one center only, our proposed
method shows stable performance on dual-center data. To
summarize, our proposed method has shown relatively high
accuracy and is fully automatic, making use of both the
metabolic and anatomic information.

Either in Experiment 1 or in Experiment 2, the per-
formance was high and stable for Database 1. -is may
suggest that the proposed DCNN model was effective and
robust. Note that in Experiment 2, the DSC was higher than
that in Experiment 1. -is may be because with more
samples, more features can be learned by our DCNNmodel,
and thus, the segmentation accuracy could be improved.
However, we also in Experiment 2 observed that the ac-
curacy for Database 2 was lower than that for Database 1.
-e reason may be that the features were somehow different
between these two databases. -e features learned from
Databases 1 and 2, mainly from Database 1, were probably
not suitable enough to be applied to Database 2. Note that
with only 22 patients, we already achieved such good per-
formance of automatic contouring. However, wemay recruit
more data to further verify the robustness of our model.

-e image features are critical in machine-learning-
based segmentation tasks. We used the multimodality im-
ages, namely, PETand CT images, as the input of our DCNN
model, and this may improve the segmentation than with
PET or CT images alone. -is finding echoed the results
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(a) (b)

(c) (d)

Figure 2: An example of HNC tumor segmentation with high accuracy. -e dice similarity coefficient (DSC) was 0.943. (a) PET image
coregistered with CT. (b) CTimage. (c) Automatic segmentation result presented on the fused PET-CTimage (green line). (d) Gold standard
of gross tumor volume drawn on the fused PET-CT image (red line).

(a) (b)

Figure 3: Continued.
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(c) (d)

Figure 3: A typical example of HNC tumor segmentation with low accuracy. -e dice similarity coefficient (DSC) was 0.610. (a) PET image
coregistered to CT. (b) CTimage. (c) Automatic segmentation result presented on the fused PET-CTimage (green line). (d) Gold standard of
gross tumor volume, drawn on the fused PET-CT image (red line).

(a) (b)

(c) (d)

Figure 4: Another typical example of HNC tumor segmentation with low accuracy.-e dice similarity coefficient (DSC) was 0.408. (a) PET
image coregistered to CT. (b) CT image. (c) Automatic segmentation result presented on the fused PET-CT image (green line). (d) Gold
standard of gross tumor volume, drawn on the fused PET-CT image (red line).

Contrast Media & Molecular Imaging 7



Figure 5: An example of inflammation. -e inflammation region, which is marked by a blue line, looks similar to the tumor and so may be
difficult to distinguish by visual assessment. However, it was recognized correctly by our proposed method (green line). -e dice similarity
coefficient (DSC) of this tumor was 0.848.

Table 1: Comparison of the segmentation performance in Experiment 2 between our proposed CNN model and the similar studies.

Studies Algorithm Images
used

Average
DSC Automatic Patient

number
Center
number Journal

Yang et al. [13] MRFs PET, CT,
and MRI 0.740 Fully automatic 22 1 Medical Physics

Stefano et al. [14] AK-RW PET 0.848 Semiautomatic 18 1 Medical & Biological
Engineering & Computing

Berthon et al. [15] Decision tree PET 0.770 Fully automatic 20 1 Radiotherapy & Oncology

Song et al. [17] Graph-based
cosegmentation PET 0.761 Semiautomatic 2 1 IEEE Transactions on

Medical Imaging

Zeng et al. [16] Active surface
modeling PET 0.700 Fully automatic 2 1 Computers in Biology

and Medicine
Proposed method CNN PET and CT 0.736 Fully automatic 22 2 —
Note: DSC, dice similarity coefficient; MRFs, Markov random fields; AK-RW, adaptive random walker with k-means; CNN, convolutional neural network.

Table 2: -e segmentation performance of all tumors by using the proposed method in Experiment 2.

Patient number GTVm (cm3) GTVa (cm3) Sensitivity Precision DSC MSD (mm)
Database 1
1 73.1 61.4 0.619 0.736 0.683 4.8
2 10.4 8.9 0.759 0.886 0.818 2.1
3 3.5 3.7 0.689 0.653 0.670 4.1
4 14.5 16.9 0.832 0.715 0.769 2.6
5 25.9 22.6 0.736 0.844 0.786 2.5
6 27.1 25.7 0.770 0.812 0.791 3.7
7 11.8 11.6 0.713 0.723 0.718 7.0
8 37.5 28.1 0.422 0.562 0.482 10.3
9 65.7 69.5 0.841 0.794 0.817 2.9
10 13.3 12.1 0.534 0.588 0.560 11.5
11 26.7 26.3 0.787 0.799 0.793 1.8
12 17.6 13.5 0.601 0.783 0.680 8.0
13 44.0 44.5 0.873 0.863 0.868 1.2
14 51.8 48.2 0.788 0.847 0.817 2.5
15 73.1 58.2 0.729 0.915 0.812 2.5
16 147.5 147.1 0.782 0.784 0.783 2.5
17 12.1 14.4 0.820 0.692 0.750 2.6
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reported in the study of Song et al. [17] or Bagci et al. [18]. As
shown in Figure 2, since the metabolism is significantly
different between tumor regions and normal tissues, the
contrast of the tumor region to the adjacent tissues is high;
thus, the location of tumor is easily detected in PET images.
However, the spatial resolution of PET images is low; thus,
the tumor boundary is unclear in PET images. In CT images

with higher spatial resolution, the anatomical information is
more sufficient for detecting the boundary of tumors. By
using both PET and CT images, our method extracted and
combined both metabolic and anatomical information as the
efficient features for more accurate segmentation.

-e DL technique we used to extract the features has
shown more advantages than traditional machine-learning

Table 2: Continued.

Patient number GTVm (cm3) GTVa (cm3) Sensitivity Precision DSC MSD (mm)
Mean ± SD — — 0.723 ± 0.119 0.764 ± 0.100 0.741 ± 0.100 4.2 ± 3.1
Database 2
1 24.5 30.7 0.594 0.475 0.528 13.1
2 80.4 74.0 0.791 0.859 0.824 1.7
3 18.3 20.6 0.918 0.815 0.863 2.9
4 18.2 17.3 0.772 0.815 0.793 6.7
5 69.8 43.0 0.478 0.775 0.591 6.7
Mean ± SD — — 0.711 ± 0.174 0.748 ± 0.155 0.720 ± 0.150 6.2 ± 4.5
Note: GTVm, the gross tumor volume of manual delineation; GTVa, the gross tumor volume of automatic segmentation by the proposed method; DSC, dice
similarity coefficient; MSD, mean surface distance.
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Figure 6: Comparisons between GTVm and GTVa. GTVm, the gross tumor volume by manual delineation (gold standard). GTVa, the
gross tumor volume of automatic segmentation by the proposed method. Each point represents a patient. DSC, dice similarity coefficient.
(a) Difference between GTVm and GTVa. Sensitivity (b), precision (c), and DSC (d) of GTVa (the average values are depicted as a thick
dashed line).
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methods (Table 1). As shown in Figure 5, the region marked
by the blue circle with high metabolism was actually an
inflammation region, which looks very similar to the tumor
lesions. -e inexperienced clinicians may incorrectly con-
sider this region as a tumor lesion, while our trained model
was able to learn the difference between these inflammation
regions and the tumor lesions and correctly recognized this
as a nontumor region. Such an example showed that our
DCNN method can extract the intrinsic features of tumor
lesions and finally achieve better GTV contouring results.
Besides, we used a skip-layer architecture for the fusion of
the feature maps at the feature representation phase and
scores map reconstruction phase, which can be another
technical improvement in our method. As shown in Fig-
ure 7, although the semantic information of the features
in the feature representation phase was worse than that of
the features in the scores map reconstruction phase, it
could help fix the problem of information loss in the re-
construction procedure. Compared to the feature map
fusion method used by Long et al. [25], our method suc-
cessfully incorporated the more useful features during the

process of feature fusion. We believed that this fusion im-
proves the accuracy of segmentation by using the skip-layer
architecture.

-e comparisons between GTVa and GTVm (Figure 6
and Table 2) indicated that GTVa was similar and close to
GTVm. However, there were still some shortcomings in our
automatic method. Firstly, the GTVa was unsatisfactory in
some tumors. As shown in Figure 3, the tumor in the PET
image was large, but the boundary was unclear; thus, part of
the tumor was incorrectly identified as normal tissue. As
shown in Figure 4, the low metabolism region, which was
within the regionwhere tumor lesions were often seen in some
other patients, was incorrectly detected as tumor lesions. As
shown in Figure 6(a), two patients showed a large difference
between GTVm and GTVa. -e tumors of these two patients
were large with lots of lymphatic metastasis. -is kind of
tumor was few in our database; thus, our method failed to
learn the features of these kinds of tumors. Secondly, we
discarded the images in which the tumor size was smaller
than 0.5 cm2 (in the 2-dimensional images) because such
tumor lesions were difficult to detect in PET images by visual

(a) (b)

(c) (d)

Figure 7: An example of the feature maps in the fourth upsampling block. (a) A low-resolution scores map after the fourth deconvolution
layer in the reconstruction phase. (b) A high-resolution feature map after the fourth pooling layer in the feature representation phase. (c)-e
scores map after the fusion of low- and high-resolution maps. (d) -e gold standard of gross tumor volume of the example (red line).

10 Contrast Media & Molecular Imaging



assessment. In addition, the imaging accuracy of small tumor
lesions could be affected due to PVE.-us, the performance of
our method for such small tumors remains unclear.

Our results may be improved in future studies in
the following aspects. Firstly, more data should be
recruited for training a better model and to test-retest the
performance. Especially, the data from different centers
should be better balanced. Also, the MRI images may be
employed as they provide better soft tissue contrast and
may improve the performance. Secondly, in the training
and testing, only the 2-dimensional images were used and
the volumetric information was abandoned. We would
carefully improve the network architecture and also adjust
the training parameters for better segmentation results.
Finally, for successful application of our method in the
radiotherapy of HNC, the automatic contouring of organs
at risk should also be incorporated, and the clinical target
volume (CTV) and planning target volume (PTV) should
also be drawn.

5. Conclusion

In this study, we successfully proposed and verified a robust
automated GTV segmentation method for HNC based on
DCNN and dual-center PET-CT images. With multi-
modality images, both anatomic and metabolic features are
extracted automatically and objectively, which contribute to
the increased accuracy. -e DL algorithm showed good
potential in GTV segmentation. All these contributed to
the high accuracy and efficiency of our method compared to
manual contouring. Our method may be helpful in aiding
the clinicians in radiotherapy of HNC; thus, it is of great
potential in HNC patient management. Future studies may
aim to improve further the segmentation accuracy with
more training data and optimized network structure, to
draw CTV/PTV, and to verify our method with data from
multicenters.
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