Skip to main content
. 2018 Oct 31;9:2087. doi: 10.3389/fpsyg.2018.02087

FIGURE 3.

FIGURE 3

Schematic representation of the neuronal architecture that might encode conditional expectations about the states of a hierarchical model. This shows the speculative cells of origin of forward driving connections that convey prediction error from a lower area to a higher area and the backward connections that construct predictions. These predictions try to explain away prediction error in lower levels. In this scheme, the sources of forward and backward connections are superficial and deep pyramidal cells, respectively. The equations represent a gradient descent on free-energy under the hierarchical models described in Friston et al. (2012). State units are in black and error units in red. Here, neuronal populations are deployed hierarchically within three cortical areas (or macro-columns). Within each area, the cells are shown in relation to cortical layers: supra-granular (I–III) granular (IV) and infra-granular (V–VI) layers. For simplicity, conditional expectations about control states had been absorbed into conditional expectations about hidden causes. Adapted from Friston et al. (2012) with permission from Friston.